Quasar Outflows at z>6 in Cosmological Hydrodynamical Simulations

Paramita Barai

(a) Instituto de Astronomia, Geofisica e Ciencias Atmosfericas - Universidade de Sao Paulo (IAG-USP), Brazil (b) Scuola Normale Superiore (SNS) – Pisa, Italy

Simona Gallerani, Andrea Pallottini, Andrea Ferrara, Alessandro Marconi, Claudia Cicone, Roberto Maiolino, Stefano Carniani

Introduction

- ***** AGN Feedback:
 - Energy output from central SMBHs affect host galaxies
 - > Negative Quench star-formation, Reduce the number of high-M_{star} galaxies
 - Positive SF induced by compression of cold clouds with AGN jets
- **AGN Outflows observed in different forms:**
 - Jets & cocoons: radio (Nesvadba+08)
 - Blue-shifted broad absorption lines: UV & optical (Rupke&Veilleux11)

Numerical Methodology

GADGET-3 code: Tree-PM (gravity) + SPH (Springel 2005)

Baryonic Sub-Resolution Physics:

- Metal-line cooling, radiative heating (Wiersma et al. 2009) UV photoionizing background (Haardt & Madau 2001)
- **Star formation Effective model of multiphase ISM** (Springel & Hernquist 2003)

Zoom-In Cosmological Hydrodynamical Simulation

Initial condition - MUSIC code (Hahn & Abel 2011)

Scriptions

- **Cosmological volume evolved using [DM + gas] particles** \diamond Start with gaussian $\Delta \rho$ at CMB epoch
- $\diamond \Lambda CDM$ parameters

- Warm absorbers (Krongold+07) & ultra-fast outflows: X-rays (Tombesi+13)
- Molecular gas: far-IR (Feruglio+10)

Our work

- ✓ Simulate massive, powerful gas outflows in quasars at cosmic epochs > 12.5 Gyr ago
- ***** Observation of SDSS J1148+5251 at z = 6.4

- [CII] emission line at 158 μ m
- Broad wings tracing outflow
- (Willott+03)

 $M_{BH} = 3 \times 10^9 M_{SH}$

- Stellar evolution & chemical enrichment, metals: C, Ca, O, N, Ne, Mg, S, Si, Fe (Tornatore et al. 2007)
- **SN** feedback (Tescari et al. 2009, Barai et al. 2013)

- AGN accretion + feedback (Barai et al. 2016) > BH (10⁵ M_{sun}) seeded at galaxy (M_{h} > 10⁹ M_{sun}) center
 - > BH growth $\dot{M}_{\rm BH} = \min\left(\dot{M}_{\rm Bondi}, \dot{M}_{\rm Edd}\right)$ ♦ Accretion of gas ♦ Merger with other BHs
 - > BH feedback Transfer of energy (kinetic) from BH to surrounding gas $\frac{1}{2}\dot{M}_w v_w^2 = \dot{E}_{\text{feed}} = \epsilon_f \epsilon_r \dot{M}_{\text{BH}} c^2,$

- > Perform dark-matter only run of a periodic (500 Mpc)³ box, starting from z=100, up to z=6
- Select massive DM halo at z=6
- > Track-back r<2 R_{200} DM particles to z=100, & identify Lagrangian region
- Generate zoom-in IC, including baryons
- Perform zoom-in sim from z=100

L_{box} [Mpc]	$N_{\rm DM}$	$N_{\rm gas}$	$m_{ m DM}$ $[M_{\odot}]$	$m_{ m gas}$ $[M_{\odot}]$	L_{soft} [/h kpc]	Model	$M_{halo,max}$ $[M_{\odot}]$
500	17224370				33	Coarse	$4.4 imes10^{12}$
5.21	591408	591408	7.54×10^{6}	1.41×10^6	1	Hydro	

Quasar-Central Supermassive Black Hole Growth

Fig 1: Growth of most-massive BH in our simulations. The different panels show redshift evolution of BH mass (top-left), BH accretion rate (top-right), Eddington ratio (bottom-right), and star formation rate (bottom-left).

Fig 2: Redshift track of central BH mass versus host galaxy stellar mass. Black lines indicate the observed BH versus stellar bulge mass correlation of local galaxies (dashed line), and z=6 quasars (solid line).

Fig 3: Projected gas properties in 3 runs (in the 3 columns) presenting outflow morphology at z=6. The rows show: density (top), temperature (middle), and SFR (bottom). Black dashed circle is galaxy R_{200} .

Conclusions > Starting $10^5 M_{sun}$, a BH can grow to $10^9 M_{sun}$ by z=6 in a cosmological environ ✓ Need growth at Eddington accretion rate over z=9-6 (for 100s Myr)

- > Massive BHs generate powerful high-velocity outflows ✓ Outflow mass is increased (& inflow is reduced) by 20%
 - ✓ Despite the feedback, 30-40% cosmic gas continues to inflow

 \checkmark SF is quenched dominantly by (i) fast outflowing gas ejected away, which affects 2 times the fraction of gas as compared to (ii) cosmic inflows halted, or, (iii) dense gas reduced

z=6.4. Black star symbols denote observational data from Cicone+15.

References

- Barai, P., Gallerani, S., Pallottini, A., Ferrara, A., Marconi, A., Cicone, C., Maiolino, R. & Carniani, S. 2017, MNRAS, submitted
- Barai, P. et al. 2016, MNRAS, 461, 1548
- Cicone, C. et al. 2015, A&A, 574, A14
- Hahn, O. & Abel, T. 2011, MNRAS, 415, 2101
- Maiolino, R. et al. 2012, MNRAS, 425, L66
- Springel, V. 2005, MNRAS, 364, 1105