Gas and Stellar Properties of Simular alexies in Cosmological Vo Gas Outflows

Paramita B (INAF - Astronomical Joservatory of Trieste)

MUPPI collaborators:

Pierluigi Monaco, Giuseppe Murante, David Goz, Antonio Ragagnin, Matteo Viel

Evolving Galaxies in Evolving Environments Bologna 17 Sept. 2014

The Universe in a Box: Cosmological Hydrodynamic Simulations of Galaxy & Structure Formation

- Resolution elements (particles or grid) in box
 matter
- Model LSS in terms of massive elements each of mass 10⁶ - 10⁷ M_o
- Steps:
 - Generate the initial condition
 - Primordial density fluctuations (Gaussian) at CMB epoch (z~1100)

<u>ACDM cosmology</u>

- Follow the non-linear evolution of density fields numerically
- Identify galaxies, clusters (group finder) at different z
- Run on supercomputers
 - High speed & processing power, days to weeks of time

Why Sub-Resolution Models ?

Physics of baryons

In cosmological hydrodynamical simulations

• Radiative cooling and (photo + collisional) (few - 10's Mpc) box : Resolution ~ $10^6 M_{Sun}$, 1 kpc ionization heating of gas

- Fragmentation, clumping, multiphase ISM
- Star formation
- Metal production & chemical enrichment
- SN feedback, galactic wind
- AGN accretion + feedback

- Baryonic physics, occurring on much smaller scales, are crucial ingredient
- Implemented as sub-resolution models
- P. Barai, INAF-OATS

Modified-GADGET3 code: Numerical Sub-Resolution Physics

- GADGET : TreePM (gravity) SPH (hydro)
 - Springel 2005, MNRAS, 364, 1105
- Metal-line cooling & radiative heating (Wiersma et al. 2009, MNRAS, 399, 574) in the presence of UV photoionizing background (Haardt & Madau 2001)
- Star Formation

- Stellar & Chemical Evolution (Tornatore et al. 2007, MNRAS, 382, 1050)
 - Metal (C, Ca, O, N, Ne, Mg, S, Si, Fe) release from SN type-II, type-Ia, & AGB stars; stellar age, mass & yield; different IMF; mass & metal loss from starburst

SN Feedback

- Thermal feedback (↑ T) : inefficient, energy radiated away quickly
- ∴ Kinetic feedback (↑ v)
- No AGN feedback
 - In the simulations presented today

Star-Formation in Multiphase ISM

High-density SPH particle represents a part of ISM
 – Composed of 2 gas phases & stars

- Effective model (Springel & Hernquist 2003)
 - Equilibrium solution
 - Self-regulated SF: constant effective pressure

- MUPPI = MUlti-Phase Particle Integrator (Murante et al. 2010)
 - Molecular fraction of gas \propto Pressure
 - Mass & energy flows between components explicitly followed by numerically integrating system of ODEs within SPH timestep

Existing Models of SN Feedback

- Kinetic feedback : give velocity kick to gas
 - Energy-driven wind
 - Springel & Hernquist (2003)

 v_w , = constant

 $v_w = 3\sigma \sqrt{\frac{L}{L_{crit}}} - 1$ σ_0

Most of the models assume that wind velocity and mass-loading scales with some global galaxy property (mass, velocity dispersion, SFR)

Radially-varying wind velocity

- Barai et al. (2013)
- Combinations & variations of energy and momentum-driven
 - Schaye et al. (2010)
 - Dave et al. (2013)
 - Volgelsberger et al. (2014)
- Thermal feedback : increase gas temperature
 - Dalla Vecchia & Schaye (2012), Schaye et al. (2014)
- Turn off radiative cooling
 - Stinson et al. (2006)

P. Barai, INAF-OATS

SN Energy Feedback in MUPPI

- Energy imparted to gas particles
 - Inside SPH smoothing length and cone with semi-aperture angle = 60°
 - Along path of least resistance
 - Negative density gradient
- Direct distribution of
 - Thermal energy
 - Efficiency fraction
 - Injected to local hot phase
 - Kinetic energy
 - Efficiency fraction, Probability
- No direct input expression of wind velocity & outflow mass loading

$$E_{th} = E_{SN} f_{fb,th} \frac{\Delta M_*}{M_{*,SN}}$$

$$E_{kin} = E_{SN} f_{fb,kin}$$

Large-scale filaments. (5/h Mpc)³ box at low-z. Dark matter - green, Gas - red, Stars - blue

Redshift: 0.170

Redshift: 0.170

Redshift: 0.170

Simulation Runs (Barai et al. 2014, submitted)

Run	$L_{\rm box}$	N_{part}	$m_{ m gas}$	m_{\star}	$L_{\rm soft}$	SF & SN feedback sub-resolution physics				
Name	[Mpc]		$[M_{\odot}]$	$[M_{\odot}]$	[kpc]	Model	v_w	$f_{ m fb,out}$	$f_{ m fb,kin}$	$P_{\rm kin}$
E35nw	35.56	2×320^3	8.72×10^{6}	2.18×10^6	2.77 (comoving)	Effective	0			
E35rvw	35.56	2×320^3	8.72×10^6	2.18×10^6	2.77 (comoving)	Effective	$v_w(r)$			
E25cw	25	2×256^3	$5.36 imes10^6$	$1.34 imes10^6$	0.69 (physical)	Effective	350			
M25std	25	2×256^3	$5.36 imes10^6$	$1.34 imes 10^6$	0.69 (physical)	MUPPI		0.2	0.6	0.03
M25a	25	2×256^3	$5.36 imes10^6$	$1.34 imes10^6$	0.69 (physical)	MUPPI		0.4	0.4	0.03
M25b	25	2×256^3	$5.36 imes10^6$	$1.34 imes10^6$	0.69 (physical)	MUPPI		0.2	0.8	0.03
M25c	25	2×256^3	$5.36 imes10^6$	$1.34 imes10^6$	0.69 (physical)	MUPPI		0.2	0.6	0.01
M25d	25	2×256^3	$5.36 imes10^6$	$1.34 imes10^6$	0.69 (physical)	MUPPI		0.2	0.6	0.06
M50 std	50	2×512^3	5.36×10^6	1.34×10^6	0.69 (physical)	MUPPI		0.2	0.5	0.03

SFRD Evolution

10

Outflow measurement technique (modified from Antonio Ragagnin 2013, Master thesis)

Transform galaxy coordinates s.t. cold gas disk is rotating in X-Y plane

- Select gas particles:
- lying inside either cylinder
- moving at a high-velocity, $|v_z| > V_{\text{limit,outflow}}$
- if $(z^*v_z > 0) \Rightarrow$ Outflow
- if $(z^*v_z < 0) \Rightarrow$ Inflow

Setting the lower velocity threshold for outflow measurement

Outflow velocity vs. galaxy SFR

- positive correlation of outflow speed with galaxy mass and SFR.

Mass outflow rate vs. galaxy SFR

P. Barai, INAF-OATS

Mass loading factor (η = Mass outflow rate / SFR) vs. halo mass

3-oct-14

P. Barai, INAF-OATS

Redshift Evolution of Outflow Number Fraction

Observation : Karman et al. (2014) - incidence of large-velocity outflow higher at $z \sim 3$ than at z < 1.

Redshift Evolution of Outflow Velocity vs SFR

3-oct-14

Redshift Evolution of Mass-Loading factor vs Halo Mass

Realistic spiral galaxies in zoom-in cosmological simulations using moderate resolution (Murante et al. 2014 submitted)

Figure 1. Projected gas (upper panels) and stellar (lower panels) density for the GA2 simulation. The z-axis of the coordinate system is aligned with the angular momentum vector of the gas enclosed within the inner 8 kpc. Left panels show face-on densities, right column shows edge-on densities. Box size is 57 kpc.

Study of bars in zoom-in cosmological simulations of spiral galaxies (Goz et al. 2014 submitted)

Summary

SN feedback in cosmological hydrodynamic simulations:

- Can study impact of galactic winds on galaxy & IGM properties
 - Still far away from self-consistently driving these winds in such sims
 - Need subgrid prescription
- MUPPI is more physically-motivated sub-resolution model that uses only local properties of gas and generates realistic:
 - Galactic outflows
 - Outflow velocity positive correlation with global galaxy SFR
 - Contant mass-loading value at z=2
 - Redshift evolution predicted over z = 1 5
 - Need more observational data
 - Disk galaxies
- Future :
 - Compute further galaxy & IGM observables from sim
 - More physics : molecular cooling, AGN feedback

Formation of a disk galaxy at z=2.

Redshift: 18.810

Dark matter, gas, stars.

Edge-on view.

Redshift: 18.810

Redshift: 18.810

Formation of a disk galaxy at z=2.

Redshift: 18.810

Face-on view.

Redshift: 18.810

Redshift: 18.810

Extra Slides

Mass outflow rate at Rgal versus that at Rvir

Method	$N_{\rm outflow}$	$f_{ m outflow}$
At R_{gal} using $ v_r > v_{\text{esc}}(R_{\text{gal}})$, in a cylinder	1842	0.93
At R_{gal} using $ v_r > v_{\text{esc}}(R_{\text{gal}})$, in a sphere	1936	0.97
At R_{vir} using $ v_r > v_{\text{esc}}(R_{\text{vir}})$, in a sphere	1734	0.87

Prediction with Theoretical Estimate of the MUPPI model

