The Universe in a Box: Simulations of Large Scale Structure in Cosmology

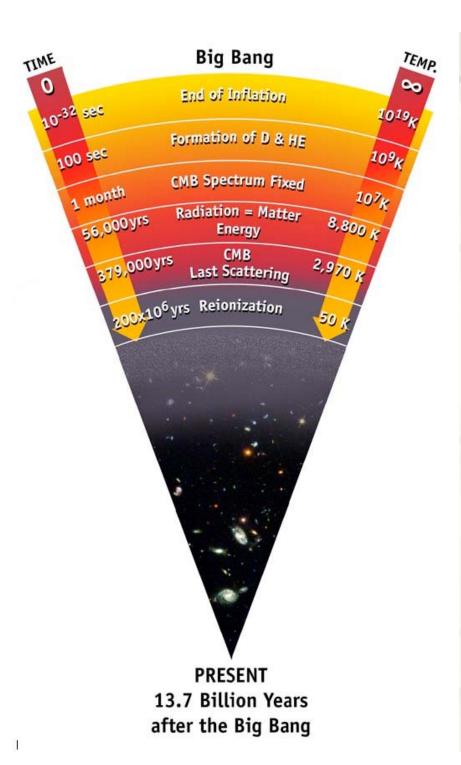
Seminar

Paramita Barai

Département de Physique, de génie physique et d'optique
Université Laval
Québec City, Canada

12th January, 2008

Outline


- ◆Introduction
- → Current Cosmological Scenario
- +Simulations: Procedures and Results
- ◆ The Millennium Simulation
- + Summary

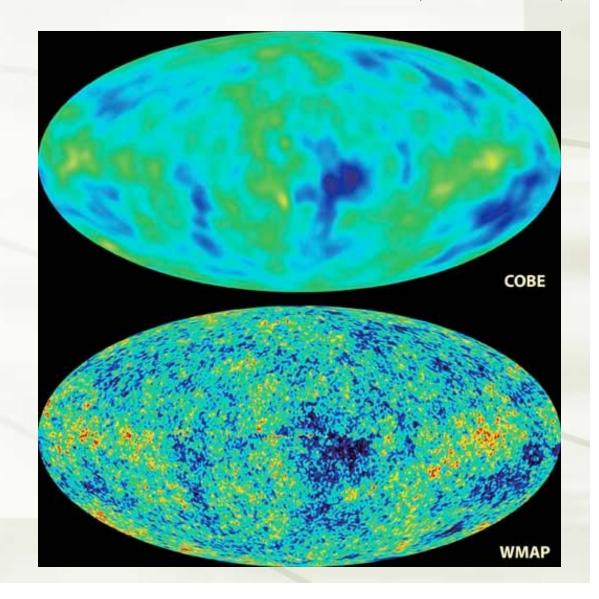
Introduction

- + Cosmological principle
 - ◆ Universe is Homogeneous and Isotropic on large scales (> 100 Mpc)
 - Laws of science are universal
- Structure formation in small scales (< 10-100 Mpc) by gravitational self organization</p>
- → Our Universe
 - → Started from a very dense, hot initial state (Big Bang)
 - → Had an early period of Inflation
 - → Cold dark matter dominated
 - → Having accelerated expansion now due to dark energy
- → Such a model has been conclusively verified in the last few years → the era of Precision Cosmology

Units

- +1 pc (parsec)
 - = 3.26 light-years
 - $= 3.09 \times 10^{18} \text{ cm}$
 - $= 2.06 \times 10^5$ a.u.
- → Mass of Sun = M_{\odot} = 1.99 x 10³³ g
- → Luminosity of Sun = L_{\odot} = 3.83 x 10³³ erg/s

Age of our Universe, from the Big Bang


= 13.7 Gyrs

 $= 13.7 \times 10^9 \text{ yrs}$

Cosmic Microwave Background Radiation (CMBR)

- → Radiation left over from an early very hot and dense epoch
 - + 300,000 years after the Big Bang
- → Blackbody: 2.7 °K
- the CMB give us the nature of initial density fluctuations

+ Anisotropies in

Feb-17-08

Simulate the Universe on Computers

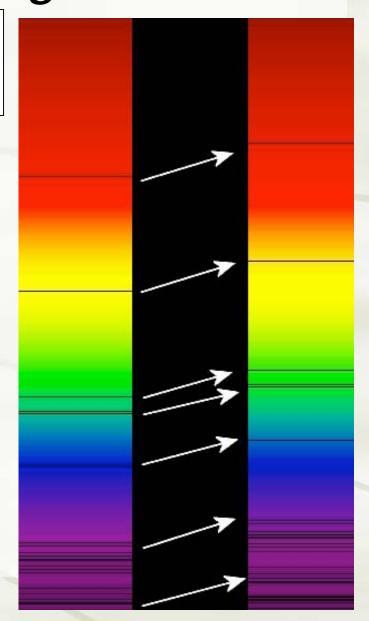
- → Why?
 - Best way to study origin and evolution of galaxies
- Bridge gap between observations of early epochs
 - → Oldest stars: 10° yrs after Big Bang (HST)
 - → CMBR: radiation from 3x10⁵ yrs after
- → The purpose of a cosmological simulation is to model the growth of structures in the Universe
- → Simulations are the only experiments to verify theories of the origin and evolution of the Universe
- Can run many experiments over cosmic ages in practical times

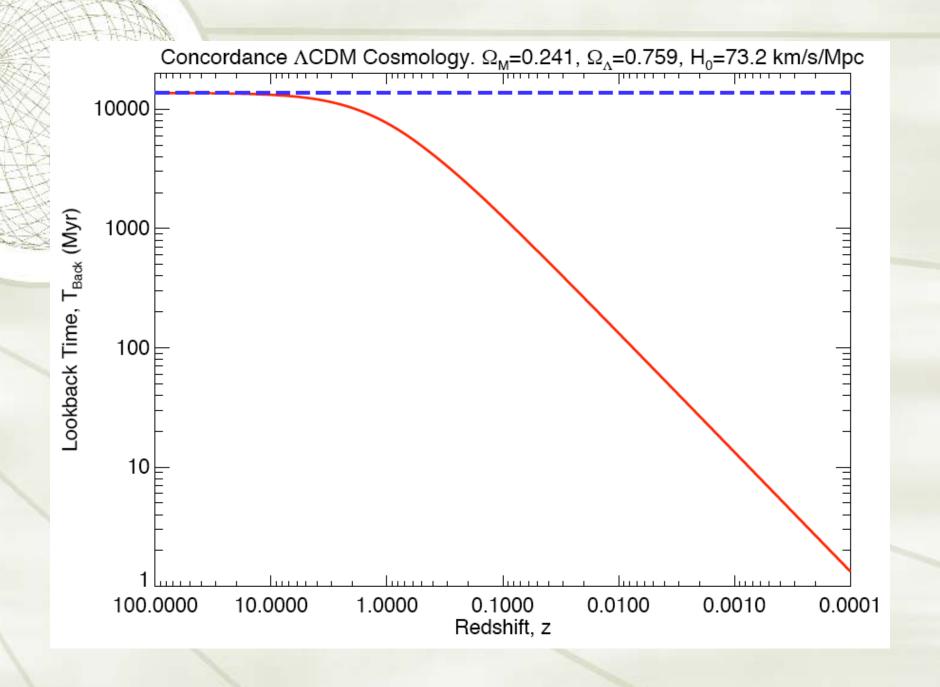
Hubble Expansion

- Galaxies moving away from us, further galaxies move away faster
- The Universe (space itself) is expanding
- → Hubble Law
 - $+H_0$ = Hubble's Constant

$$v = H_0 r$$

→ This recession affects the light emitted by the distant galaxies, stretching the wavelengths of emitted photons due to the Doppler shift effect


Cosmological Redshift


$$z = \frac{\lambda_{observed} - \lambda_{emitted}}{\lambda_{emitted}}$$

$$1 + z = \frac{a(z=0)}{a(z)}$$


- Stretching of light waves traveling through space
- Caused by expansion of the Universe
- Determined by observing an object's spectrum
- Comoving (line-of-sight) distance:

$$D_{comov}(z) = \frac{c}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_M (1+z')^3 + \Omega_{\Lambda}}}$$

Evolution of our Universe

- Our (observable) Universe expanded from a very dense, hot initial state (*Big Bang*)
- Structures formed in small scales by self-gravity
- Evolution from the early stage of density fluctuations into what we observe today: galaxies, clusters, and We – the people on planet Earth

Large Scale Structure Formation

<u>ACDM Universe</u> ⇒ CDM (cold dark matter) + Cosmological constant / Dark energy

- Quantum fluctuations shortly after the Big Bang give rise to primordial density perturbations in the early radiation and matter density fields
- Inflation expands the perturbations, which form the seeds for later growth
- Structures grow from gravitational clumping of matter from these initial density fluctuations
- → Main forces driving evolution
 - → Gravity: affects dark matter and baryons
 - → Gas dynamics : only baryons

How do we Simulate? -- Basics

- ★ A computational box ⇔ the Universe
- → Particles in the box ⇔ matter in the Universe
- *Assume: can model Universe as many massive particles each representing about 10^{10} – $10^{12}~M_{\odot}$
 - → Treat particles as average density over a finite volume (not point particles)
- → Physical laws governing the nature determines the dynamics of the particles in the box
- → Cosmological simulation → tool to investigate the evolution of millions of particles
- → To run these simulations we need supercomputers
 - → High speed and high processing power
 - → Weeks to months of time

How do we Simulate? -- Procedures

- Must follow the non-linear evolution of the early density fields using numerical methods
- → A twofold process:
 - →Generate the initial conditions for the density fluctuations, which are then used as an input to the evolution code
 - ◆Evolve the system by following the trajectories of particles under their mutual gravity
 - **→**Should get the final particle distribution consistent with observations of the Universe

Simulation -- 1st step

Assume a cosmological model

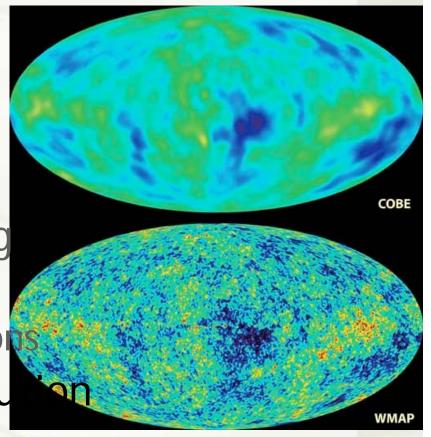
★ACDM parameters constrained by various

observations:

→CMBR (WMAP)

+SN

→Galaxy clusters


→Gravitational lensing

+Set initial conditions using

→Cosmological parameters

→ Gaussian density fluctuations

Underlying matter distribution

Current Cosmological Parameters (from WMAP)

- $+ H_0 = 71 (+ 4 3) \text{ km/s/Mpc}$
- → Density parameter, $Ω_{TOT} = ρ/ρ_C = 1.00 \pm 0.02$

$$+ \Omega_{\Lambda} = 0.73 \pm 0.04 = \Lambda / 3H_0^2$$

$$+ \Omega_{\rm M} = 0.27 \pm 0.04 = \rho_{\rm M}/\rho_{\rm C}$$

$$+\Omega_{\text{Baryon}} = 0.044 \pm 0.004$$

$$+ n_b$$
 (baryon density) = $(2.5\pm0.1)\times10^{-7}$ cm⁻³

$$\Upsilon \Pi_b$$
 (baryon density) = $(2.3\pm0.1)\times10^{-6}$ Cm⁻¹

$$+$$
 t_{Universe} = 13.7 ± 0.2 Gyr

$$+ T_{decoupling} = (379 \pm 8) \text{ kyr}$$

$$+ T_{\text{reionization}} = 180 (+220 - 80) \text{ Myr}$$

Initial Conditions

- + Overdensity, δ
- * When $\delta << 1$: linear regime
 - → Use Zeldovich approximation

$$\delta = \frac{\rho}{\overline{\rho}} - 1$$

- \rightarrow In galaxies, $\delta >> 1$: linear approx. breaks down
 - → Inflation ⇒ near homogeneous initial particle distribution
 - → Small perturbations
 - Linear regime
 - ↑ Λ dominated
 - → EdS/Matter dominated

$$\delta_k(t) = A + Be^{-2Ht}$$

$$\delta_k(t) = At^{\frac{2}{3}} + Bt^{-1}$$

- → Need to be in growing mode (for eventual collapse)
 - → From Virial theorem: linearized overdensity > 1.7

Methods for Generating IC's

- → Begin with particles on a lattice
- → Generate an initial gravitational potential to ensure growing mode
 - →Place particles on a cubic grid
 - ◆They are randomly perturbed
- → Calculate particle velocities to put system in growing mode (from initial potential)
- Displace the particles from uniform positions by amount corresponding to assigned velocity

Cosmological Simulation

- Dark matter (collision-less)
 - → Gravity-only
 - → Particle N-body method
- → Baryon / Gas evolution
 - → Gravity + Hydrodynamics
- → Add source & sink terms
 - → Cooling and heating of gas
 - → Star formation and stellar feedback
- Numerically integrate dynamical equations
- + Evolve box from z=100 up to z=0
 - → From after Big Bang (t→0) to present (t=13.7 Gyr)

Simulation Volume

The computational box has Hubble expansion just like the real Universe I_{zz} (z=0)

$$L_{box}(z)_{before} = \frac{L_{box}(z - 0)_{now}}{1 + z}$$

- Always encompasses the same mass
- → Mean density decreases
- The expansion is taken out from computations, s.t. the box appears static
- → Coordinate system that expands (or co-moves) with the Universe (the comoving coordinates) is used

Comoving Coordinate, x(t)

- Coordinate moving with the Hubble flow
- Distance between 2 points measured now, at z = 0
- → Remains constant for objects in Hubble expansion

$$x(t) = \frac{r(t)}{a(t)}$$

- +r(t) = Proper Distance
- +a(t) = Scale factor of the Universe

N-body (collision-less)

- → N number of dark matter particles
 - *No thermal velocities, no other interactions
- Gravitational interactions only
- Equations of particle motion

$$\frac{d\vec{x}}{dt} = \vec{u}$$

$$\frac{d\vec{u}}{dt} = -\nabla\Phi$$

→ Poisson's equation

$$\nabla^2 \Phi = 4\pi G \rho$$

→ During late evolution the relevant particle velocities are non-relativistic ⇒ Newtonian limit

N-body

- Each evolution timestep has 2 parts:
 - Gravity-solver : solve Poisson's equation & calculate particle accelerations
 - → Time integrator : calculate particle positions & velocities
- → Different codes, run in parallel processors
 - → PP: Particle-Particle
 - → PM: Particle-Mesh
 - **→** P3M : PM+PP
 - →AP3M : Adaptive P3M
 - **→**ART : Adaptive Refinement Tree
 - **→**TreePM

Hydrodynamics (baryons only)

- Collisional particles with ideal gas properties
- Continuity
- + Euler
- + Energy

$$\frac{\partial E}{\partial t} + \vec{\nabla} \cdot \left[(E + P)\vec{u} \right] = -\rho \vec{u} \cdot \vec{\nabla} \Phi$$

$$\left| \frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u}) = 0 \right|$$

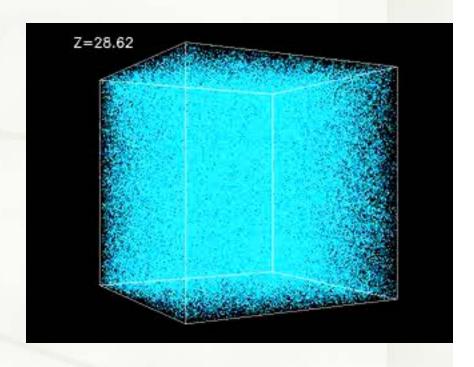
$$\boxed{\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla})\vec{u} = -\vec{\nabla}\Phi - \frac{\vec{\nabla}P}{\rho}}$$

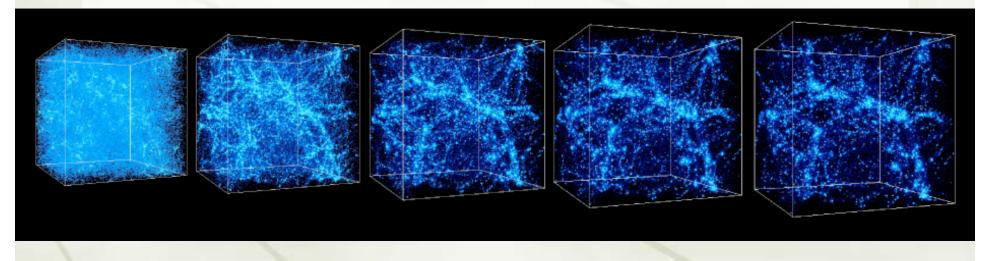
+ Equation of state, $\varepsilon = f(\rho, P)$

 $P = K \rho^{\gamma}$

- →Ideal gas
- →Polytropic

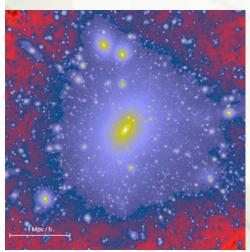
$$\varepsilon = \frac{1}{(\gamma - 1)} \frac{P}{\rho}$$


Feb-17-08

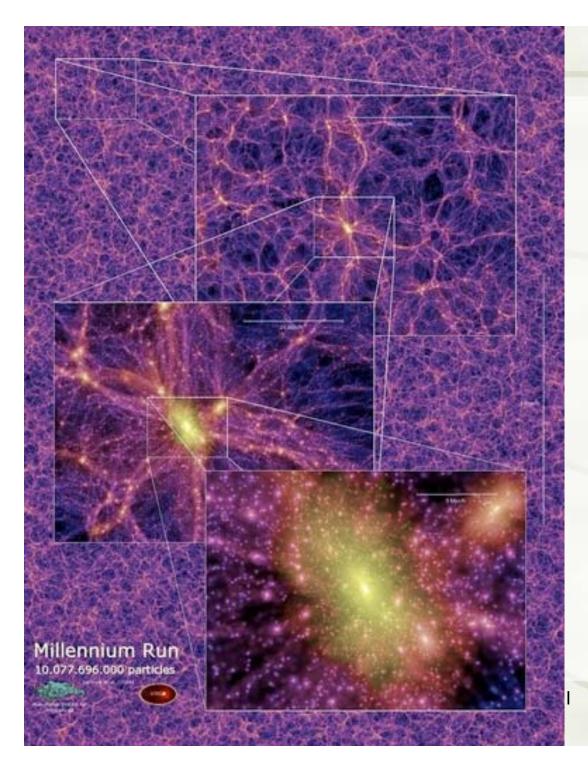

Successes of Cosmological Simulations

- Can reproduce the distribution and structure of galaxies in very large scales as seen in observations
- + On small scales
 - + Stellar evolution, black holes, star clusters
- → Distribution of matter in the Universe
 - → How the matter collapses via gravitational forces into filaments. Galaxies form in these filaments
- → Galaxy clustering at all z (z~0, z~1, z~4-5) observed in large scale surveys is well reproduced

Large-scale filaments


- → A 43 Mpc box
- + From z=30 to z=0
- ◆ The frames below show formation of large scale structure from z=10 to the present

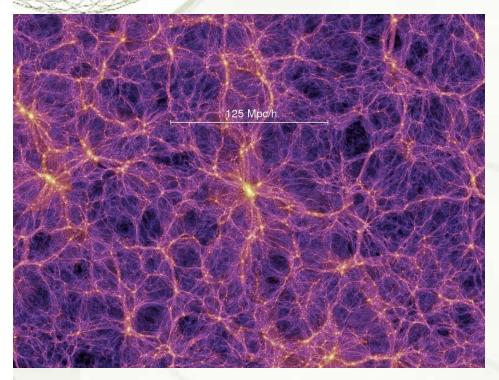
Formation of a Galaxy Cluster

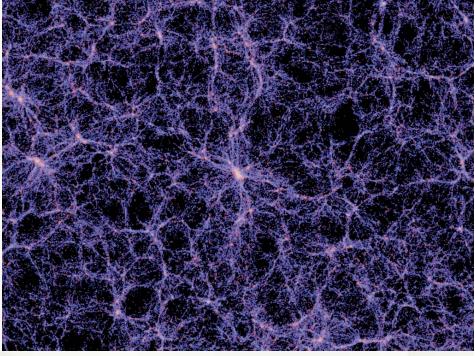


- + 4.3 Mpc region of box
- The formation of a cluster proceeds hierarchically
 - → Small-mass objects form first at z>5
 - → Quickly grow in size and violently merge with each other, creating increasingly larger and larger system
- → This galactic "cannibalism" continues up to z=0

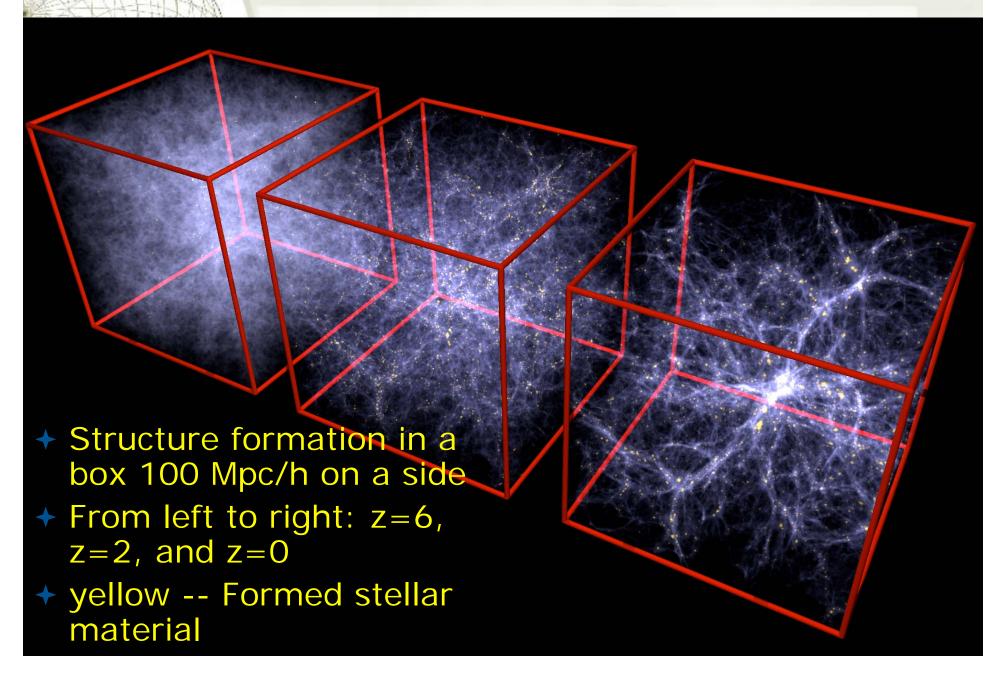
The Millennium Simulation

- One of the largest cosmological N-body run
 - Dark matter only
 - Gravity only, no hydrodynamics
- Done by the Virgo Consortium
 - + Springel et al. 2005, Nature, 435, 629
- + Box comoving side = $500 h^{-1}$ Mpc
- $+ 2160^3 \sim 10^{10}$ particles
- + Particle mass = 8.6 x $10^8 h^{-1} M_{\odot}$
 - → A galaxy = few particles
- → Comoving softening length, $ε = 5 h^{-1}$ kpc
- + From z=127 to z=0
- → Took 28 days on 512 CPUs

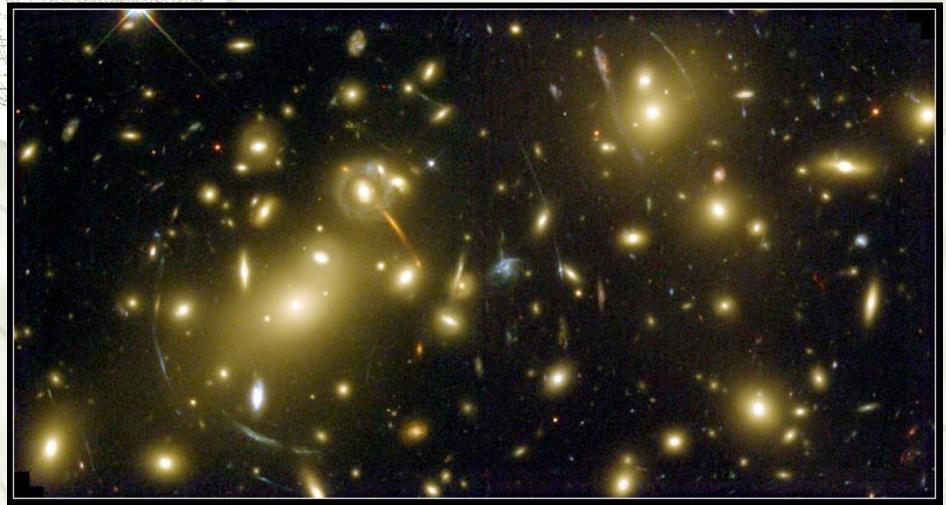



- ◆ A projected density field for a 15 Mpc/h thick slice of the z=0 output
- ◆ The overlaid panels zoom in by factors of 4 in each case, enlarging the regions indicated by the white squares

The Large-scale Matter Distribution in the Millennium Simulation

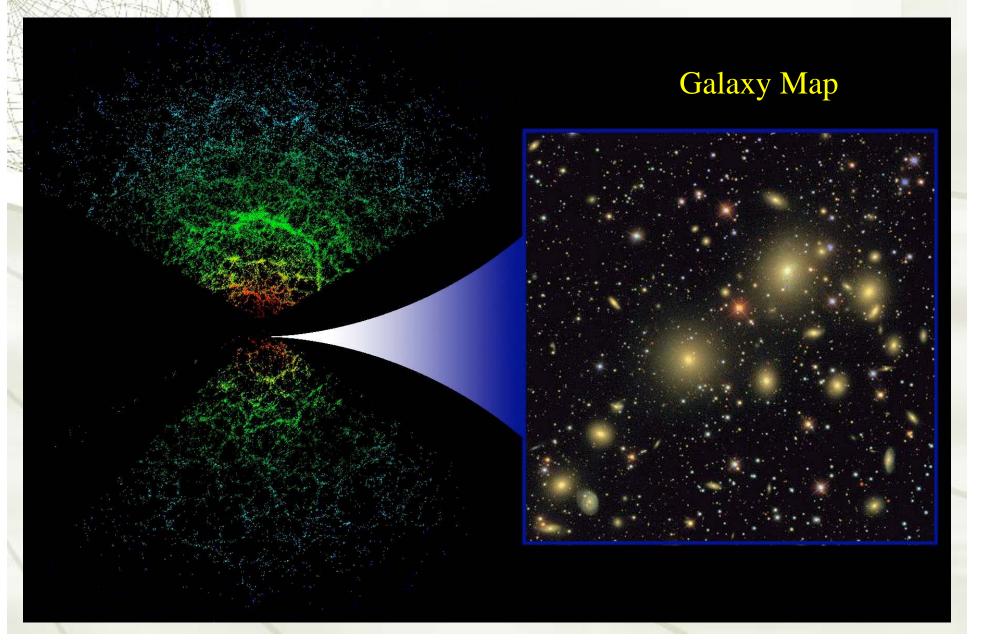

Dark Matter

Galaxies



Cosmic structure in 3D

Resolving galaxy sub-structures at the same time is tricky ...



Galaxy Cluster Abell 2218

HST • WFPC2

NASA, A. Fruchter and the ERO Team (STScI) • STScI-PRC00-08

Sloan Digital Sky Survey (SDSS)

Predicting right internal structure in galaxies is challenging!

- Galaxy interior
 - ◆Star & gas distribution
 - **→** Star formation & feedback
- → Why?
 - ◆Need very large resolution and dynamic range
- ◆Star formation needs resolution of 10 pc (10⁶ resolution in a 10 Mpc box)
- Scale height of star forming gas disk in Milky Way is 100 pc

Research in India

- → HRI Jasjeet Bagla
- ◆IUCAA T. Padmanabhan
- **→**RRI
- +IIA

Summary

- Observations have given a well constrained cosmological picture
 - Flat, dark-energy & dark-matter dominated
 - Primordial density fluctuations
- ◆ Evolve a computational box using nonrelativistic equations for particle dynamics
 - →Reproduce the observed large-scale structures in the Universe
- Several challenges and open questions remain for future research

Extra Slides

General Funda or More Explanation

SN Type la

Giant star accreting onto white dwarf
Standard candles
Compare observed
luminosity with predicted
Too faint
From z → expansion rate of distant SN < closer SN

Initial Conditions

Cubic grid

- Particles are placed on a (uniform) cubic grid
- Particle mass is varied to match potential
- Assign velocities to particles to put system in growing mode

Random Distribution

- Start with a uniform distribution of identical particles
- → Calculate particle velocities to put system in growing mode (from initial potential)
- Displace the particles from uniform positions by amount corresponding to assigned velocity
- Check displacements << inter-particle separation</p>
 - → Otherwise will violate initial potential

Dark Matter Candidates

+ Hot

- Remain relativistic until recombination
- Dampen initial fluctuation
- Could be a neutrino with 10 eV < m < 100 eV</p>

→ Warm

- + m ≈ 1 eV
- Interact more weakly than neutrinos!
- Less abundant than neutrinos
- → There are few candidate particles with these properties

+ Cold

- → Any particles which became nonrelativistic early on
- → Possible to calculate the appropriate initial density perturbation
- → F কিলেজ the evolution of প্রঙালা verse dominated by CDM can be treated as an initial value problem. In particular,