Probing the Diffuse Baryons in the CGM and IGM using Cosmological Hydrodynamical Simulations

Paramita Barai (INAF - Astronomical Observatory of Trieste)

Collaborators: Matteo Viel, Giuseppe Murante, Pierluigi Monaco, Antonio Ragagnin (Master student), Stefano Borgani, Luca Tornatore, Klaus Dolag (univ. Munich), Edoardo Tescari (univ. Melbourne)

Astro @ TS, Trieste 9 June 2014

Baryons observed to be distributed in various forms at different scales in Reference Failer Failer

Copyright (c) NRAO/AUI 1999

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl) • STScl-PRC00-08

HST • WFPC2

The Universe in a Box:

Cosmological Hydrodynamic Simulations of Galaxy & Structure Formation

- Computational box \Leftrightarrow representative volume of the Universe
- Resolution elements (particles or grid) in box
 matter
- Model LSS in terms of massive elements each of mass 10⁶ - 10⁷ M_o
- Steps:
 - Generate the initial condition
 - Primordial density fluctuations (Gaussian) at CMB epoch (z~1100)

<u>ACDM cosmology</u>

- Follow the non-linear evolution of density fields numerically
- Identify galaxies, clusters (group finder) at different z
- Run on supercomputers
 - High speed & processing power, days to weeks of time

IGM (Intergalactic medium) = diffuse gas between galaxies

of galaxies. The IGM and "circumgalactic medium" (CGM; by which we mean the gas-phase structures found within \leq 300 kpc (physical) of galaxies) together present a laboratory in which the

Steidel et al. (2010, ApJ, 717, 289)

-2.5 NW CW -3.0 -3.5 -4.0 -4.5 § -5.0 NW CW -5.5 -6.0 -6.5

10⁸

10⁶

10⁴

 $\rho_{gas} / < \rho_B >$

10²

10⁰

10²

10

 $\rho_{gas} / < \rho_B >$

10⁶

10

-7.0

-7.5

The case for sub-resolution (sub-grid) models

Physics of baryons

- Radiative cooling and (photo + collisional) ionization heating of gas
- Fragmentation, clumping, multiphase ISM
- Star formation

. . .

- Metal production & chemical enrichment
- SNe feedback, galactic wind
- AGN accretion + feedback

In cosmological hydrodynamical simulations

(few - 10's Mpc) box : Resolution ~ $10^6 M_{Sun}$, 1 kpc

illennium Run

- Crucial ingredient
- Implemented as sub-resolution models
- P. Barai, INAF-OATS

Modified-GADGET3 code: numerical sub-grid physics

- GADGET : TreePM (gravity) SPH (hydro)
 - Springel 2005, MNRAS, 364, 1105
- Metal-line cooling & radiative heating (Wiersma et al. 2009, MNRAS, 399, 574) in the presence of UV photoionizing background (Haardt & Madau 2001)
- Star Formation

- Stellar & Chemical Evolution (Tornatore et al. 2007, MNRAS, 382, 1050)
 - Metal (C, Ca, O, N, Ne, Mg, S, Si, Fe) release from SN type-II, type-Ia, & AGB stars; stellar age, mass & yield; different IMF; mass & metal loss from starburst

SNe Feedback

- Thermal feedback (
 [↑] T) : inefficient, energy radiated away quickly
- \therefore Kinetic feedback (\uparrow v)
- AGN accretion + feedback

22-juin-14

7

Star-formation in Multiphase ISM

High-density SPH particle represents a part of ISM

- Effective model (Springel & Hernquist 2003, MNRAS, 339
 - Equilibrium solution
 - Self-regulated SF: constant effective pressure

MUPPI = MUlti-Phase Particle Integrator

(Monaco, 2004, MNRAS, 352, 181; Murante et al. 2010, MNRAS 405, 1491)

- Molecular fraction of gas \propto Pressure
- System of ODEs numerically integrated within the SPH time-step

SNe-driven Kinetic Feedback (Springel & Hernquist 2003)

• Mass-loss rate ∝ SFR

$$\frac{dM_{w}}{dt} = \eta \frac{dM_{*}}{dt}$$

• Energy-driven wind :

$$\frac{1}{2}\frac{dM_{w}}{dt}v_{w}^{2} = \chi \varepsilon_{SN}\frac{dM_{*}}{dt}$$

New particle velocity
 Along rotation axis

$$v_{new} = v_{old} + v_w \hat{n}$$
$$\hat{n} \rightarrow \vec{v} \times \vec{\nabla} \phi$$

 To enable wind escape from dense, SF phase without directly affecting it → Wind particle decoupled (briefly) from hydro

$$\rho_{dec} = 0.25 \rho_{SF} = 0.25 \times 0.1 \text{ cm}^{-3}$$

P. Barai, INAF-OATS

Models of Galactic Wind

Energy-driven

- Springel & Hernquist 2003
- Dalla Vecchia & Schaye 2008, Tornatore et al. 2004, 2007, 2010
- Radially Varying Outflow Velocity (Barai et al. 2013)
 - Observations by Steidel et al. (2010, ApJ, 717, 289)
 - Spectroscopic data fitted by simple model
 - Quantities are function of galactocentric distance, r

SNe energy feedback in MUPPI

P. Barai, INAF-OATS

- Energy imparted to gas particles along path of least resistance
 - Negative density gradient
- Direct distribution of
 - Thermal energy
 - Efficiency fraction
 - Kinetic energy
 - Efficiency fraction, Probability
- No direct input expression of wind velocity & outflow mass loading
- Wind particles are hydrodynamically decoupled

Simulation runs (Barai et al. in prep)

Table 1. Simulation Parameters. Column 1: Name of simulation run. Column 2: $L_{\text{box}} = \text{Comoving side of cubic}$ simulation volume. Column 3: Total number of gas and DM particles in the initial condition. Column 4: Mass of gas particle (which has not undergone any star-formation). Column 5: Gravitational softening length (of all particle types). Column 6: Specifications of SF model and galactic wind feedback. In run RVWa, parameters of radially varying wind model: $r_{\min} = 1h^{-1}$ kpc, $R_{\text{eff}} = 100h^{-1}$ kpc, $v_{\max} = 800$ km/s, $\alpha = 1.15$.

Run	$L_{\rm box}$	N_{part}	$m_{ m gas}$	L_{soft}	SF & SNe feedback subgrid physics				
Name	$[h^{-1} \text{ Mpc}]$		$[h^{-1}M_{\odot}]$	$[h^{-1} \mathrm{kpc}]$	Model	v_w	$f_{ m fb,out}$	$f_{ m fb,kin}$	$P_{\rm kin}$
NW	25	2×320^3	6.13×10^{6}	1.95	Effective	0			
RVW	25	2×320^3	$6.13 imes10^6$	1.95	Effective	$v_w(r)$			
EffMod18	18	2×256^3	$3.86 imes10^6$	1.5	Effective	350			
Muppi18	18	2×256^3	$3.86 imes10^6$	1.5	MUPPI		0.2	0.6	0.03
Muppi18-Fth04fk04	18	2×256^3	$3.86 imes10^6$	1.5	MUPPI		0.4	0.4	0.03
Muppi18-Fth02fk08	18	2×256^3	$3.86 imes10^6$	1.5	MUPPI		0.2	0.8	0.03
Muppi 18-one percent	18	2×256^3	$3.86 imes 10^6$	1.5	MUPPI		0.2	0.6	0.01
Muppi 18-sixpercent	18	2×256^3	$3.86 imes 10^6$	1.5	MUPPI		0.2	0.6	0.06
Muppi 36	36	$2 imes 512^3$	$3.86 imes10^6$	1.5	MUPPI		0.2	0.5	0.03

Star Formation Rate Density Evolution

Projection of $(200/h \text{ kpc})^3$ volume around most-massive galaxy center at z = 2.12, showing gas properties in 4 runs with different wind models.

Red - Outflowing, Black - Inflowing.

Particle positions

Projection of $(200/h \text{ kpc})^3$ volume around most-massive galaxy center at z = 2.12.

Density

Outflow measurement technique (modified from Antonio Ragagnin 2013, Master thesis)

Transform galaxy coordinates s.t. cold gas disk is rotating in X-Y plane

Select gas particles:

- lying inside either cylinder
- moving at a high-velocity, $|v_z| > V_{\text{limit,outflow}}$
- if $(z^*v_z > 0) \Rightarrow \text{Outflow}$
- if $(z^*v_z < 0) \Rightarrow$ Inflow

Outflow velocity vs. galaxy SFR

Mass outflow rate vs. galaxy SFR

Mass loading factor (η = Mass outflow rate / SFR) vs. halo mass

Gas Density radial profile at z=2

Gas Temperature radial profile at z=2

Muppi model produces colder galaxy central regions than effective model.

Formation of a disk galaxy at $z=2$.	Dark matter, gas, stars.	Face-on view.
Redshift: 18.810	Redshift: 18.810	
		Contraction of the

Redshift: 18.810

Formation of a disk galaxy at $z=2$.	Dark matter, gas, stars.	Edge-on view.
Redshift: 18.810	Redshift: 18.810	

Redshift: 18.810

Summary

Cosmological Hydrodynamic Simulations are powerful tool – Study origin & evolution of galaxies over Hubble time

SNe kinetic feedback:

- Can study impact of galactic winds on galaxy & IGM properties
 - Still far away from self-consistently driving these winds in such sims
 - Need subgrid prescription

Galactic winds can:

- Reduce cosmic SFR density, quench SF in galaxies
- Enrich the CGM and IGM with metals
- MUPPI is better sub-grid model than SH03
 - Realistic disk galaxies, outflows.
- Future :
 - Compute further galaxy & IGM observables from sim
 - More physics : molecular cooling, AGN feedback