Feedback from Supermassive and Intermediate-mass Black Holes at Galaxy Centers using Cosmological Hydrodynamical Simulations

Paramita Barai

Instituto de Astronomia - Universidade de São Paulo (IAG-USP)

Collaborators: Elisabete de Gouveia Dal Pino, Stela Adduci Faria (IAG-USP), Simona Gallerani, Andrea Ferrara, Andrea Pallottini (SNS-Pisa, Italy)

Sociedade Astronômica Brasileira (SAB) XLIII meeting 12 Sept. 2019

SMBHs affect their host galaxies & the large-scale environment

AGN FEEDBACK : Energy

(fraction of gas accretion

to the surroundings

output from central SMBHs

energy) is fed back & coupled

- Central BH host galaxy correlations
 - M_{BH} σ, M_{BH} M_{bulge}
- Impact SF in galaxies
 - Quench SF by heating up or expelling gas
 - Trigger SF by compressing cold clouds in multiphase ISM
- Sharp cutoff at the bright end of galaxy luminosity function
- Galaxy BH coevolution (self-regulated BH growth): density both peaks at similar epoch (z ~ 2 - 3)
- Galaxy cluster
 - Heat up the cooling-flow
 - **Pre-heating (entropy floor in cool-core clusters)** P. Barai, INAF-OATS

SN (Silk&Mamon+12) $\phi(L)$ theory (CDM-motivated) observations $L^* \sim 3 \times 10^{10} L_{\odot}$ Galaxy luminosity AGN

AGN Outflows

• Observed in many forms:

radio jets & lobes, uv BAL, X-ray warm absorbers & UFOs, far-IR molecular gas

• Our work

Simulate massive, powerful gas outflows in quasars > 12.5 Gyr ago

Radio Galaxy 3C219 Radio/optical Superposition

Copyright (c) NRAO/AUI 1999

(Barai et al. 2018, MNRAS)

- Observation SDSS J1148+5251, z = 6.4
 - (Maiolino+12, Cicone+15)
 - [CII] emission line at 158 µm
 - Detected broad wings tracing outflow
 - · (Willott+03)

$$M_{BH} = 3 \times 10^9 M_{sur}$$

P. Barai, IAG-USP

3

Intermediate-Mass Black Holes

- Black holes are mostly observed to be
 - Stellar-mass (< 100 M_{\odot}), or
 - Supermassive (> $10^6 M_{\odot}$)
- What about the population of Intermediate-Mass Black Holes (IMBHs: 100 - 10⁶ M_☉)?
 - Started to be observed recently
 - These IMBHs should also have feedback

Our Study - IMBH

 Perform Cosmological Hydrodynamical Simulations by including IMBHs at the centers of Dwarf Galaxies

Test if IMBHs would grow at DG centers

Quantify the impact of IMBHs on DGs; esp. the effects on star formation at cosmic epochs z=6-4

 \checkmark

(Barai & de Gouveia dal Pino 2019, MNRAS)

Modified-GADGET3 code: Sub-Resolution Physics

- GADGET3: TreePM gravity + SPH hydro (Springel05)
- Metal-line cooling & radiative heating (Wiersma+09)
 - UV photoionizing background (Haardt&Madau01)
- Star-Formation
 - Effective model of multiphase ISM (Springel&Hernquist03)
- Stellar & Chemical Evolution (Tornatore+07)
 - Metal (C, Ca, O, N, Ne, Mg, S, Si, Fe) from SN type-II, type-Ia, & AGB stars
- SN Feedback (Tornatore+07, Tescari+09, Barai+13)
 Kinetic feedback (↑ v)
- AGN accretion + feedback
 - (Rasia+16, Barai+14, Barai+16)

P. Barai, IAG-USP

Modeling AGN Feedback in Galaxy Formation Simulations: the sub-resolution physics

- Generation of seed BH ($10^2 10^3 M_{\odot}$, $10^5 M_{sun}$) at:
 - Center of galaxy ($M_{halo} > 10^6 10^7 M_{\odot}, 10^9 M_{sun}$)
 - Minimum gravitational potential
- BH growth
 - Accretion of gas
 - Merger with other BHs

• Feedback

Transfer of energy from BH to surrounding gas

SMBH: Zoom-In Cosmological Hydro Simulation IC with MUSIC (Hahn&Abel+11)

- 1) Perform dark-matter only run of a periodic (500 Mpc)³ cosmological volume, starting from z=100 (previous similar work: Costa+14)
- 2) Select massive DM halo at z=6
- 3) Track-back r<2R₂₀₀ DM particles to z=100, & identify Lagrangian region
- 4) Generate Zoom-In IC, including baryons
- 5) Perform Zoom-In sim from z=100

(Barai et al. 2018, MNRAS)

Run name	AGN feedback algorithm	Reposition of BH to potential-minimum	Geometry of region where feedback energy is distributed	Half opening angle of effective cone
SF	No BH			
AGN off set	Kinetic	No	Bi-Cone	45°
AGN cone	Kinetic	Yes	Bi-Cone	45°
AGN sphere	Kinetic	Yes	Sphere	90°

BH locations & projected Gas Overdensity in 2-Mpc zoomed region

500Mpc-N256-Zoom-3-KickProbGT1 / z = 14.98797

14-Sep-19

Formation of Structures between z=10 and z=6. Gas Overdensity in Zoomed Cosmological Simulation. (Barai et al. 2018, MNRAS)

IMBH: Cosmological Hydrodynamical Simulation IC with MUSIC (Hahn&Abel+11)

> Run small (2 Mpc)³ boxes with periodic boundary conditions

- Starting from z=100
- > Up to z=4-2

(Barai & de Gouveia dal Pino 2019, MNRAS)

Run name	BH present	Min. Halo Mass for BH Seeding, $M_{ m HaloMin}[M_{\odot}]$	Seed BH Mass, $M_{ m BHseed}[M_{\odot}]$	BH kinetic feedback kick velocity v_w (km/s)
SN	No	_	_	_
BHs2h1e6	Yes	1×10^{6}	10^{2}	2000
BHs2h7e7	Yes	5×10^7	10^{2}	2000
BHs3h1e7	Yes	1×10^7	10^{3}	2000
BHs3h2e7	Yes	$2 imes 10^7$	10^{3}	2000
BHs3h3e7	Yes	$3 imes 10^7$	10^{3}	2000
BHs3h4e7	Yes	$4 imes 10^7$	10^{3}	2000
BHs3h4e7v5	Yes	$4 imes 10^7$	10^{3}	5000
BHs3h5e7	Yes	$5 imes 10^7$	10^{3}	2000
BHs4h4e7	Yes	4×10^7	10^{4}	2000

Gas Density Evolution Movie

P,

-19

Gas Density & Temperature in 2 runs at z=4. (Red and black circles denote the virial radius R₂₀₀ of galaxy halos. Magenta symbols indicate BHs, symbol size proportional to BH mass.) IMBH feedback in DGs create only weak outflow signatures

P.

19

Growth of IMBHs & SMBHs at Galaxy Centers

BH Growth Quenching Star Formation

Star Formation Rate Density Evolution (IMBH sims)

Impact on SFR

2D maps of Gas Density & Temperature

500Mpc-N256-Zoom-SF_SN_only / z = 9.998416

SF & SNfeedback only run

VS.

AGN run

P. Barai, IAG-USP

2D maps of gas density & temperature at z=6: SMBH feedback in Quasar creates strong outflow

P. Barai, SN

14-Sep-19

P. Barai, IAG-USP

Conclusions

(Barai et al. 2018, MNRAS)

Starting from 10⁵ M_{sun} seeds, can grow BH to 10⁹ M_{sun} in a cosmological environment

- Need growth at Eddington accretion rate over z=9-6 (for 100s Myr)
- Massive BHs generate powerful outflows
 - Outflow mass is increased (& inflow is reduced) by 20% •

(Barai & de Gouveia dal Pino 2019, MNRAS)

* Starting as $10^3 M_{\odot}$ seeds at the centers of Dwarf Galaxies, BHs can grow to $10^6 M_{\odot}$ by z=6 in a cosmological environment

Maximum Eddington accretion ratio = 0.9

* Star formation is guenched when central BHs have grown to few x $10^5 M_{\odot}$

✤ → IMBHs at the centers of DGs can be a strong source of feedback

Ithese DGs are turned passive already at high-z, with dormant BHs at their centers P. Barai, IAG-USP