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INTRODUCTION

The Universe is currently thought to originate from a singularity in the space-time
which began to expand — giving raise to the so—called Big Bang — about ~ 13 Gyr ago.
Theoreticians succeed in conjecturing on the physics of the universe up to 10~ seconds
after the time zero; from these speculations we are able to make precise predictions
on the pristine abundance of cosmic elements (Burles & Tytler 1998) formed at t = 3
minutes. Such a prediction turns out to be in excellent concordance with estimates
drawn from the signature left by the recombination of free electrons and nuclei on the
Cosmic Microwave Background (CMB) — the relic of the pristine energy bath — , about
4 x 105 yrs later (Spergel et al. 2003). This is probably one of the most important
confirmation of the current Standard Cosmological Model.

After the recombination, baryons — no longer impeded by the radiation pressure of
photon which were coupled to them — were able to collapse and rest in the potential
well created by an yet unknown form of matter. Since such matter seems to interact
only gravitationally with baryons and energy, then not emitting any kind of radiation,
it is called Dark. Nevertheless, we know it must be there by a number of observations:
among others, the rotation curves of spiral galaxies, the mass—over—light ratio for galaxy
clusters, the velocity dispersion of galaxies in clusters, the large scale velocity field, the
power spectrum of CMB (for recent reviews see e.g. Sellwood (2004), Ellis (2003)).

From that moment on, the Cosmology become the study of structure formation,
that is to say the infall of dark matter halos and baryons in those potential wells.
It is believed that a pristine field of very tiny fluctuations were superimposed to the
otherwise homogeneous density field by some yet uncertain quantum mechanism; in
this framework, with the additional assumption of the Cold Dark Matter scenario, the
structure formation proceed in a Bottom-Up direction, the smallest structures forming
first from the peaks of the primordial density fluctuations and then merging as building—
blocks for larger ones. The collapse of matter can be described with linear perturbation
theory until the contrast with respect to the mean density approaches unity, (p—p)/p ~
1; then, the collapse enters in the non—linear regime (see Sec. (1.2)).

At the top of the hierarchy of non-linear structures there are the Clusters of
Galaxies, which are the greatest virialized objects in the universe, collecting matter
from regions of about ~ 10Mpec (1pe~ 3.26 light years). Most of the baryons in
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clusters are in the form of a hot, ionized gas which emits by thermal bremsstrahlung
in the X-ray band, so that they can be detected at large redshifts, probing the large
scale structure in the universe. Originating form the rare high peaks of primordial
density perturbations, they probe the high—density tail of the cosmic density field and
thereby their evolution is very sensitive to the details of the cosmological model (see Sec.
(1.3)).This is the reason why Galaxy Clusters are thought to be very useful cosmological
laboratories. Moreover, they can be considered as fair tracers for the baryon’s history
in the universe, thereby being also invaluable astrophysical laboratories.

Owing to the continuous improvement in both spatial and spectral resolution power
of successive generations of X-ray satellites (ROSAT, Beppo—SAX, ASCA, Chandra,
XMM-Newton), more and more details on the inner properties of galaxy clusters have
been unveiled in the last decade. These objects, that in a first approximation were
thought to be virialized and spherically symmetric, have very complex dynamical fea-
tures — such as strong asymmetries and clumpiness — witnessing for violent processes
being acting or having just played a role. They exhibit luminosity and temperature
functions which are not trivially related to their mass function, as one would expect for
virialized gravitation—driven objects. Moreover, the radial structure of baryons’ prop-
erties is far to be completely understood: a number of observational facts pose a real
challenge to our ability in modeling the physics of the Intra Cluster Medium (ICM).
Even the radial profile of both dark and baryonic matter distributions is not yet ascer-
tained; the existence of a universal dark-matter profile, which has been claimed about
10 years ago by Navarro, Frenk and White (1995, 1997, 2004), is nowadays questioned
(e.g. Kravtsov et al. 1998, Cen & Ostriker 2000). A number of observational facts
clearly point towards an important role of non—gravitational physics in determining
the thermodynamical properties of baryons in galaxy clusters. The most important
are the slope of the relation between the X-ray luminosity Ly and the temperature
(e.g. Arnaud & Evrard 1999), the amplitude of the mass—temperature relation (e.g. Et-
tori et al. 2002a, Finoguenov et al. 2001b, Nevalainen et al. 2000), the entropy level
of gas in the central region of groups of galaxies (e.g. Sanderson et al. 2003).

Galaxy Clusters also harbor a rather large amount of heavy elements — as large
as few 10" My — both in the hot gas and in the star component. Such elements are
synthetized by stars during their evolution; once they are deposited in the Inter Stellar
Medium (ISM) by supernovae explosions, stellar winds or other mass losses by stars,
some other mechanism is required for them to reach the ICM. Although many possi-
bilities have been considered — the most favored are galactic winds and gas—stripping
by ram pressure or tidal interactions — no firm conclusions have been reached so far
about how metals reach the hot gas (e.g. Renzini 2004, Pipino et al. 2002, Aguirre
et al. 2001a). Understanding this mechanism would provide us with important clues
about the main processes which are driving the galaxy—plasma interaction; moreover,
we would also obtain important information on the star formation history, as different
ejection mechanisms are likely to act at different epochs. In fact, we have a limited
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knowledge of the Initial Mass Function (IMF, namely the mass function of a stellar
population) which underlines the star formation and whether it is universal or instead
environment—dependent and, if so, to what extent (e.g. Finoguenov et al. 2000a, Porti-
nari et al. 2004, Tornatore et al. 2004, Loewenstein 2004, Renzini 2004). As opposed
to galaxies, clusters may have been able to retain most, if not all, of the elements that
have enriched the ICM; behaving essentially as closed boxes they retain an unbiased
memory of the chemistry of the universe. Thus, measuring abundances of the ICM
and their evolution provides fundamental hints on the origin of the elements and on
mechanisms responsible for their distribution in different environments.

All such topics are of great interest by themselves as they involve the history of
a large fraction of baryons in the universe. In addition, understanding the thermo-
dynamical evolution of baryons within clusters is mandatory for these objects to be
used as precision tools for cosmology. In fact, the mass of galaxy clusters, which is the
predicted quantity, is not a direct observable but must be inferred from other quan-
tities, such as (1) the total X-ray emission, which depends on the total amount of
hot gas that is in turn linked to the total mass by the gas fraction f,qs, namely the
ratio Mgas/mba and the baryonic fraction fu,,, namely the ratio mpa/miet; (2) the
temperature of the hot gas, which is related to the total mass by the hypothesis of
hydrostatic equilibrium. Although other independent methods exist to infer the mass
of galaxy clusters — for instance the gravitational lensing or the velocity dispersion
of galaxies — a better understanding of the relations between the gas properties and
the mass would greatly improve the precision and reliability of clusters as probes in
a cosmological context (e.g. Arnaud 2004, Borgani 2004). In fact, the the evolution
of their mass function with time is one of the key test to determine both the density
parameter 2, and the amplitude of the variance of mass fluctuation (p — p)/p on a
scale of 8h~! Mpc (e.g. Borgani & Guzzo 2001) where h gives the value of the Hubble

constant in units of 100 km sec™! Mpc~1.

The aim of this thesis is to investigate the physics of the ICM in many respects by
means of advanced numerical methods in order to achieve a deep understanding on the
topics mentioned above. Thanks to the enormous increase in the last decade in both
the computational power and memory availability, numerical methods are nowadays
an invaluable instruments to gain precise clues on the strongly non-linear regime of
structure formation and on the highly complex interplay among several physical pro-
cesses which are acting in galaxy clusters. The Thesis consists basically of two parts.
Our first aim is to study in details the thermodynamical properties of the ICM, namely
what kind and level of non—gravitational heating is needed to recover the observed
scaling relations between X-ray luminosity, temperature and mass as well as the tem-
perature profiles. We also investigate which is the best thermodynamical path, namely
the epoch and the mechanism of energy injection. This is reported in Chap. (2). The
results reported in this Chapter have been published in Tornatore et al. (2003) and

13
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(2003b).

The second part of our work was aimed at introducing a sophisticated description
of the stellar evolution and chemical enrichment in numerical simulations. This is a
completely new field, as there are only few previous example of such codes (Lia et al.
2002, Kawata & Gibson 2003). First results have been published in Tornatore et al.
(2004); more advanced and complete analysis, as well as a methodology description,
will be published in forthcoming papers which are currently in preparation. We have
implemented very carefully the stellar evolution and the related production of heavy
elements, being also provided with an effective model as for the onset of galactic winds.
Moreover, we take take the supernovae energy into account when resolving hydrody-
namical equations, as well as other important effects as the metallicity dependence of
the radiative cooling and the effect of gas metallicity and supernova energy on star for-
mation. A general introduction on numerical methods in cosmology is given in Chap.
(3), whereas we describe our implementation in detail in Chap. (4). Here we also
describe the code! into which we have inserted our stellar evolutionary code; since this
is a far more advanced version than the code used to run simulations performed in
the first part of the work, which id described in details by Springel et al. (2001), we
choose to postpone such introduction to Chap. (2). Results on the chemical evolution
of galaxy clusters are reported and discussed in Chap. (5), along with a discussion
on numerical effects. More precisely, we vary a number of numerical parameters and
study the effects of such variations; we also let important physical parameters to change
in order to achieve some clues about the physics of star formation which is acting in
clusters. For instance, we alter the IMF, comparing a ‘standard’ Salpeter IMF with
other two functions which produce more massive stars. This will allow us to follow
different patterns of chemical enrichment and different energy injection histories. Fur-
thermore, we also study the effect of altering the velocity of gas taking part in galactic
winds. Chap. (6) contains the main conclusions from this work and outlines the
future directions of investigation.

"'We use GADGET , kindly provided to us by Volker Springel at Max Planck Institiit fiir Astrophysik
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CHAPTER 1

BASICS OF COSMOLOGY AND GALAXY
CLUSTERS

B Chapter Outline

In this chapter we briefly review the Standard
Cosmological Model and the Structure Formao-
fion. Furthermore, we review the fundamental
properties of galaxy clusters as X-Ray Objects
and we outline the current knowledge about
their chemical enrichment.

Basic Cosmology ... §1.1-§1.2
Properties of Galaxy Clusters ... §1.3
Chemistry of Galaxy Clusters ... §1.4

1.1 BAsics orF COSMOLOGY

The basic axiom of modern cosmology is a form of the Copernican idea that human
beings — that is to say the Earth — have not a role in the Universe which is special in
any respect. This Cosmological Principle states that the Universe is spatially isotropic
and homogeneous, meaning that any observer in any place will infer for it the same
general properties. Both isotropy and homogeneity are confirmed by observations of
the mass distribution on large scale, the Large Scale Structure (LSS), of the Cosmic
Microwave Background (CMB), of the cosmic velocity field and of the cosmological
X-ray background. In spite of this, it is evident that the Universe is neither homoge-
neous nor isotropic on small, local scales. This discrepancy is due to a small primeval
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perturbation field which is superimposed to an otherwise homogeneous mass distribu-
tion. These tiny departures from homogeneity subsequently grow forming the currently
observed cosmic structures. Hence, the cosmological theory must solve a twofold prob-
lem: the evolution of the Universe as a whole, and the evolution of such perturbations.
This latter topic is deferred to Sec. (1.2), while in the rest of this Section we picture
the dynamics of cosmological expansion.

1.1.1. Basic Equations

We assume that (1) the Gravitation governs the evolution of the Universe on large
scales through the Einstein’s Theory of General Relativity and (2) the metric tensor of
the Universe is given by the Friedmann-Robertson-Walker (FRW) metric (Weinberg
1972):

dr?

2 2 2
ds® = dt* — a(t) T2

+ 17 (d6* + sin*09) (1.1)

where the expansion factor a(t) describes how distances scale with time as a conse-
quence of the Hubble expansion and k is the space curvature. We know (Hubble &
Humason 1931) that an observer at rest recedes from any other given observer at rest
with a velocity, given by H(t)D, which increases with the distance D. The Hubble
constant H(t) at a time ¢ is defined as:

_ dlogaf(t)
S dt

and has the units of km s™' Mpc™!; it is commonly parametrized as H(t) = 100 h km
s71 Mpc~! where h = 0.7 as for today.
As a consequence of this space expansion, a photon emitted at a time t in the past
will be observed at present time ¢ = 0 red-shifted by a factor z = 1/a(t) — 1 which is
exactly called redshift; here we set a(t = 0) = 1.

The Einstein’s field equation

H(t) (1.2)

1

1
G =Ry — §ng, = 87GT,, + Ag (1.3)

relates the geometry of the Universe, with its own energy content, carried by the
stress—energy tensor T, for which we assume the form of a perfect fluid:

Tul/ = Puv + (p + p)uuu,,. (14)

where p and p are related by an equation of state p = p(p). The form of such equation
for each component is reported in Tab. (1.1).

16



1.1. Basics of Cosmology

Component Eq. of State
Relativistic Matter p=1/3p
Non—Relativistic Matter p =10
Vacuum energy p= —p
Curvature p=—1/3p

Table 1.1: Equations of state for different matter—energy components in the Universe.

Substituting the FRW form of metric and the perfect fluid tensor in the field equa-
tions gives the Friedmann’s FEquations that describe the expansion of the Universe:

N\ 2
a k G
bt oo 1.
(a) + 5P (1.5)
a e A
L T+ 3 (1.6

It is useful to define the critical density p. as the density needed for k = 0; then, it
results:

_ 3HA(t)
Pe= "8aG
The density p, of a component x of the universe is commonly expressed in units of
p. defining the quantity €2, as

~ (1.9 x 1072°(g em)~*)h2. (1.7)

Q= pu/pe- (1.8)

The first of the Friedmann equations can be recasted as:

k=a’H*(Q—1) (1.9)

where 2 accounts for overall the density of the matter—energy density. Hence, the
Universe will be spatially closed, flat or open if its means density is respectively smaller,
equal or larger than the critical density.

If ©, represents the density from the radiation field, €2,, the density from matter (both
baryonic and dark matter), Q, is due to the Cosmological Constant A and we set

. = —k/HZ =1 — Qg the second Friedmann equation can be rewritten as:
H(t) Q. Q, O
— ==+ —+—=+]. 1.10
Hy a* * a3 + a? 3o ( )

The Simplest case of €2, = Qy = 0 is called the Finstein—de Sitter model; in this
case the scaling factor a varies with time as a(t) oc t>/3. It is noteworthing that all
models with non—zero 2, and €2, approach the Einstein—de Sitter behaviour when
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(14 2) > max

0= =0 (g_i)/] | (L.11)

Finally, we can express a(t) as:

a(t) = ag [1 — Ho(t —to) — qohg(to —t)* + .. ] (1.12)
where
L R S (1.13)
do = éz% 5 om A .

is called deceleration parameter.

1.1.2. Key Observations

The Standard Cosmological Model sketched above employs about a tenth of a prior:
free parameters for which theory does not predict preferred values. Hence, deciding if
our Universe is flat or open, whether or not there is a Dark Energy at work etc. rest
upon observational constraints. The impressive technological improvement of the last
twenty years has permitted very precise measures of several parameters with more inde-
pendent methods; cross—combining these independent estimates leads to more certain
conclusions and breaks the degeneracy among linked parameters.

What turns out is that the Model currently favored is the so—called ACDM model,
having Q2 =1, Q,, = 0.3, 2, =0.7.

It is noteworthing that the WMAP experiment (e.g. Bennett et al. 2003) has
enormously improved the precision of our knowledge about the values of a number of
cosmological parameters: the geometry of the universe, its mean density and baryonic
density, the amplitude of density fluctuations, the redshift of decoupling and others
have been constrained by measures on CMB of unprecedented precision. Although a
number of discrepancies among independent methods are still there, the “concordance
model” appears more and more observationally grounded.

B The Curvature of the Universe

The most powerful technique to measure the curvature of the universe relies on the
position of the acoustic peak of the CMB spectrum. Before redshift of decoupling
Zdee = 1089+1 (Spergel et al. 2003), the Compton scattering tightly couples the photon
of CMB and the free electrons, which are in turn coupled with protons. Photon pressure
impede the gravitational settling of baryons downto the dark—-matter potential well and
the “photon—baryon fluid” sets up acoustic oscillations. Once the matter recombines,
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15

Figure 1.1: A figure from Bahcall et al. (1999) representing the three key cosmological parameters.
Each point of the triangle satisfies the rule Q,, + Qs + Q = 1. The horizontal line (marked "FLAT”)
corresponds to a flat universe (2, + Qa = 1), separating an open universe from a closed one. The
red line, nearly along the A = 0 line, separates a universe that will expand forever (approximately
Qa > 0) from one that will eventually recollapse (approximately Q24 < 0). And the yellow, nearly
vertical line separates a universe with an expansion rate that is currently decelerating from one that
is accelerating. The locations of three key models are highlighted: SCDM, dominated by matter
(Q,, = 1) and no curvature or cosmological constant; flat (ACDM), with Q,, = 1/3, Qx = 2/3, and
Qi = 0; and OCDM, with Q,, =1/3, Qs =0, and Qi = 2/3.

at 2z = z.c, photon last scatter on electrons and suffer for gravitational redshift when
leaving the potential well of the last scattering surface. The signature of this last scatter
is a fluctuation field on the CMB spectrum which appears today as anisotropies on the
sky; such fluctuations are called primary anisotropies, whereas secondary anisotropies
will be due to later gravitational effects, Sachs—Wolfe effect, Rees—Sciama effects and
others. On large scales the fluctuations of CMB must origin from the primordial
fluctuation spectrum as no signal can had time to travel long enough distances; instead,
at the characteristic scale of the sound horizon at z,.. acoustics oscillations mentioned
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Figure 1.2: A figure from Bahcall et al. (1999) representing the evolution of the universe as “tra-
jectories” in the cosmic triangles. The trajectories, which originate from near €, = 1 (an unstable
equilibrium point matching the approximate condition of the universe during early structure forma-
tion), indicate the path traversed in the triangle plot as the universe evolves. For the current best
fit ACDM model, the future represents a flat accelerating universe that expands forever, ultimately
reaching 2, — 0 and Q, — 1.

above can occur and at last scattering the oscillation phase freeze. Therefore, the
fluctuation spectrum should exhibit an harmonic series of fluctuation peaks whose
distance in the wavenumber space is equal to the critical wavenumber corresponding at
the sound horizon. The corresponding anisotropy scale projected on the sky is affected
by both the curvature of the universe and the distance of the last scattering surface.
Briefly, in the case of a flat space we expect the second acoustic peak at a given angular
extent, which will be larger or smaller respectively for positive or negative curvatures.
Before WMAP many other experiments (Benoit & coauthors 2003) provided measures
of the acoustic peak positions, and all estimates are in perfect agreement with the
WMAP result, though its error is much smaller:

Quot = 1.02 £ 0.02. (1.14)
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Figure 1.3: Confidence regions for Q) and Q4 with the WMAP CMB and galaxy cluster results
added on top of the SNIa data from the Supernova Cosmology Project (from Ciardi & Ferrara (2004)).

1.1.3. The Cosmological Acceleration

If an observed object is nearby the observer, its luminosity distance can be well ap-
proximated by a linear function of z; otherwise, the dependence on the redshift become
important and involves the deceleration parameter. Hence, if we are provided with a
set of standard candles which can be found at distances large enough that the lumi-
nosity distance is no longer a linear function of z we can infer the past values of the
parameter ¢, then deciding whether the expansion of the universe has been accelerated
or not.

Although Snla are not standard candles in a strict sense, as their luminosity will vary
as time elapses from the explosion, they can be calibrated using the characteristic
brilliance decaying—time which is instead tightly constant. Hence, we can infer the
distance of an observed Snla from its luminosity and also its receding velocity from
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the spectrum. In the case of unaccelerated expansion, a given Snla at distance d is
expected to recede at a velocity v = Hyd, where Hy is the present value of the Hubble
constant. Instead, in case of accelerated or decelerated expansion, the value of H(t)
at a given time (redshift) is different than Hy and the recession velocity will also be
different than the expected value. Results on Snla at z < 3 from the Supernova Cos-
mology Project (Perlmutter & The Supernova Cosmology Project Team 1999) and the
High — ZSupernovaSearchTeam (Riess & coauthors 1998) give a negative value of
qo, indicating the presence of a positive cosmological constant:

Qp ~ 0.28 ; Qp ~ 0.72. (1.15)

B The Matter and Baryon Density

Both the amplitude of acoustic peaks of the CMB spectrum (Bond & Efstathiou 1984)
and the Deuterium abundance [D/H] (Boesgaard & Steigman 1985) are sensitive to
the cosmological baryon density. The comparison between the estimates obtained by
such independent method provides an important test of the Big Bang model. Using
the Baryon—photon ratio inferred from WMAP results Q,h? = 0.0224 £0.0009 (Spergel
et al. 2003), the standard Big Bang nucleosynthesis gives [D/H] = 2.6270 5. Estimates
from [D/H] measures in Ly« clouds and DLA give respectively Q,h? = 0.021440.0020
and Q,h% = 0.025 &+ 0.001, with a good agreement which was far to be obvious a
priori. Galaxy Clusters observations provide estimates of €2, through the evolution
with z of their number counts. Fairly different results are obtained by different author:
Bahcall et al. (2003) obtain og = 0.95 £ 0.1 for €2, = 0.25, Borgani et al. (2001a)
obtain g = 0.66105: and ©,, = 0.357%13-010, Reiprich and Bohringer (2002) find
og = 0.967015 and Q,, = 0.12733%  Origins of such significative discrepancy are
discussed by Pierpaoli et al. (2003).

1.2 STRUCTURE FORMATION

Besides providing a theory to describe the very early times of the universe and the
general framework for the expanding universe, a Cosmological Theory must also provide
a model for the formation of cosmological structures and the large scale distribution
of matter. To give a comprehensive outline of that matter is far beyond the scope of
this brief introduction, so that we address the reader to recent review (e.g. Peebles &
Ratra 2003, Coles 2000, Peacock 2001), while in the following we give only few basic
ideas.

The Universe shows locally a very rich hierarchical pattern of galaxies, galaxy clus-
ters and clusters of clusters; however, the primeval universe was almost smooth with
slight ‘ripples’ that can be seen as relics in the CMB spectrum. Models of structure
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evolution link such initial smoothness to the rich scenario observed nowadays through
the effect of gravitation, which causes the initial tiny perturbations to attract more
and more mass. If we define the density contrast 6 with respect to the mean density p
as:

s=L"" (1.16)

the initial fluctuations in the density field are likely to be a superposition of waves,
which can be better expressed by a Fourier transform:

5(k) = (Qi)g / Bro(x)e . (1.17)

For later use, we also define the Power—Spectrum P of this field as basically the
variance of amplitudes of different waves at a given value of k:

(3061)d(ka) ) = P(Jkn)5 (s + k). (1.18)

where 6%, is the three-dimensional Dirac’s delta function.

Those initial departures from a complete smoothness are supposed to have been adia-
batic and scale invariant. This means (1) that fluctuations in matter and energy are
coupled in such a way that the total entropy does not change, and (2) that the power—
spectrum of such density fluctuation field looks like P(k) = Ak™ where k has the usual
meaning of a wavenumber. The favored value as for the exponent n is n = 1. The fact
that the universe is isotropic is expressed by P(k) = P(k).

Currently accepted models predict that Gaussian quantum fluctuations in a scalar field
at very early times (e.g. Guth & Pi 1982) has generated the density perturbation field.
Since the power—spectrum completely characterizes in a statistical sense the Gaussian
stochastic processes, we are provided with a complete statistical description of the ini-
tial ‘seed’ of structure formation once we have the power—spectrum of such pristine
perturbation field.

Besides gravitation, other astrophysical process are affecting the growth of perturba-
tions; they are accounted through a Transfer Function T'(k) which is simply a func-
tion of the wavenumber k. The final power spectrum relates to the original one by
P(k) = Py(k) x T?(k). For the sake of clarity, here below we just remind some of
these non—gravitational effects. As already mentioned, the coupling of baryons with
the radiation field or the baryonic pressure can cause the dissipation of perturbation in
the baryonic component, as well as the coupling of baryonic and radiation temperature
until the time of decoupling, and fast moving (‘hot’) dark matter particles can lead to
kinematic suppression of growth.

This latter effect is mainly important to determine the overall scenario; in fact, hot
dark matter particles cancel small-scale structures just by free—streaming across the
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small potential wells, so that T'(k) vanish for large k. At the opposite, slow mov-
ing (‘cold’) dark matter particles suffer for a smaller dissipation at the horizon size
dy = ¢/H at matter-radiation equality; nevertheless, a significant signal remains on
small scales. Hence, two completely different scenarios results in each case: if the dark
matter were ‘hot’ — which is called HDM scenario — the largest structures form first,
and the smallest ones descend by fragmentation. In such scenario, galaxies form at
late time, after galaxy clusters. On the other hand, in the CDM scenario — in which
the dark matter is ‘cold” — the smallest structures, namely the galaxies — are those
who form first, becoming the building blocks for the largest ones. These two scenario
are also called ‘top—down’ (the first) and ‘bottom—up’ (the second). There is no need
to say that the HDM scenario has been ruled out by observations, which for instance
definitively state, roughly speaking, that galaxies form well before clusters. The net
result of perturbation growth in the CDM model is then a Power—Spectrum having a
characteristic turn—over at the scale of order the horizon at matter-radiation equality
with an asymptotic shape at small scale of P(k) oc k"4,

In the rest of this Section, we give an outline of the linear theory of growth of
structure. An extensive and complete treatment is given e.g. by Peebles (1980).

As we assume that at early times inhomogeneities were small, a perturbative ap-
proach can be adopted, at least as a first approximation. Furthermore, if the length
scale of perturbations is smaller than the effective cosmological horizon dy = ¢/H a
Newtonian treatment is physically grounded. If the mean free path of particles is small,
matter can be treated as an ideal fluid. Hence, the usual equations (mass conserva-
tion, Euler’s equation, Poisson’s equation — see Sec. (3.1)) must be re—written using
comoving coordinates x = r/a(t) (spatial coordinates, fixed for an observer moving
along with the Hubble expansion), v =t — Hr = ax (the peculiar velocity field, which
represents the proper motions of particles besides the Hubble expansion), p(x,t) (the
density field) and ¢(x,t) (the local value of Newtonian potential, which relates to the
fluctuations in the density field). For the exact equations in comoving form see, for
instance, Coles & Lucchin (1995).

Expanding p, v and ¢ perturbatively and taking only terms which are linear in ¢
gives :

0+ 2H — SQHZ’(S =0 (1.19)

This linear equations has two independent solutions d+ = Dy (t)d(x), where D_(t)
is the decaying mode and D (t) is the growing mode which shortly comes to dominate
the evolution of 4. In an Einstein—de Sitter cosmology, for instance, the two modes are
§ o< 7! and & oc t¥/® which also has D, (t) oc a(t). The solution for the growth factor
D, (t) in general cosmologies are given by Peebles (1980).

As long as each Fourier mode (k) is small, (k) < 1, the linear approximation can be
applied and each Fourier mode evolves independently of the others, so that the Power—
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Spectrum simply scales as the square of the growth factor. This is what is called the
linear regime in which larger scales persist longer than the smallest ones, which are
those entering first in the non-linear regime.

An important difference hold between the collapse of dark and baryonic matter.
In fact, baryons suffer for more interactions than dark matter particles; we know, for
instance, that the radiation drag prevent it to collapse until the recombination era.
At later times, generally, what may impede the baryons to collapse is the pressure
support due to baryon-baryon interaction. Jeans (1928) defined, as a function of the
local temperature T and the pressure P, a critical length \;(7', P) below which the
pressure waves have times to propagate, then counteracting the gravitational support;
his calculations were made in a Newtonian framework, for perturbations in an infinite,
uniform and stationary distribution of gas. The mass scale M is defined as the mass
encompassed in a sphere of radius \;/2, so that perturbation having mass below this
limit are not able to undergo the collapse. A similar calculation can be made also
in the framework of modern cosmology, accounting for pressure forces in the previous
linear equation. The obtained result is just a lower limit to the mass that is able to
collapse, since M is once more a perturbative result and thus it can only describe the
first phases of the process.

It is worthnoting that the Jeans mass represents only a necessary but not a suf-

ficient condition for the collapse of baryons; in addition! one has to require that the
cooling time (i.e. the characteristic time taken by the gas to loose its internal energy by
radiative emission) is shorter than the Hubble Time (i.e. the characteristic expansion
time of the universe).
Many competing physical processes — e.g. radiative cooling, molecular cooling, heating
from first sources of light, magnetic fields — affect the baryons settling in the potential
wells, and the relative importance of them changes with redshift; we address the reader
to, e.g., Barkana & Loeb (2001) and Ciardi & Ferrara (2004) and references therein.

Anyway, Dark Matter is made by collisionless particles that interact very weakly
with the rest of matter and the radiation field; hence, density contrasts in this com-
ponent start to collapse at earlier times than the baryonic component. When the
perturbation ¢ becomes of order unity, the full non—linear gravitational problem must
be solved; in order to do this, we must resort to numerical N-Body calculations, though
a powerful approximation for the mild non—linear regime has been found by Zel’dovich
(1970). In such approximation, the first non-linear objects are sheet-like structures,
resulting from the contraction along one of the principal axis. As the probability of
simultaneous contraction along two (filamentary structures) or three (point—like struc-
tures) axis is much less, ‘pancakes’ dominate the first stage of non-linear evolution.

'In fact, the physics of baryonic collapse is not yet fully understood and all recipes are still fairly
empirical.
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At later times, the prediction of the Zel’dovich model are no longer accurate. Then,
the simplest case for which we can find an analytical solution is that of a spherically
symmetric perturbation, having a top—hat distribution of uniform density J; inside a
sphere or radius R;. Results from this rough model surprisingly comes out to be very
useful to gain an accurate description of properties and distribution of halos in the
CDM model.
The collapse of such a spherical top—hat is described, in Newtonian formalism, by:
d*r
P HZQpr — 5 (1.20)
where r is the radius in a fixed coordinate frame, Hj is the present value for the Hubble
constant, M is the total mass enclosed in the radius r and the initial velocity field is
given by the Hubble flow. Initially, the enclosed ¢ grows linearly as 0;D(t)/D(t;).
We assume that the mass shell at radius r is bound, so that it reaches a maximum
expansion and subsequently collapses. The overdensity predicted by the linear theory
for the collapse to a point-like structure if (Peebles 1980) 6 = 1.686 in an Einstein—
de Sitter universe. Thus, a top—hat collapse at redshift z if its linear overdensity
extrapolated to the present (the critical density) is:

1.686
5cri = =~

{2 =55

where D(z = 0) = 1. Instead, the halo reaches the virial equilibrium by violent

relaxation (which basically means a phase mixing); using the virial theorem we obtain
(Peebles 1980) as for the final overdensity at the redshift of collapse:

(1.21)

A, =187% ~ 178 (1.22)
that in a universe having 2, + €2, = 1 becomes (Bryan & Norman 1998):

A, = 187* + 82z — 392° (1.23)
where d = 7, — 1 is evaluated at the same collapse redshift:
(1 + 2)°
QF —1= . 1.24
" Q14 2)3 + Qp + (1 + 2)2 (1.24)

All in all, the following estimates are obtained as for, respectively, the virial radius
and the virial temperature for a halo of mass M collapsing at redshift z:

M o, ATV 142\

2/3 1/3
o s M O A I1+2
o100 (55) () [opises] (o) 09
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where p is the mean molecular weight (u = 0.59 for a fully ionized primordial gas,
i = 0.61 for primordial gas with fully ionized Hydrogen but neutral Helium, p = 1.22
for neutral primordial gas).

Since density fluctuations may exist on all scales, in order to determine the for-
mation of objects of a given size or mass it is useful to consider the statistical distri-
bution of the smoothed density field. Using a window function W(y) normalized so
that [ d®yW (y) = 1, the smoothed density perturbation field, [ d®yd(x + y)W(y),
itself follows a Gaussian distribution with zero mean. For the particular choice of a
spherical top-hat, in which W = 1 in a sphere of radius R and is zero outside, the
smoothed perturbation field measures the fluctuations in the mass in spheres of radius
R. The normalization of the present power spectrum is often specified by the value of
03 = o(R = 8 h~'Mpc). For the top-hat, the smoothed perturbation field is denoted
dg or 0y, where M is the mass related to the comoving radius R by M = 47p,,R?/3 in
terms of the current mean matter density p,,. The function o(M) plays a crucial role
in estimates of the abundance of collapsed objects. This is a critical test for any theory
of structure formation, and it is a fundamental step toward inferring the abundances
of galaxies and galaxy clusters. A simple analytic model which successfully matches
most of the numerical simulations was developed by Press & Schechter (1974). The
model is based on the ideas of a Gaussian random field of density perturbations, linear
gravitational growth, and spherical collapse. To determine the abundance of halos at
a redshift z, we use 9,7, the density field smoothed on a mass scale M, as previously
defined. Although the model is based on the initial conditions, it is usually expressed
in terms of redshift-zero quantities. Thus, we use the linearly extrapolated density
field, i.e., the initial density field at high redshift extrapolated to the present by simple
multiplication by the relative growth factor. Similarly, here the present power spec-
trum refers to the initial power spectrum, linearly extrapolated to the present without
including non-linear evolution.

Calculations (see e.g. Press & Schechter 1974, Barkana & Loeb 2001) give the
comoving number density dn of halos with mass between M and M + dM:

dn 2pnd(=Ino) 0,

ar Nz ar v (1.27)

where v, = eit(2)/0(M) is the number of standard deviations which the critical col-
lapse overdensity represents on mass scale M. Although this distribution function
represents fairly well the observations and also the numerical N-Body experiments, a
significantly better agreement can be achivied using an ellipsoidal collapse model in-
stead of the simpler spherical one (Sheth & Tormen 2002).

We address the reader to the following references for a more extended discussion
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Figure 1.4: The evolution with redshift of the comoving number density of dark matter halos with
mass exceeding a specific value in the standard ACDM model. For details see Mo & White (2002).

on these topics: see e.g. Peebles (1980, 1993), Coles & Lucchin (1995), Coles (2001),
Barkana & Loeb (2001).

GALAXY CLUSTERS

In this section we briefly summarize the main properties of galaxy clusters and the
key observational facts about them. We also give a brief outline of their use to asses
the cosmological framework. For further reading, we address the reader to Borgani &
Guzzo (2001), Rosati et al. (2002) and to Borgani (2004) for a closer look on numerical
simulations.

Clusters of galaxies were first identified as large concentrations in the projected
galaxy distribution (Abell 1958, Zwicky et al. 1966, Abell et al. 1989), containing
hundreds to thousands galaxies, over a region of the order of ~1 Mpc. The first ob-
servations showed that such structures are associated with deep gravitational potential
wells, containing galaxies with a typical velocity dispersion along the line-of-sight of
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0, ~ 103kms~!. The crossing time for a cluster of size R can be defined as

R R O, -1
tr = == <1Mpc) <103kms—1) Gyr. (1.28)

Therefore, in a Hubble time, ¢ty ~ 10h™! Gyr, such a system has enough time in
its internal region, < 1A 'Mpc, to dynamically relax — a condition that can not be
attained in the surrounding, ~ 10 Mpc, environment. Assuming virial equilibrium, the
typical cluster mass is

Ro? R o 2
M ~—Y ~ Y 10 Rt M, . 1.29
G (1 h—lMpc) <1O3kms—1) © (1.29)

Smith (1936) first noticed in his study of the Virgo cluster that the mass implied
by cluster galaxy motions was largely exceeding that associated with the optical light
component. This was confirmed by Zwicky (1937), and was the first evidence of the
presence of dark matter.

1.3.1. X-ray properties of clusters

Observations of galaxy clusters in the X-ray band have revealed a substantial fraction,
~15%, of the cluster mass to be in the form of hot diffuse gas, permeating its potential
well. If this gas shares the same dynamics as member galaxies, then it is expected to
have a typical temperature

O-'U
103 kms—!
where m,, is the proton mass and p is the mean molecular weight (¢ = 0.6 for a
primordial composition with a 76% fraction contributed by hydrogen). Observational
data for nearby clusters (e.g. Wu et al. 1999) and for distant clusters (see Figure 1.5)
actually follow this relation, although with some scatter and with a few outliers. This
correlation indicates that the idealized picture of clusters as relaxed structures in which
both gas and galaxies feel the same dynamics is a reasonable representation. There are
some exceptions that reveal the presence of a more complex dynamics.

At the high energies implied by Eq. (1.30), the ICM behaves as a fully ionized
plasma, whose emissivity is dominated by thermal bremsstrahlung. The emissivity for
this process at frequency v scales as

2
kT ~ pmyo? ~ 6< ) keV (1.30)

€, ¢ nenig(v, T) T~? exp (—hv/kgT) (1.31)

where n, and n; are the number density of electrons and ions, respectively, and g(v, T')
In(kgT'/hv) is the Gaunt factor. Whereas the pure bremsstra-hlung emissivity is a good
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Figure 1.5: Left The relation between galaxy velocity dispersion, o, and ICM temperature, T', for
distant (z > 0.15) galaxy clusters. Velocity dispersions are taken from Carlberg et al. (1997) for
CNOC clusters and from Girardi & Mezzetti (2001) for MS1054-03 and RXJ1716+4-67. Temperatures
are taken from Lewis et al. (1999) for CNOC clusters, from Jeltema et al. (2001) for MS1054-03 and
from Gioia et al. (1999) for RXJ1716467. The solid line shows the relation kg7 = pm,o2, and the
dashed line is the best—fit to the low—z T—o, relation from Wu et al. (1999) Right The low-z relation
between X-ray luminosity and the mass contained within the radius encompassing an average density
200p. (from Reiprich & Boehringer 2002). The two lines are the best log—log linear fit to two different
data sets indicated with filled and open circles.

approximation for 7' 2 3 keV clusters, a further contribution from metal emission lines
should be taken into account when considering cooler systems (e.g. Raymond & Smith
1977). By integrating the above equation over the energy range of the X-ray emission
and over the gas distribution, one obtains X-ray luminosities Lx ~ 10%3-10% ergs=!.
These powerful luminosities allow clusters to be identified as extended sources out to
large cosmological distances.

Assuming spherical symmetry, the condition of hydrostatic equilibrium connects

the local gas pressure p to its density pgas according to

dp GM(< R)pgas(R)
— = — . 1.32
dR R? (132)
By inserting the equation of state for a perfect gas, p = pgaskp’/pm, into (1.32),
one can express, M (< R), the total gravitating mass within R as

M(< R) =

ksTR (d 10g Pgas N d logT) (1.33)

~ Gum, \ dlogR ' dlogR
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If R is the virial radius, then at redshift z we have M oc R3pg(1+ 2)3A,;(2), where
po is the mean cosmic density at present time and A,;.(2) is the mean overdensity
within a virialized region. For an Einstein—de-Sitter cosmology, A,; is constant and
therefore, for an isothermal gas distribution, Eq. (1.33) implies T oc M2/3(1 + 2).

Such relations show how quantities, such as pgas and 7', which can be measured
from X-ray observations, are directly related to the cluster mass. Thus, in addition
to providing an efficient method to detect clusters, X-ray studies of the ICM allow
one to measure the total gravitating cluster mass, which is the quantity predicted by
theoretical models for cosmic structure formation.

A popular description of the gas density profile is the f—model,

() ] o (139

which was introduced by Cavaliere & Fusco—Femiano ((1976); see also Sarazin (1988),
and references therein) to describe an isothermal gas in hydrostatic equilibrium within
the potential well associated with a King dark-matter density profile. The parameter
[ is the ratio between kinetic dark-matter energy and thermal gas energy (see Eq.
(1.30)). This model is a useful guideline for interpreting cluster emissivity, although
over limited dynamical ranges. Now, with the Chandra and Newton-XMM satellites,
the X-ray emissivity can be mapped with high angular resolution and over larger scales.
These new data have shown that (1.34) with a unique 3 value cannot always describe
the surface brightness profile of clusters (e.g. Allen et al. 2001b).

Kaiser (1986) described the thermodynamics of the ICM by assuming it to be
entirely determined by gravitational processes, such as adiabatic compression during
the collapse and shocks due to supersonic accretion of the surrounding gas. As long
as there are no preferred scales both in the cosmological framework (i.e. €, =1 and
power—law shape for the power spectrum at the cluster scales), and in the physics
(i.e. only gravity acting on the gas and pure bremsstrahlung emission), then clusters
of different masses are just a scaled version of each other. Because bremsstrahlung
emissivity predicts Lx o< Mpga T2, Lx oc T#(1+2)%? or, equivalently Lx oc M*/3(1+
2)7/2. Furthermore, if we define the gas entropy as S = T'/n?3, where n is the gas
density assumed fully ionized, we obtain S oc T'(1 + 2)72.

It was soon recognized that X-ray clusters do not follow these scaling relations. As
we discuss in Sec. (1.3.4), below, the observed luminosity—temperature relation for
clusters is Ly oc T2 for T' > 2 keV, and possibly even steeper for T' < 1 keV groups.
This result is consistent with the finding that Ly o« M* with v ~ 1.8 £ 0.1 for the
observed mass—luminosity relation (e.g. Reiprich & Bohringer 2002; see right panel of
Figure 1.5). Furthermore, the low-temperature systems are observed to have shallower
central gas-density profiles than the hotter systems, which turns into an excess of

Pe(T) = Pgo

31



BASICS OF COSMOLOGY AND GALAXY CLUSTERS

entropy in low—T" systems with respect to the S o< T" predicted scaling (e.g. Ponman et
al. (1999), Lloyd-Davies et al. (2000); more recently, Ponman et al. (2003)). Although
in the past years there were claims about a clear signature for a breaking in the scaling
relations at the groups scale, nowadays a better understanding of intrinsinc scatter and
selection effects of observations suggests that a unique slope may instead holds in the
whole mass range (2004, 2004, 2003).

A possible interpretation for the breaking of the scaling relations assumes that
the gas has been heated at some earlier epoch by feedback from a non-gravitational
astrophysical source (Evrard & Henry 1991). This heating would increase the entropy
of the ICM, place it on a higher adiabat, prevent it from reaching a high central
density during the cluster gravitational collapse and, therefore, decrease the X-ray
luminosity (e.g. Balogh et al. 1999, Tozzi & Norman 2001, and references therein).
For a fixed amount of extra energy per gas particle, this effect is more prominent for
poorer clusters, i.e. for those objects whose virial temperature is comparable with
the extra—heating temperature. As a result, the self-similar behavior of the ICM is
expected to be preserved in hot systems, whereas it is broken for colder systems. Both
semi—analytical works (e.g. Cavaliere et al. 1998, Balogh et al. 1998, Wu et al. 2000,
Tozzi et al. 2000) and numerical simulations (e.g. Navarro et al. 1995, Brighenti &
Mathews 2001, Borgani et al. 2001a) converge to indicate that ~ 1 keV per gas particle
of extra energy is required. We further discuss this point in Chap. (2).

The gas—temperature distributions in the outer regions of clusters are not affected
by gas cooling. These temperature distributions have been studied with the ASCA and
Beppo—-SAX satellites. General agreement about the shape of the temperature profiles
has still to be reached (1998, 2000, 2000). De Grandi & Molendi (2002) analyzed
a set of 21 clusters with Beppo—SAX data and found the gas to be isothermal out
to ~ 0.2R,;, with a significant temperature decline at larger radii. Such results are
not consistent with the temperature profiles obtained from cluster hydrodynamical
simulations (e.g. Evrard 1997), thus indicating that some physical process is still lacking
in current numerical descriptions of the ICM. Deep observations with Newton-XMM
and Chandra will allow the determination of temperature profiles over the whole cluster
virialized region.

X-ray spectroscopy is a powerful means for analyzing the metal content of the ICM.
Measurements of over 100 nearby clusters have yielded a mean metallicity Z ~ 1/3Z,
largely independent of the cluster temperature (e.g. Renzini 1997, and references
therein). The spatial distribution of metals has recently been studied in detail with
ASCA and Beppo-SAX data (e.g. White 2000, De Grandi & Molendi 2002). This field
has received a major boost over the next few years particularly with Newton-XMDM,
which, with a ten-fold improvement in collecting area and much better angular resolu-
tion, is able to map the distribution of different metals in the ICM, such as Fe, S, Si,
O (see Sec. (1.4)).
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1.3.2. Cooling in the Intra Cluster Medium

In order to characterize the role of cooling in the ICM, it is useful to define the cooling
time-scale, which for an emission process characterized by a cooling function A.(T),
is defined as teoop = kT /(nA(T')), n being the number density of gas particles. For a
pure bremsstrahlung emission:

teool = 8.5 % 1001 (n/10 3cm=3) "1 (T/108K)1/2 . (1.35)

Therefore, the cooling time in central cluster regions can be shorter than the age
of the Universe. A substantial fraction of gas undergoes cooling in these regions, and
consequently drops out of the hot diffuse, X-ray emitting phase. Studies with the
ROSAT and ASCA satellites indicate that the decrease of the ICM temperature in
central regions has been recognized as a widespread feature among fairly relaxed clus-
ters (see Fabian (1994), and references therein). The canonical picture of cooling flows
predicted that, as the high—density gas in the cluster core cools down, the lack of pres-
sure support causes external gas to flow in, thus creating a superpositions of many gas
phases, each one characterized by a different temperature. Our understanding of the
ICM cooling structure is now undergoing a revolution thanks to the much improved
spatial and spectral resolution provided by XMM-Newton . Recent observations have
shown the absence of metal lines associated with gas at temperature < 3 keV (e.g. Pe-
terson et al. 2001, Tamura et al. 2001), in stark contrast with the standard cooling flow
prediction for the presence of low—temperature gas (e.g. Fabian et al. 2001, Béhringer
et al. 2002).

Radiative cooling has been also suggested as an alternative to extra heating to
explain the lack of ICM self-similarity (e.g. Bryan 2000, Voit & Bryan (2001), Voit
et al. (2003)). When the recently shocked gas residing in external cluster regions
leaves the hot phase and flows in, it increases the central entropy level of the remaining
gas. The decreased amount of hot gas in the central regions causes a suppression of
the X-ray emission (Pearce et al. 2000, Muanwong et al. 2001). This solution has a
number of problems. Cooling in itself is a runaway process, leading to a quite large
fraction of gas leaving the hot diffuse phase inside clusters. Analytical arguments
and numerical simulations have shown that this fraction can be as large as ~ 50%,
whereas observational data indicates that only < 10% of the cluster baryons are locked
into stars (e.g. Bower et al. 2001, Balogh et al. 2001). This calls for the presence
of a feedback mechanisms, such as supernova explosions (Menci & Cavaliere 2000,
Finoguenov et al. 2000b, Pipino et al. 2002, Kravtsov & Yepes 2000) or Active
Galactic Nuclei (e.g. Valageas & Silk 1999a, Wu et al. 2000, Yamada & Fujita 2001),
which, given reasonable efficiencies of coupling to the hot ICM, may be able to provide
an adequate amount of extra energy to balance overcooling.
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1.3.3. Clusters Detection

B Optical detection

Abell (1958) provided the first extensive, statistically complete sample of galaxy clus-
ters. Based on pure visual inspection, clusters were identified as enhancements in the
galaxy surface density on Palomar Observatory Sky Survey (POSS) plates, by requir-
ing that at least 50 galaxies were contained within a metric radius R4 = 3hsy Mpc
and a predefined magnitude range. Clusters were characterized by their richness and
estimated distance. The Abell catalog has been for decades the prime source for de-
tailed studies of individual clusters and for characterizing the large scale distribution of
matter in the nearby Universe. The sample was later extended to the Southern hemi-
sphere by Corwin and Olowin (Abell, Corwin & Olowin, 1989) by using UK Schmidt
survey plates. Another comprehensive cluster catalog was compiled by Zwicky and
collaborators (Zwicky et al. 1966), who extended the analysis to poorer clusters using
criteria less strict than Abell’s in defining galaxy overdensities.

Several variations of the Abell criteria defining clusters were used in an auto-
mated and objective fashion when digitized optical plates became available. The
Edinburgh-Durham Southern Galaxy Catalog, constructed from the COSMOS scans
of UK Schmidt plates around the Southern Galactic Pole, was used to compile the first
machine-based cluster catalog (Lumsden et al. 1992). In a similar effort, the Auto-
matic Plate Measuring machine galaxy catalog was used to build a sample of ~ 1000
clusters (Maddox et al. 1990, Dalton et al. 1997).

Projection effects in the selection of cluster candidates have been much debated.
Filamentary structures and small groups along the line of sight can mimic a moderately
rich cluster when projected onto the plane of the sky. In addition, the background
galaxy distribution against which two dimensional overdensities are selected, is far
from uniform. As a result, the background subtraction process can produce spurious
low-richness clusters during searches for clusters in galaxy catalogs. N-body simulations
have been extensively used to build mock galaxy catalogs from which the completeness
and spurious fraction of Abell-like samples of clusters can be assessed (e.g. van Haarlem
et al. 1997).

B X-ray detection

The X-ray detection of galaxy clusters began several years later, with the Uhuru and
Ariel 'V satellites (Giacconi et al. 1972, McHardy et al. 1981) and the HEAO-1 A2
experiment (e.g. Henriksen & Mushotzky 1986). Nevertheless, the real era for X-ray
observations started with the Einstein Observatory (Giacconi et al. 1979) due to its
focusing capabilities.
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X-ray surveys offer an efficient means of reconstructing samples of galaxy clusters
out to cosmological interesting redshifts.
First, the X-ray selection has the advantage of revealing physically-bound systems,
because diffuse emission from a hot ICM is the direct manifestation of the existence of
a potential well within which the gas is in dynamical equilibrium with the cool baryonic
matter (galaxies) and the dark matter. Second, the X-ray luminosity is well correlated
with the cluster mass (see right panel of Fig. (1.5)). Third, the X-ray emissivity is
proportional to the square of the gas density (Sec. (1.3)), hence cluster emission is more
concentrated than the optical bidimensional galaxy distribution. In combination with
the relatively low surface density of X-ray sources, this property makes clusters high
contrast objects in the X-ray sky, and alleviates problems due to projection effects that
affect optical selection. Finally, an inherent fundamental advantage of X-ray selection is
the ability to define flux-limited samples with well-understood selection functions. This
leads to a simple evaluation of the survey volume and therefore to a straightforward
computation of space densities (for an extended discussion see Rosati et al. 2002).

The ROSAT satellite had an unprecedented sensitivity and spatial resolution, as
well as low instrumental background. With the ROSAT All-Sky Survey (RASS;
Triimper 1993) was the first X-ray imaging mission to cover the entire sky. Several
generations of X-ray satellites has been subsequently launched: ASCA , BeppoSAX ,
Chandra , Xmm.

B Other methods

X-ray and optical surveys have been by far the most exploited techniques for studying
the distribution and evolution of galaxy clusters. Nevertheless, it is worthmentioning
two other methods which rely on important physical properties of clusters. The first is
the Sunyaev-Zeldovich effect. Clusters are revealed by measuring the distortion of the
CMB spectrum owing to the hot ICM. This method does not depend on redshift and
provides reliable estimate of cluster masses. It is possibly one of the most powerful
methods to find distant clusters in the years to come. At present, serendipitous surveys
with interferometric techniques (e.g. Carlstrom et al. 2002) cannot cover large areas
(i.e. more than ~ 1 deg?) and their sensitivity is limited to the most X-ray luminous
clusters. The second method relies on the Gravitational Lensing; in principle a pow-
erful method to discover mass concentrations in the universe through the statistical
distortion of background galaxy images (see Mellier (2002) for a review).

1.3.4. Cosmology with Galaxy Clusters

The mass distribution of dark matter halos undergoing spherical collapse in the frame-
work of hierarchical clustering is described by the Press-Schechter distribution (PS,
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Press &Schechter 1974). The number of such halos in the mass range [M, M + dM]
can be written as

n(M, 2)aM = L= f() j—j\l}dM (1.36)

where p is the cosmic mean density. The function f depends only on the variable
v = 0.(2)/oum, and is normalized so that [ f(v)dv = 1. 6.(z) is the linear—theory over-
density extrapolated to the present time for a uniform spherical fluctuation collapsing
at redshift z. This quantity conveys information about the dynamics of fluctuation evo-
lution in a generic Friedmann background. The r.m.s. density fluctuation at the mass
scale M, o)y, is connected to the fluctuation power spectrum, P(k), whose normaliza-
tion is usually expressed in terms of og, the r.m.s. density fluctuation whithin a top—hat
sphere of 8 A~ Mpc radius. In their original derivation of the cosmological mass func-
tion, Press &Schechter (1974) obtained the expression f(v) = (27) /2 exp(—v?/2) for
Gaussian density fluctuations. Despite its subtle simplicity (e.g., Monaco 1998), the PS
mass function has served for more than a decade as a guide to constrain cosmological
parameters from the mass function of galaxy clusters. Only with the advent of the
last generation of N-body simulations, which are able to span a very large dynamical
range, significant deviations of the PS expression from the exact numerical description
of gravitational clustering have been noticed (e.g. Gross et al. 1998, Governato et al.
1999, Jenkins et al. 2001, Evrard et al. 2002). Such deviations are interpreted in terms
of corrections to the PS approach, e.g. by incorporating the effects of non—spherical
collapse (Sheth & Tormen 2002). In the Left Panel of Fig. (1.6) we show that, for
a fixed value of the observed cluster mass function, the implid value of og increases
as the density parameter decreases.Determinations of the cluster mass function in the
local Universe using a variety of samples and methods indicate that o5Q2% = 0.4—0.6,
where a ~ 0.4 — 0.6, almost independent of the presence of a cosmological constant
term providing spatial flatness (egReiprich & Bohringer 2002, Tkebe et al. 2002, Pier-
paoli et al. 2003). It is worth pointing out that formal statistical uncertainties in the
determination of og from the different analyses are always far smaller, < 5%, than the
above range of values. This suggests that current discrepancies on og are likely to be
ascribed to systematic effects, such as sample selection and different methods used to
infer cluster masses. We comment more on such differences in the following section.
Completely independent constraints on a similar combination of og and €2, can be
obtained with measurements of the cosmic gravitational lensing shear (e.g. Mellier
1999). The most recent results give 0gQ%5 = 0.45 + 0.05 (van Waerbecke et al. 2001,
and references therein).

The growth rate of the density perturbations depends primarily on €2,, and, to a
lesser extent, on 25, at least out to z ~ 1, where the evolution of the cluster population
is currently studied. Therefore, following the evolution of the cluster space density over
a large redshift baseline, one can break the degeneracy between og and §2,,. This is
shown in a pictorial way in Figure 1.7 and quantified in the right panel of Figure 1.6:
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Figure 1.6: The sensitivity of the cluster mass function to cosmological models. (Left) The cumula-
tive mass function at z = 0 for M > 5 x 10'*h=1 M, for three cosmologies, as a function of og, with
shape parameter I' = 0.2; solid line: €2,, = 1; short—dashed line: Q,, = 0.3, Q5 = 0.7; long—dashed
line: Q,, = 0.3, Q) = 0. The shaded area indicates the observational uncertainty in the determination
of the local cluster space density. (Right Evolution of n(> M, z) for the same cosmologies and the
same mass—limit, with og = 0.5 for the 2,,, = 1 case and og = 0.8 for the low—density models. Taken
from Rosati et al. (2002)
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models with different values of €2,,, which are normalized to yield the same number
density of nearby clusters, predict cumulative mass functions that progressively differ
by up to orders of magnitude at increasing redshifts.

A common method to estimate cluster masses relies on the measurement of the tem-
perature of the intra—cluster gas. Based on the assumption that gas and dark matter
particles share the same dynamics within the cluster potential well, the temperature
T and the velocity dispersion o, are connected by the relation kgT = Sum,o?, where
(6 = 1 would correspond to the case of a perfectly thermalized gas. If we assume
spherical symmetry, hydrostatic equilibrium and isothermality of the gas, the solution
of the equation of hydrostatic equilibrium provides the link between the total cluster
virial mass, M., and the ICM temperature: kT o 6‘1M2/3 [ Avie(2)]V3(1+2) keV,

where A,;-(2) is the ratio between the average density within the virial radius and the
mean cosmic density at redshift z. The previous expression for the M-T relation is
fairly consistent with hydrodynamical cluster simulations with 0.9 < 5 < 1.3 (e.g.
Bryan & Norman 1998; see however Voit 2000). Observational data on the M;,—T

relation show consistency with the 7" oc Mff’ scaling law, at least for 7" 2 3 keV clus-
ters (e.g. 2001b), but with a ~40% lower normalization. We will discuss in Chap. (2)
possible reasons for this difference between the observed and simulated M—T' relation.
In any case, such uncertainties translate into an uncertain determination of og (for a
fixed value of €2,,): the higher the normalization of the M~T relation, the larger the
mass corresponding to a given temperature, the larger the value of og required for the
predicted mass function to match the observed X-ray temperature function (XRF; e.g.
Pierpaoli et al. 2003). Another method to trace the evolution of the cluster number
density is based on the XLF. The advantage of using X-ray luminosity as a tracer of
the mass is that Ly is measured for a much larger number of clusters within samples
well-defined selection properties. The most recent flux—limited cluster samples contain
now a large (~ 100) number of objects, which are homogeneously identified over a
broad redshift baseline, out to z ~ 1.3. This allows nearby and distant clusters to be
compared within the same sample, i.e. with a single selection function. The potential
disadvantage of this method is that it relies on the relation between Ly and M,
which is based on additional physical assumptions and hence is more uncertain than
the M,;,—o, or the M,—T1 relations.

A useful parameterization for the relation between temperature and bolometric
luminosity is Ly oc 7% (1 4 2)2(dr(2)/dr pas(2))?, with dr(z) the luminosity—distance
at redshift z for a given cosmology. Independent analyses of nearby clusters with
Tx R 2keV consistently show that a ~ 2.5 — 3 (e.g. Arnaud & Evrard 1999 and
references therein), with no evidence for a strong evolution out to z< 1 (e.g. Ettori
et al. 2004, Vikhlinin et al. 2002).

In Fig. (1.8) we show the constraints on the og—2,, plane obtained from the ROSAT
Deep Cluster Survey (Borgani et al. 2001b, Rosati et al. 2002). The different panels
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Figure 1.7: The evolution of the cluster population from N-body simulations in two different cos-
mologies (from Borgani & Guzzo 2001). Left panels describe a flat, low—density model with ,, = 0.3
and Qx = 0.7 (L03); right panels are for an Einstein—de-Sitter model (EdS) with Q,, = 1. Superim-
posed on the dark matter distribution, the yellow circles mark the positions of galaxy clusters with
virial temperature T' > 3 keV, the size of the circles is proportional to temperature. Model parameters
have been chosen to yield a comparable space density of nearby clusters. Each snapshot is 250k}
Mpc across and 75h~! Mpc thick (comoving with the cosmic expansion). Taken from Borgani &
Guzzo (2001)
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Figure 1.8: Probability contours in the o2, plane from the evolution of the X-ray luminosity
distribution of RDCS clusters. The shape of the power spectrum is fixed to I' = 0.2. Different panels
refer to different ways of changing the relation between cluster virial mass, M, and X-ray luminosity,
L, within theoretical and observational uncertainties (see also Borgani et al. 2001b). The upper
left panel shows the analysis corresponding to the choice of a reference parameter set. In each panel,
we indicate the parameters which are varied, with the dotted contours always showing the reference
analysis. Taken from Borgani (2004)
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report the effect of changing in different ways the T-M—L x, relation such as the slope
« and the evolution A of the Lx—T relation, the normalization § of the M—T' relation
and the overall scatter AM-Ly. Fig. (1.8) demonstrates that firm conclusions about
the value of the matter density parameter §2,, can be drawn from available samples of
X-ray clusters. In keeping with most of the analyses in the literature, based on inde-
pendent methods, a critical density model cannot be reconciled with data. Specifically,
Q,, < 0.5 at 30 level even within the full range of current uncertainties in the relation
between mass and X-ray luminosity. However, Fig. (1.8) results also demonstrate that
constraints in the og—(2,, may change by changing the M—Lx relation within current
uncertainties, by an amount which is at least as large as the statistical uncertainties.
This emphasizes that the main obstacle toward a precision estimate of cosmological
parameter with forthcoming large cluster surveys will lie in the systematic uncertain-
ties in our description of the ICM properties, rather than in the limited statistics of
distant clusters.

1.4 CHEMICAL ENRICHMENT OF GALAXY CLUSTERS

The ICM in Galaxy Clusters was predicted to harbor a huge amount of heavy elements
firstly by Larson & Dinerstein (1975); their prediction was soon supported by the dis-
covery (Mitchell et al. 1976) of a strong emission by the Iron Ka line in the spectrum
of the Perseus clusters observed with Ariel V, subsequently confirmed by OSO-8 ob-
servations that also detected Iron emission in spectra of Coma and Virgo (Serlemitsos
et al. 1977). The analysis of ~ 30 clusters (Mushotzky 1984) found that the presence
of Iron in the ICM was a common feature of galaxy clusters and set the abundance at
level ~ 0.3-0.5 solar (throughout this work we follow the common notation Zx as for
indicating the abundance of the element X. Eventually, symbol ® indicate that the
reported value is the solar one. See Sec. (1.4.1)).
Prior the launch of the ASCA satellite, Fe was the only well-measured element in the
ICM; by the 1993, the good spectra resolution and large collecting area of ASCA over a
broad X-ray band make it possible to realize first relative abundances studies (e.g. Fukazawa
et al. 1994). Nevertheless, its limited imaging capability does not allow a precise spa-
tial mapping of elements distribution throughout the ICM. The advent of subsequent
X-ray telescopes, such as BeppoSAX , Chandra and XMM-Newton has increased our
ability in resolving both spectra and spatial distribution. In particular, both Chan-
dra and XMM-Newton data have much smaller systematic error and much better
signal-to—noise ratios than data from earlier observations; XMM-Newton has been
built in order to have a much better PSF than ASCA | whilst having a smaller field of
view, and much more collecting area than BeppoSAX and Chandra . Unfortunately its
background resulted relatively high, what could make results uncertain in some cases.
Despite the huge amount of available observational data on metal abundances in
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the ICM, a well-stated picture on the chemical enrichment of galaxy clusters has yet
to be drawn. Consensus has been reached only on the very general framework and
trends, although several aspects are still debated. It is worthnoting that the large in-
homogeneity in the collected data may play a crucial role in driving such interpretative
differences.

In the following we discuss in turn the key observational facts.

1.4.1. Units of Measure

Throughout this work, following the standard usage in astronomy, we will refer to
elements heavier than Helium as to “metals” or “heavy elements”.

The pollution by the element 7 of a gas having primordial composition is expressed
by the relative abundance by mass of that element:

M;
relative abundance = (Ve — M7 (1.37)

metal

if Myveia1 = >_; Mj is the total mass of all metals. It is common to express abundances

in terms of the ratio between the concerned metal and the hydrogen, by number, so
that Z" is defined by

7 = N;/Ny. (1.38)

The Above expression defines the abundance by number of the element 7.

Throughout the text, we will also use the term “metallicity” (by mass or by number)
referring to the abundance of a single element, although “metallicity” should be re-
served to indicate the abundance of all the elements heavier than Helium. Reference
abundances are the solar ones, so that normally the metallicity for the element ¢ is
given in units of the solar abundance of the same element. The unpleasant drawback
of this convention is to make the abundances reported in the literature dependent on
the current accepted value for the solar abundances; this continues to make some con-
fusion when results of different groups are compared.

There are two main methods to infer solar abundances; through studying the solar
photosphere or analyzing the chemical composition of meteors. Generally, the agree-
ment between meteoritic and photospheric values is now quite good. This was not the
same in the past, when there were significative differences for key elements like the
Iron. The two most widely used sets of abundance measures are those by Anders &
Grevesse (1989) and Grevesse & Sauval (1998). In 1989 the disagreement between val-
ues obtained with different methods was not negligible: for instance, the abundance by
number of Iron relatively to Hydrogen was ~ 4 x 107> and ~ 3 x 107° in photospheric
and meteoric tables respectively. Mushotzky & Loewestein (1997), Ishimaru & Arimoto
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Element Photospheric Meteoritic

H 12 -

C 852 :

O 883 -
Mg  7.58 7.58
Si 755 7.56
S 733 7.20
Fe 7.5 75

Table 1.2: Adopted solar abundances from Grevesse & Sauval (1998).

(1997) and Gibson, Mushotzky & Loewenstein (1997) discussed about implications of
such difference.

Solar abundances are generally reported in a logarithmic scale whose “zero” is given
by log Ny = 12.0, so that

7P = log(N;/Ny) + 12 (1.39)

Values for common elements are given in this units in Tab. (1.2).
Also common is the so—called “bracket notation” to report metallicities. If Z]* represent
some measured abundance by number relative to hydrogen, then:

1Z7"] = log(Z") —log(Z]")e (1.40)

In fact it is more practical and still widely used to report metallicities as mass
ratios, though one must be aware to use consistent units (i.e. to refer to the Hydrogen
mass). The solar abundance by number for the element i of atomic weight A;, given
in Tab. (1.2), relates to abundances by mass as follows:

7m0 = 10477712 A, (1.41)
so that the abundance by mass ratio in solar units of an element i is given by:

m;/my

4= e/

(1.42)

Strictly speaking, isotopes should be taken into account; nevertheless, given the
uncertainties in the field this is really a minor issue. Throughout the text we will
generally refer to mass abundances by mass if not otherwise stated.
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1.4.2. The Heavy Elements Abundances

B Iron

Iron is the most well-studied element and it is widely used as a tracer for the metal
content of the ICM; this is due both to its ubiquity and to the fact that its emission
lines are the strongest observable in the X-ray spectrum. Clusters having T 2 3keV
show very strong emission from the Ka lines set at 6.97 and 6.67 keV, while lower—
temperature systems exhibit Iron emission from the L—shell complex between 0.6 and
2.0 keV. Hwang et al. (Hwang et al. 1999) have shown that ASCA determinations of
Fe abundances from just the L or K lines are consistent.

The mean Fe abundance of the ICM and its dependence on the temperature of the
gas is probably the most well-stated fact on chemical enrichment of galaxy clusters.
Fig. (1.9) shows different sets of data on the Fe abundances; the Top Panel report
the compilation made by Renzini (2004), whereas the Bottom Panel shows the results
from the ASCA database (Baumgartner et al. 2003). Data exhibit a remarkable
uniformity in rich clusters (7' R 3keV), being constant at Zp, ~ 0.3Z5. with very little
scatter. Instead, cooler clusters tend to have much more higher abundances, though
the differences in one— and two— temperature fits impose some caution (e.g. Buote 2000,
Gastaldello & Molendi 2002). Nevertheless, such trend it is now commonly accepted
as a matter of fact (e.g. Mushotzky 2004, Loewenstein 2004), and it is supported by
data from ASCA shown in Bottom Panel of Fig. (1.9).

Abundances shown in Fig. (1.9) generally refer to the very innermost region of
cluster. Nevertheless, detailed spatial analyses for many nearby clusters are available
since the first data coming from ASCA and ROSAT (e.g. Fukazawa et al. 1994, Allen
& Fabian 1994, Allen & Fabian 1998, Dupke & White 2000b, Finoguenov et al. 2000b,
Finoguenov et al. 2001a). A general result from these works is the evidence of abun-
dance gradients in several clusters, namely those ones identified as Cooling—Flow (CF)
clusters; however, due to the coarse spatial resolution of ASCA , the shape of these
gradients is only poorly determined (for instance, A496 has been resolved with only 2
to 5 bins by three successive analyses). Recently, De Grandi & Molendi (2001) have
conducted a systematic study of Fe radial distribution using BeppoSAX data on 17
rich and nearby (z S 0.1) clusters. The main difference between data from ASCA and
BeppoSAX relies to the different PSF of these two instruments. the ASCA PSF is
broader (about twice that of BeppoSAX ), strongly energy dependent and non radially
symmetric, whereas the BeppoSAX PSF is sharper, almost energy independent and
radially symmetric. Findings from De Grandi & Molendi are shown in Fig. (1.10).
They confirm that CF clusters (that they call Cooling Core (CC) clusters; we adopt
this notation hereafter) exhibit a strong radial gradient, having enhanced central abun-
dances. At the opposite, non—CC clusters have fairly flat abundance profiles. Similar
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Figure 1.9: The mass dependence of ZLSM. [Top Panel] data from Renzini (2004). Circles
represent clusters having 7" > 2keV (smaller circles represent clusters at moderately high redshift,
(z) ~ 0.35). Other symbols (clusters and groups with T' < 2keV) represent data from Buote (2000)
with temperature and abundances determined from one- and two— temperature fits (filled squares
and empty triangles, respectively). [Bottom Panel] data from the ASCA database (Baumgartner et
al. 2003).
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results have been found by Irwin & Bregman (2001) for 11 clusters observed with
BeppoSAX . Instead, in analyzing 106 ASCA imagings White (2000) find some en-
hancement in central abundances, particularly in CC clusters, but not a trend which
is statistically significant (mainly due to uncertainties in measures).
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Figure 1.10: Figures from De Grandi & Molendi (2001). Distances are give in units of Rigo. [Left
Panel] Non—CC clusters Iron abundance profiles. [Right Panel] CC clusters Iron abundance profiles.

Tamura et al. (2004) observed very recently 19 bright, relaxed, nearby (all have
z < 0.1 except A1835 which has z = 0.254) clusters with XMM-Newton . Their sample
spans the interval 1 keV < TR 8 keV, yet being biased toward medium—temperature
clusters. They find a general trend for the Zp. to increase in the central region in all
systems, as shown in Fig. (1.11).

The correlation between an high Fe metallicity and a short cooling time in galaxy
clusters is related to the parallel correlation between a radial gradient in the Fe abun-
dance and the presence of a Cooling Core (Allen & Fabian 1998). The X-ray emission
depends on the square of the ICM density, and so it is dominated by the innermost dens-
est region; thus, the emission—weighted metallicity would also be determined mostly
by the metallicity of the same central region. It is generally thought that non-CC
clusters have recently suffered for a major merger event, which will disrupt the inner
structure of ICM and re-mixed the gas. Nevertheless, these recent results from XMM—
Newton not only confirm the known framework, but also suggest an Fe abundance
enhancement in hot clusters without a prominent c¢D galaxy. To what extent this is
changing the scenario is yet unclear.

In this respect, we mention that De Grandi & Molendi (2002) performed a detailed
analysis of the deprojected spatial distribution of metals and gas for a sample of 22
nearby clusters observed with BeppoSAX (De Grandi & Molendi 2001). By directly
integrating the deprojected Iron abundance and gas profile, they estimated the Iron
mass as a function of radius. It is interesting their finding that the central excess of Iron
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in CC clusters of ~ 0.5-9.5x 10 Mg, can be easily accounted for by estimating the Iron
mass ejected in the ICM by the stars of central Brigth Galaxy. As well, Fukazawa et al.
(1998) analized a sample of 40 clusters extracted from the ASCA database; they found,
accordingly whith the later suggestion of De Grandi & Molendi, that no appreciable
trend with the temperature is shown by the spatially averaged Fe abundance (see Fig.
(1.12))

B Evolution of Fe Abundance

ASCA data have revealed a lack of evolution in the Iron content of galaxy clusters out
to redshift 0.4 (Mushotzky & Loewenstein 1997, Matsumoto et al. 2000, Matsumoto
et al. 2001) and no evidence od declining at higher redhistfs (Tozzi et al. 2003).
XMM-Newton and Chandra observations have further expanded the redshift interval
back to redshift ~ 1 (e.g. Tozzi et al. 2003) as shown in Fig. (1.13).

The epoch of main ICM enrichment has yet to be identified; in this respect, data on
Fe abundance evolution could provide useful constraints on the epoch of Iron production
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Figure 1.11: From Tamura et al. (2001). Radial profiles for Fe/H for 19 bright nearby clusters
observed with XMM-Newton . Data are plotted in units of solar photosperic values by Anders &
Grevesse (1989).
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Figure 1.12: From Fukazawa et al. (1998). Spatially averaged Fe abundance obtained from
ASCA data out to ~ 0.4hzy Mpc. Inner regions (R < 0.1hsy Mpc) has been removed. Solar adopted
units are those by Anders & Grevesse 1989.

by stellar population as well as on the mechanism of metal ejection. We kown that
most of the star formation in the universe occurred prior redshift ~ 1 (e.g. ?) and
the tightness of several correlations, such as the color-magnitude, fundamental plane
and Mgy—o relations (e.g. Renzini 2004, Renzini 1999) suggests that stars in clusters
formed at z > 2. As observations puch back the enrichment era, scenarios in which
the ICM pollution occurs shortly after the begin of star formation are favoured over
those predicting a substantial late enrichment via gas—stripping or Snla—driven winds
(Loewenstein 2004, Renzini 2004).

B o Elements

In the tipical temperature range of the ICM, most of the elements are almost completely
ionized and in collisional equilibrium. Most of them are in H- and He— like ionization
states, so that their atomic physics is quite simple and the strength of lines is a direct
measure for the abundance (e.g. Kahn et al. 2002).

The abundance of elements with the highest equivalent lines in the temperature
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Figure 1.13: From Tozzi et al. (2003). The temperature (Top Panel) and averaged Fe abundance
(in units of solar abundances given by Anders & Grevesse 1989) (Bottom Panel) for a sample of 18
distant clusters observed with XMM-Newton .

range 2 x 10-10%keV (C, N, O, Ne, Mg, Si, S, Ca, Ar, Fe and Ni) can be determined
over a wide range of redshifts and cluster masses, often from one broadband X-ray
spectrum. The less abundant elements, like Cr, Zn, Na and Al, are beyond our present
capabilities but should be accessible to the next generation of missions (Mushotzky
2002). Besides the Iron, the next most accurate abundances being obtained for O, Si,
S and Ni. The ability of X-ray CCDs to derive abundances depends on the temperature
of the object, since the equivalent widths of the lines vary strongly with temperature
and, when the equivalent width (EW) of the lines is much below the spectral resolution
of the instrument, the derived abundances are not robust. For ASCA and Chandra,
but not XMM, calibration problems at low energies have prevented accurate oxygen
abundances. Ne and Mg are very di cult to measure properly with CCD spectrometers
because the H- and He-like lines of these elements are blended with strong Fe L lines.
The EWs of Ca and Ar are low and thus somewhat suspect with ASCA data. C and
N are not in the ASCA CCD bandwidth and even the best CCDs have low spectral
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Figure 1.14: The Si abundance of central regions as a function of temperature [Top
Panel] from Fukazawa et al. (1998) — Solar units by Anders & Grevesse 1989. [Middle
Panel] From Baumgartner et al. (2003) — Solar units by Grevesse & Sauval 1998.
[Bottom Panel] from Finoguenov, Arnaud & David (2001) — Solar units by Anders

& Grevesse 1989.
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resolution at the energies of their strongest lines. In objects with multi-temperature
structure there is often not a unique solution for CCD-quality data, particularly for
objects with kT < 1.5 keV, where the Fe L complex is extremely strong. The diffi-
culty of interpreting these data has resulted in various works reporting rather different
abundances. With the higher spatial resolution of Chandra and XMM and the better
spectral resolution of the XMM RGS these regions are often resolved out spatially and
spectrally and accurate abundances can be derived (Mushotzky 2002, Baumgartner
et al. 2003). Elements like O, Mg, C, Ca and S are thought to come almost exclusively
from Snll, whereas Ni is supposed to be exclusively produced by Snla. Also, Fe and Si
are mostly produced by Snlaand Snll, respectively. Thus, measuring the abundance
of each element may provide us fundamental clues on a number of important topics:
which is the IMF of parent stellar populations, what type of supernova is dominating
the ICM pollution and at what epoch. Furthermore, the spatial dependence of relative
abundance carries information on what is the dominant mechanism for metal ejection
from IGM and wheter or not different mechanisms act at different epochs.

R:(50-200)/h kpc

10

O Fe/H

0/Fe
Si/Fe

S/H [

0.1

T_ICM (keV)

Figure 1.15: XMM-Newton data on 19 nearby bright clusters. Abundances have been averaged
over the (50-200)h~'kpc bin

The largest homogeneous sample available is that of ASCA observations (270 ob-
jects), whose data have been worked out by Baumgartner et al (2003). Subsamples
have been analized by other groups: Fukazawa et al. (1998), Finoguenov & Pon-
man (together with ROSAT data;1999), Finoguenov, David & Ponman (together with
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ROSAT data;2000b), White (2000), Dupke & White (2000a). XMM-Newton samples
have been recently analized by Tamura et al. (2004), while several single-object obser-
vations are available in the literature. Most of the measures relates, besides Fe, to Si
and S, whereas while only recently reliable estimates of Oxygen have been obtained.
Both overall abundance and spatial distribution of Snll-produced elements constitute
an unresolved puzzle. Provided that it is difficult to obtain reliable measures for O
abundance, Si is generally treated as a proto-type as for the a group (note that this
may be uncorrect to some extent; for instance, we have that the ratio M /M@ is
(0.2, 0.13, 0.19, 0.15) for, respectively, a Salpeter IMF, an Arimoto—Yoshii IMF, a Lar-
son IMF at 2 =3 and z = 5 (see Sec. (4.5)) — we adopt yields from Woosley & Weaver
1995, Renzini & Voli 1981, Nomoto et al. 1997 model W7). A common finding in
ASCA data analyses (e.g. Fukazawa et al. 1998, Finoguenov et al. 2000b, Finoguenov
et al. 2001a, Baumgartner et al. 2003) is that the Si abundance correlates with the
temperature of the cluster (or with f,.s as reported by Finoguenov, David & Ponman
2000) since T'R 1keV. Ne exhibit a similar behaviour, whereas S, which should belong
to the same nucleosynthtic channel than Si and Ne, does not suffer for such a variability
and instead appears to be equally scattered at all masses (see Fig. (1.14)).

At odds, XMM-Newton data reported by Tamura et al. (2004) for clusters with
mass in the range 1.3 < kT < 8.7 show no particular trend with the temperature
neither in the Fe abundance nor in « elements abundances (see Fig. (1.15)). As Tamura
et al. mnote, the analized sample is biased towards medium—-temperature luminous
clusters, so that no striking conclusions can be inferred so far from this apparently
stark discrepancy.

As for the spatial distribution, « elements are more widely present in the ICM than
Fe, with mild or no radial gradients. Unfortunately, Asca pointing capability is not
adequate to make detailed spatial maps of abundance distribution in galaxy clusters,
so that the large ASCA database (Baumgartner et al. 2003, Loewenstein 2004) is
not suited to obtain insights in this respect. However, in the past year few analyses
have been made on a limited number of objects from the ASCA database (Finoguenov
& Ponman 1999, Dupke & White 2000a, Dupke & White 2000b, Finoguenov et al.
2000b, Finoguenov et al. 2001a, White 2000, Allen et al. 2001a). More recently,
spatial analises of Chandra (David et al. 2001, Ettori et al. 2002b) and XMM-
Newton (Tamura et al. 2001, Xu et al. 2002, Peterson et al. 2003, Tamura et al.
2004, de Plaa et al. 2004) have been performed. The fact that a elements do not show
appreciable or systematic gradients, on the contrary of Snla elements, is generally
interpreted as the effect of the combination of different epochs of injection for Snll and
Snla products and different physical mechanisms (winds vs gas—stripping) responsible
for the transport of element into the ICM. Xmm observation of Abell 496 by Tamura et
al. (2001) confirm the peak of Si abundance suggested by Dupke & White(2000b) and
Finoguenov, David & Ponman (2000b). As well, they find a significant difference in
the radial abundance profiles of O—Ne-Mg as compared to Si—-S—Fe—Ni, which is quite
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tricky to be explained reminding that both Si and S are « elements like O, Ne and Mg.
S is found to exhibit a—abnormal properties also by Finoguenov & Ponman (1999; they
even took it aside as they considered S measures unreliables) and by Finoguenov, David
& Ponman (2000b) in that S/Fe ratio appears to be of pure Snla—type (Finoguenov,
David & Ponman conjecture that this can arise if the bulk of metals are produced
in metal-poor galaxies). Properties of the sample analized by Tamura et al. (2004)
can hardly be reconciled with the general results from ASCA ; in fact, they found no
differences in radial profiles of both Si/Fe and S/Fe, while O/Fe ratio strongly increases
with radius. In Fig. (1.16) we report the figures from Finoguenov, David & Ponman
(200) and Tamura et al. (2004) on Si/Fe and O/Fe ratios.
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Figure 1.16: [Top Panel] Figure from Finoguenov, David & Ponman 2000. [Bottom Panels]
Figure from Tamura et al. 2004. Best—fit values for cool, medium—temperature, hot and soft—excess
clusters are shown with open—circles, filled—circles, opne-square and crosses respectively. Both papers
give data in units of photospheric solar abundances by Anders & Grevesse (1989).

o4



CHAPTER 2

THE THERMODYNAMICAL PROPERTIES
OF THE ICM

The first part of our Ph.D. work is aimed at inspecting the effect of non—gravitational
heating on the thermodynamical properties of the ICM. To this purpose, we insert suit-
able implementations in the original code by V. Springel, as we discuss in the following.
The code used during this part of the work was an earlier version of GADGET that was
ready in 2001, when we started this project. Instead, as for implementing the stellar
evolution, we use a far more advanced version, as we report in detail in Chap. (4).
The content of this chapter largely reflects the results presented in two papers which
have already been published (Tornatore et al. 2003, Finoguenov et al. 2003b) and in
the proceedings of several conferences.

B Chapter Outline

By means of numerical simulations we discuss
the thermodynamics of the ICM, focusing on the
scaling relations of its X-ray properfies. After
a brief review on the observational results, we
present and discuss the role of cooling and non-
gravitational heating. Different thermmodynamical
paths and injection epochs are considered for
the heating.

Extra—-physics effects onthe ... §2.2

Collapsed Gas Fraction
The X-ray properties ... §2.3




THE THERMODYNAMICAL PROPERTIES OF THE ICM

INTRODUCTION

The simplest picture to describe the thermal properties of the intra—cluster medium
(ICM) is based on the assumption that gas heating occurs only by the action of grav-
itational processes, such as adiabatic compression from gravitational collapse, and by
hydrodynamical shocks from supersonic accretion (Kaiser 1986). Since gravity does not
have characteristic scales, this model predicts that galaxy systems of different mass look
like scaled versions of each other. Under the assumptions of thermal bremsstrahlung
emissivity and hydrostatic equilibrium, this model provides precise predictions for X—
ray scaling properties of galaxy systems: (a) Lx o< T?(1+2)3/2 for the shape and evolu-
tion of the relation between X-ray luminosity and gas temperature; (b) S oc T'(1+2) 2
for the entropy-temperature relation, where S = T'/ n?/? is the gas entropy and n. is
electron number density; (c) M o T3/2 for the relation between total cluster virial mass
and temperature, with normalization determined by the parameter § = um,o?2/kgT
(1 = 0.59 mean molecular weight for primordial composition, namely hydrogen and
Helium are 0.76% and 0.24% by mass respectively; m,: proton mass; and o,: line-
of-sight velocity dispersion). Numerical simulations that only include gravitational
heating showed that 5 ~ 1-1.3 (e.g. Navarro, Frenk & White 1995; Evrard, Metzler &
Navarro 1996; Bryan & Norman 1998; Eke et al. 1998b; Borgani, Governato, Wadsley
et al. 2002, BGW hereafter).

A number of observational facts demonstrate that this picture is too simplistic,
thus calling for the consideration of extra physics in the description of the ICM. The
Lx~-T relation is found to be steeper than predicted, with Lx oc 773 at Tx > 2 keV
(e.g., White, Jones & Forman 1997; Markevitch 1998; Arnaud & Evrard 1999; Ettori,
De Grandi & Molendi 2002), possibly approaching the self-similar scaling only for
the hottest systems with TR 8 keV (Allen & Fabian 1998). Evidences also emerged
for this relation to further steepen for colder groups, T< 1 keV (e.g., Ponman et al.
1996; Helsdon & Ponman 2000; Mulchaey 2000). Furthermore, no evidence for a
strong positive evolution of the Lx—T relation has been found to date out to z ~ 1
(e.g., Mushotzky & Scharf 1997; Reichart et al. 1999; Fairley et al. 2000; Borgani et al.
2001a; Holden et al. 2002; Novicki, Sornig & Henry 2002; cf. also Vikhlinin et al. 2002).
As for the S—T relation, Ponman, Cannon & Navarro (1999) found from ROSAT and
ASCA data an excess of entropy within the central regions of TS 2 keV systems (see
also Lloyd—Davis et al. 2000, Finoguenov et al. 2002a), possibly approaching the
value S ~ 100 keV cm? for the coldest groups. Finally, a series of evidences, based
on ASCA (e.g., Horner, Mushotzky & Scharf 1999; Nevalainen, Markevitch & Forman
2000; Finoguenov, Reiprich & Béhringer 2001b), BeppoSAX (Ettori et al. 2002) and
Chandra (Allen, Schmidt & Fabian 2001) data, shows that the observed M—-T relation
has a ~ 40 per cent lower normalization than predicted by simulations that only include
gravitational heating.
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In the attempt of interpreting these data, theoreticians are currently following two
alternative routes, based either on introducing non—gravitational heating of the ICM
or on alluding to the effects of radiative cooling.

An episode of non—gravitational heating, occurring before or during the gravita-
tional collapse, has the effect of increasing the entropy of the gas, preventing it from
reaching high densities in the central cluster regions and suppressing its X-ray emis-
sivity (e.g., Evrard & Henry 1991, Kaiser 1991; Bower 1997). For a fixed amount of
specific heating, the effect is larger for poorer systems, i.e. when the extra energy per
gas particle is comparable to the halo virial temperature. This produces both an ex-
cess entropy and a steeper Lx—T relation (e.g., Cavaliere, Menci & Tozzi 1998; Balogh,
Babul & Patton 1999; Tozzi & Norman 2001). Arguments based on semi-analytical
work (e.g., Tozzi & Norman 2001) and numerical simulations (Bialek, Evrard & Mohr
2001; Brighenti & Mathews 2001; Borgani et al. 2001b, 2002) suggest that a specific
heating energy of Ej ~ 1 keV/part or, equivalently, a pre—collapse entropy floor of
S ~ 100 keV cm?, can account for the observed X-ray properties of galaxy systems
(cf. also Babul et al. 2002, Finoguenov et al. 2002a for arguments suggesting a stronger
pre-heating). Yet, the origin for this energy has still to be determined. Energy release
from supernovae feedback has been advocated as a possibility (e.g., Bower et al. 2001;
Menci & Cavaliere 2001). Using the abundance of heavy elements of the ICM as a
diagnostic for the past history of the star formation within clusters (e.g., Renzini 1997,
Kravtsov & Yepes 2000; Pipino et al. 2002; Valdarnini 2002), a number of studies
concluded that SN may fall short in providing the required extra—energy budget (cf.
also Finoguenov, Arnaud & David 2001a). The other obvious candidate is represented
by energy from AGN (e.g., Valageas & Silk 1999; Wu, Fabian & Nulsen 2000; Mc
Namara et al. 2000; Nath & Roychowdhury 2002; Cavaliere, Lapi & Menci 2002). In
this case, the large amount of energy that is available requires some degree of tuning of
the mechanisms responsible for its conversion into thermal energy of the gas. While a
suitable amount of non—gravitational heating can account for the observed L x—T rela-
tion and entropy excess, the M—T relation is only marginally affected by extra heating
(e.g. BGW), thus leaving the discrepancy between observed and predicted relation
unresolved.

As for cooling, its effect is to selectively remove those low—entropy particles from the
diffuse X-ray emitting phase which have cooling times shorter than the Hubble time
(e.g., Voit & Bryan 2002; Wu & Xue 2002). Conversion of cooled gas into collisionless
stars decreases the central gas density and, at the same time, the resulting lack of
pressure support causes higher—entropy shocked gas to flow in from the outskirts of the
cluster or group. As a result, the X-ray luminosity is suppressed, while the entropy
increases, much like in a pre-heating scenario (Pearce et al. 2001; Muanwong et al.
2002; Davé, Katz & Weinberg 2002). However, by its nature, cooling is known to
be a runaway process: cooling causes gas to be accumulated into dense structures,
and the efficiency of cooling increases with gas density. As a result, most simulations
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consistently predict a significant fraction of gas to be converted into cold “stars”,
feola= 30 per cent (e.g., Suginohara & Ostriker 1998; Lewis et al. 2000; Yoshida et al.
2002; BGW), while observations indicate a considerably lower value of f.,qS 10 per
cent (e.g., Balogh et al. 2001; Wu & Xue 2002).

This suggests that in real clusters some source of extra heating is increasing the
entropy of the gas, preventing overcooling. Voit et al (2002) have developed a semi-
analytical approach to derive X—ray observable properties of the ICM in the presence
of both cooling and extra heating. Based on this approach, these authors found that
cooling and a modest amount of extra heating are able to account for basically all the
X-ray ICM observables. Oh & Benson (2002) pointed out that pre-heating is needed
to increase the cooling time and prevent overcooling, by suppressing the gas supply
to galaxies (see also Finoguenov et al. 2002b). It is however clear that, as for any
analytical approach, suitable assumptions and approximations are needed to choose
criteria for removing cooled gas from the hot diffuse phase, and to follow the complex
dynamics of cooling/heating of gas during the process of cluster formation.

Muanwong et al. (2002) and Kay, Thomas & Theuns (2002) used hydrodynamical
simulations within a cosmological box to study the interplay of gas cooling and a
few prescriptions for non—gravitational heating. As a general result, they found that
increasing the heating can suppress the amount of cooled gas. While the choice of
simulating a whole cosmological box has the advantage of providing a large statistics
of groups and clusters, it also severely limits the available mass and force resolution. On
the other hand, by the very nature of cooling, increasing the mass resolution allows to
follow the formation of smaller halos at progressively larger redshift, where cooling and,
potentially, star formation are particularly efficient. As a consequence, unless very high
mass resolution is achieved, cooling in simulations can be significantly underestimated
(e.g., Balogh et al. 2001).

We follow the alternative approach of simulating at very high resolution a limited
number of group— and cluster—sized halos selected from a cosmological box, and we
widen the explored range of possible patterns for non—gravitational heating (see also
BGW). While this limits our ability to precisely calibrate shape and scatter of X-ray
scaling relations, we are able to increase the resolution in the most interesting regions
of the gas distribution. Indeed, the simulations presented in this Chapter are among
the highest resolution attempts realized so far to follow the structure of gas cooling
within groups and clusters in the presence of a variety of schemes for extra gas heating.
Furthermore, we also investigate how the cooling efficiency depends both on numerical
resolution and on details of the SPH implementation.

The structure of this Chapter is as follows. After providing a short description of
the code, we present in Section 2 the procedure to simulate individual halos at high
resolution and discuss the main characteristics of the four selected halos. In Section 3,
we discuss the results on the cold fraction. Here we will concentrate on showing how this
fraction depends on numerical resolution, integration scheme and removal of cold dense
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particles from the SPH computation (star formation). Finally, we present the adopted
schemes for non—gravitational gas heating and discuss their impact on the resulting
cold fraction and pattern of star formation. In Section 4, we present the predictions
on X-ray properties of clusters and groups from our simulations, namely the entropy—
temperature, the luminosity—temperature and the mass—temperature relations. Finally,
we discuss our main results and draw conclusions in Section 5.

2.1 THE SIMULATIONS

2.1.1. The code

We realized the simulations presented in this Chapter using the former version of
GADGET !, a parallel tree N-body/SPH code (for a complete reference, see Springel,
Yoshida & White 2001), with fully adaptive time-step integration. Gas cooling in the
SPH part of the code is implemented following Katz, Weinberg & Hernquist (1996,
KWH hereafter). Specifically, the abundances of ionic species are computed by assum-
ing collisional equilibrium for a gas of primordial composition (mass—fraction X = 0.76
of hydrogen and 1 — X = 0.24 of helium). No metal content is accounted as for cal-
culating the gas emissivity. We include the effect of a time-dependent uniform UV
background (e.g., Haardt & Madau 1999), although its effect is only very small for the
massive objects we focus on in this study. We set the number of neighbors for SPH
computations to 32, allowing the SPH smoothing length to drop at most to the value
of the gravitational softening length of the gas particles. In this first part of our work,
we not implement the metal production from star—formation. We provide a complete
description of the most advanced version of the GADGET code in Chap. (3), as well as
a detailed description of the implementation of stellar evolution in Chap. (4).

2.1.2. The simulated structures

We simulate four halos at high resolution, which are extracted from a low-resolution
DM only simulation within a box of 70 A~!Mpc on a side, for a cosmological model
with Q,, = 0.3, Qs = 0.7, Hubble constant Hy = 70 km s~! Mpc~! and normalization
og = 0.8, consistent with recent determinations of the number density of nearby clusters
(Pierpaoli et al. 2002, and references therein). As for the baryon content, we assume
Qpar = 0.019 272 (e.g., Burles & Tytler 1998). This choice of Qy,, corresponds to fia, ~
0.13 for the cosmic baryon fraction, which, for the assumed cosmology, is consistent
with the value measured from cluster observations (e.g., Ettori 2002, and references
therein).

http://www.mpa-garching.mpg.de/gadget
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The most massive halo we selected corresponds to a Virgo-like cluster, with virial
mass of about 4 x 101 M, (as usual, we call “virial” the mass within the radius encom-
passing the virial overdensity computed for the simulated cosmology; e.g. Eke et al.
1998a). This turns out to be the most massive system extracted from the simulation
box. In the following, we will refer to this system as the “Virgo” cluster. The other
three halos, which have been extracted from a single Lagrangian region, correspond to
groups in the mass range (2-6)x10* M. In the following, we will refer to these three
structures as “Group-17, “Group-2” and “Group-3”. We provide in Table 2.1 the main
characteristics of the simulated structures.

We follow the technique originally presented by Katz & White (1993) to increase
the mass resolution and to add short wavelength modes within Lagrangian regions
that contain the structures of interest. In these high-resolution regions, particles are
split into a dark matter and a gaseous part, with mass ratio reflecting the value of
the cosmic baryon fraction. Force and mass resolution are then gradually degraded
in the outer regions, so as to limit the computational cost, while providing a correct
representation of the large—scale tidal field. The size of the regions selected at z = 0,
to be resimulated at high resolution, typically corresponds to 10-20 Mpc in Lagrangian
space, and is always chosen to be large enough that no low-resolution heavy particles
contaminate the virial region of the simulated halos.

In order to assess numerical effects, structures have been simulated at different
mass and force resolutions. We fix three different mass resolutions, which correspond
0 Mgas ~ 2.5 X 109Mp, 3.2 x 103M, and 3.9 x 107 M, for the mass of the gas particles,
respectively. In the following, the group runs with the smallest (intermediate) value
of Mg,s, and the Virgo runs with the intermediate (largest) mg,s will be indicated as
high-resolution (low-resolution) runs and labeled with HR (LR). We do not discuss
Virgo runs with the smallest mg,s and Group runs with the largest mg,s among this
list of three mass resolutions. With these choices for the mass resolution, the HR runs
resolve the virial regions of the simulated structures with a number of gas particles
ranging from about 70,000 to about 185,000 (see Table 2.1). The redshift z; at which
initial conditions are generated is chosen such that the r.m.s. fluctuation in the density
field of the high-resolution region is o = 0.1 (on the scale of the smallest resolved
masses). With this requirement, we have z; >~ 65. As for the choice of the softening
scale for the computation of the gravitational force, we assume it to have a constant
value in comoving units down to z = 2, and a constant value in physical units at later
epochs. The corresponding values of the Plummer—equivalent softening scale at z = 0
are ep; = 10, 5 and 2.5 kpc for the three different choices of mg,s. This choice has been
dictated by the requirement of resolving halos down to scales of about one percent of
their virial radii, so as to correctly follow the gas clumpiness and, therefore, to have
convergent estimates of the X—ray luminosity (e.g., Borgani et al. 2002).

We show in Figure 2.1 the gas density and entropy maps for the HR runs of the
cluster and of the group regions at z = 0 for the runs including cooling and star
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Figure 2.1: Maps of the gas density (upper panels) and of the gas entropy (lower panels) for the
Virgo run (left panels) and for the region containing the groups (right panel), for the HR runs including
cooling and star formation (see text). The size of each box is 10 Mpc, so as to show the environment
of the simulated systems. Brighter regions indicate higher gas density and lower entropy in the upper

and lower panels, respectively.

Table 2.1: Physical characteristics and numerical parameters of the simulated halos in the HR runs.
Column 2: total mass within the virial radius at z = 0 (10'3Mg); Column 3: virial radius (Mpc);
Column 4: total mass within Rsp9; Column 5: radius containing an average density p = 500pcrit-
Column 6: number of gas particles within Ry;,; Column 7: Plummer-equivalent softening parameter

at 2 =0 (h~'kpc).

Run Mvir Rvir M500 R500 Ngas €
Cluster 394 190 23.3 094 1.5e5 5.0
Group-1 598 1.01 343 0.49 18eb 2.5
Group-2 252 0.76 1.60 0.38 7.8e4 2.5
Group-3 235 0.74 135 0.36 7.led 25
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formation (see below). In the entropy map of the Virgo cluster (lower left panel), we
note a tail of low entropy gas pointing toward the center. This feature is generated
by a merging sub-group, whose gas has been tidally stripped during the first passage
through the cluster virial region. The persistence of low entropy for this gas indicates
that it has been only recently stripped and has still to thermalize within the cluster
environment. As apparent from the gas—density map (upper left panel), this merging
sub-halo gives rise only to a minor disturbance of the gas density, thus marginally
disturbing the relaxed dynamical status of the cluster. As for the simulation of the
region containing the three groups, we note that they are placed along a filamentary
structure. Although they are still relatively isolated and separated from each other
by a few virial radii, their motion shows that they are approaching each other and
will merge to form a cluster—sized structure in a few Gyrs. In general, these maps
witness that a rich variety of structures, emerging when high resolution is achieved,
are naturally expected to characterize the ICM, much like shown by high resolution
Chandra observations.

2.2 COMPUTING THE COLLAPSED GAS FRACTION IN
CLUSTER SIMULATIONS

2.2.1. Introducing radiative cooling

An important aspect when dealing with simulations that include cooling concerns the
detailed scheme of SPH implementation. Most standard implementations integrate
the specific thermal energy as an independent variable, differing however in the de-
tailed method used for symmetrizing the pairwise hydrodynamic forces between gas
particle pairs, where either a simple arithmetic or a geometric mean form the most
common choices (e.g., Weinberg, Hernquist & Katz 1997; Dave et al. 1999; White,
Hernquist & Springel 2001). While these SPH implementations conserve energy and
momentum, Springel & Hernquist (2002, SHO2 hereafter) have shown that several of
the commonly used SPH implementations are characterized by a spurious loss of spe-
cific entropy in strongly cooling regions, an effect which can be particularly severe at
low resolution, and which is stronger when the geometrical scheme for hydrodynamical
force symmetrization is adopted. This problem is essentially due to spurious coupling
between cool dense particles, which should have virtually left the collisional phase, and
neighboring hot gas particles, which still belong to the diffuse phase. In order to avoid
the resulting spurious overcooling, different techniques have been suggested by several
authors (e.g., Pearce et al. 2001; Marri et al. 2002).

SHO2 proposed a new SPH implementation based on integrating the specific entropy
as an independent thermodynamic variable, an approach which explicitly conserves
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entropy in non—shock regions. Using a variational principle to derive the SPH equations
of motion, they also showed that this new formulation removes any ambiguity in the
choice of symmetrization and conserves energy, even when adaptive smoothing lengths
are used.

Since one of the main purposes of this Chapter is to investigate the properties of
gas cooling in galaxy clusters, we will study below by how much differences in the
SPH implementation can change the resulting fraction of cold gas. Adopting the nam-
ing convention of SH02, we refer to a standard SPH implementation with geometric
symmetrization as “geometrical”, and to one with arithmetic symmetrization as “arith-
metic”, while the new formulation of SHO2 will be referred to as “entropy—conserving”

(see Chap. (3)).

2.2.2. Introducing star formation

Star formation is introduced as an algorithm to remove dense cold gas particles from
the SPH computation, treating them as collisionless “stars”. We follow the recipe
originally proposed by KWH. According to this recipe, a gas particle is eligible to
form stars if the following conditions are met: (i) locally convergent flow, V - v < 0;
(71) Jeans unstable, i.e. locally determined sound crossing time longer than dynamical
crossing time; (iii) gas overdensity exceeding a critical overdensity value, 6, > 55; (iv)
local number density of hydrogen atoms ny > 0.1 cm ™3,

Once a particle is eligible to form stars, its star formation rate (SFR) is given by
dlnp,/dt = —c./t,, where t, is the minimum between the local gas-dynamical time-
scale, tqyn = (47Gp,) /2, and the local cooling time-scale. We assumed ¢, = 0.1 for
the parameter regulating the rate of conversion of cold gas into stars, and verified with
a low-resolution simulation of the Virgo cluster that basic results are left essentially
unchanged by taking instead c, = 0.01. A gas particle eligible for star formation is
assumed to be gradually converted into a star particle, according to the above SFR.
Instead of creating a new star particle for every star—formation (SF) instance, each gas
particle undergoing SF behaves in a “schizophrenic” way, with its stellar part feeling
only gravity (see, e.g., Mihos & Hernquist 1994). Once the SPH mass fraction decreases
to 10 per cent, it is dissolved into SPH neighbors, thus leaving a purely stellar particle.

We also follow the recipe by KWH to compute the energy feedback from the SN
associated with the star—formation produced in the simulations. Assuming a Miller—
Scalo (1979) initial mass function (IMF), we compute the number of stars with mass
> 8 M, which we identify with instantaneously exploding SN. After assuming that
each SN releases 10°! ergs, the resulting amount of energy per formed stellar mass turns
out to be 7 x 10% ergs Mg 1. While the approximation of instantaneous explosion can
be justified for type-II SN, due to the short life-time of their progenitor stars, it is not
valid for type-Ia SN, which have stellar progenitors of smaller masses and much longer
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Figure 2.2: The fraction of collapsed gas within the virial radius for the Virgo run, for the three
different schemes of SPH implementation. The lower panel refers to runs including cooling but not
star formation. The upper panel shows the effect of introducing star formation for the HR runs.
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Figure 2.3: The fraction of cold gas as a function of the emission-weighted temperature, Tey, of the
simulated structures. Results at two different resolutions are shown for the simulations of the groups.

life-times (e.g. Lia, Portinari & Carraro 2001; Pipino et al. 2002; Valdarnini 2002).
The resulting feedback energy is assigned as thermal energy to the star—forming gas
particles. This scheme for SN feedback is known to thermalize a negligible amount of
energy in the diffuse medium, since it acts mostly on cold dense particles which rapidly
radiate away the feedback energy as a consequence of their short cooling time. In the
following, we show results based on including this scheme for SN feedback while bearing
in mind that it causes only negligible differences compared to simulations that lack any
stellar feedback. In Section 3.3 we shall discuss a different SN feedback scheme, based
on the predictions of semi—analytical modelling of galaxy formation. In Chap. (3) we
will extensively discuss a more sophisticated feedback scheme for SN, that is far more
effcient in preventing overcooling and in regulating the star formation.

The effect of including star formation on the fraction of collapsed gas in the Virgo
cluster run is shown in Figure 2.2. Besides the population of collisionless star particles,
we also define as belonging to the cold phase all the SPH particles which have over-
density dgas > 500 and temperature T < 3 x 10* K (see also Croft et al. 2001, Borgani
et al. 2002). At z = 1, the star formation simulation produce feoq ~ 25-35 per cent
of collapsed gas, with a weak dependence on the integration scheme. However, in the
cooling-only simulations, where collapsed gas is not converted to stars, the “geometric”
scheme leads to substantially larger values, indicating a numerical overcooling problem
in this method. This effect is absent in the entropy—conserving scheme, which proves
effective in suppressing spurious cooling in the absence of an explicit SF scheme. Note
that f.oq is seen to slightly decrease at later epochs, which is as a consequence of a
reduction of the rate at which cooling and star formation proceeds with respect to
diffuse gas accretion.

In Figure 2.3 we show the trend of f.,q against the emission—weighted temperature,
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which is defined here as
. ZZ Pi TZ'3/2

2 Pi Tz’1/2 7
where p; is the gas density carried by the i-th SPH particle. This definition is valid
only for bremsstrahlung emissivity, although final values of T, are left essentially
unchanged if we account for the contribution from metal lines.

For the groups, we plot results for both the LR and the HR runs. The trend toward
a higher f.,q in colder systems is a consequence of the shorter cooling times of the
associated DM halos, which makes cooling to proceed faster in lower—mass systems.
Quite apparently, increasing the resolution causes a ~ 20 per cent or a ~ 50 per cent
increase of f.q at the group and at the cluster scales, respectively. The effect of
numerical resolution is also shown in the left panel of Figure 2.4. In this figure we plot
the density of star—formation rate (SFR) within the virial region of the Virgo cluster
and of the Group-1. Once the same mass resolution is used for the simulation of these
two structures, the resulting SFRs are quite similar. Increasing the resolution of the
group simulation allows to resolve smaller halos forming at higher z, where additional
star formation can take place. As a result, the peak in the SFR moves from z ~ 2
to z ~ 3 and then declines more gently, while recovering the same shape at lower
redshift. Note that the integrated star formation rate is dominated by the contribution
from these low redshifts, where most of the physical time is being spent. The resolution
achieved in the HR runs is sufficient to resolve “galaxy” halos well below L,. Therefore,
we are confident that we are obtaining nearly converged estimates of the collapsed gas
fraction, at least when the highest mass resolution is used. At the same time, our
results should be considered as a warning on the interpretation of simulations that lack
the resolution to adequately follow gas cooling.

In summary, our simulations demonstrate that cold fractions as large as f.oq = 25—
35 per cent should be expected when radiative cooling and star formation are consid-
ered. These values are larger than the observed ~ 10% fraction of cold gas in clusters
(e.g., Balogh et al. 2001). This calls for the need to introduce a suitable scheme of
non—gravitational energy injection, allowing a regulation of the runaway cooling pro-
cess.

Tew (2.1)

2.2.3. Introducing extra heating

The SN feedback recipe that we discussed so far, where thermal energy is deposited into
cold gas, does not produce any sizable effect. In order to overcome this problem, many
different schemes have been proposed. All these schemes attempt to prevent feedback
energy from being quickly radiated away, for example by suitably parameterizing “sub—
grid” physics, such as the multi-phase structure of the interstellar medium or galactic
winds (e.g., Kay et al. 2000; Springel & Hernquist 2002; Marri & White 2002).
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Here we present different phenomenological approaches for non—gravitational heat-
ing. Rather than predicting feedback from the star formation actually produced in
the simulations, these schemes are designed to shed light on how much extra energy is
required and how it should be distributed in redshift and as a function of the local gas
density, to prevent overcooling and, at the same time, to reproduce X-ray observables
of galaxy clusters and groups. A summary of the characteristics of the heating recipes
that we explore here is provided in Table 2.2. In the rest of the Chapter we will present
results based only on the high-resolution (HR) runs.

B Impulsive heating

In our first class of heating schemes, we assume that all the energy is dumped into the
diffuse baryons in an impulsive way, with a single heating episode occurring at some
redshift zj,.

(a) Entropy floors Sy = 50 keV cm? at redshift z;, = 9 (S50-9 runs) and at z, = 3
(S50-3 runs), and Sy = 25 keV cm? at z, = 9. In this scheme, the entropy
associated with each gas particle, s = T'/ n/® (T": temperature in keV; n, electron
number density in cm™3), is either increased to the value Sy if smaller than
that, or otherwise left unchanged (see also Navarro et al. 1995; Bialek et al.
2001; BGW). The choice of z;, = 9 corresponds to a heating epoch well before
a substantial amount of gas in simulations cools and forms stars and, therefore,
heavily suppresses star formation. The existence of a pristine SN generation
(from the so—called Pop III stars) has been invoked to account for the IGM metal
enrichment (e.g., Madau, Ferrara & Rees 2001). However, were this heating able
to rise the entropy to the above levels, it would prevent the later formation of the
Ly-« forest, which is known to have about one order of magnitude lower entropy.
Furthermore, the amount of heating energy would also correspond to a too high
production of heavy elements. For these reasons, we consider this choice for Sy
to be motivated by the phenomenology of X-ray ICM properties alone, rather
than by expectations from star formation processes at high redshift.

(b) A fixed amount of heating energy per particle, Ej; = 0.75 keV /particle at z, = 3.
This amount of energy is roughly the same as the average specific energy dumped
by the S50-3 scheme within the halo virial radius (see Table 2.2). Therefore, it
allows to check for differences induced in the final results by distributing the
same energy budget in a different way as a function of gas density. The z;, = 3
heating epoch is close to that at which the star-formation rate within a proto—
cluster region peaks (e.g., Menci & Cavaliere 2000; Bower et al. 2001; BGW).
An energy budget E}, ~ 0.6-0.8 keV /part has been also suggested by Finoguenov
et al. (2001la) to be consistent with the Si abundance detected in groups and
clusters.
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Table 2.2: Prescriptions for non-gravitational heating. We give in Column 1 name of the runs. For
the impulsive heating schemes we give in Column 2: the quantity which is modified by the heating;
Column 3: the heating redshift z,. For the SAM-predicted SN feedback we give in Column 2: the
number of SN per unit Mg; Column 3: the limiting density contrast for the gas particles to be heated.
Column 4 gives the mean specific energy assigned to the gas particles falling within Ry;; by z = 0.
The asterisks indicate those runs which have been realized only for the “Virgo” cluster.

Impulsive heating

Name of run Scheme 2z En(< Ryy)
S25-9* Sp = 25 keV cm? 9 0.5
S50-9 Sqp = 50 keV cm? 9 0.9
S50-3 Sqp = 50 keV cm? 3 0.8
K75-3 E, =0.75 keV /part 3 0.75
SAM-predicted SN feedback

Name of run Mo d;  En(< Ryi)
SNO03;, 3.2107° 50 0.15
SNO7.* 7.01073 50 0.32
SN15.* 1.51072 50 0.43
SNO7Tx 7.01073 500 0.36

B SAM-predicted SN feedback

This heating scheme is based on computing the star—formation rate (SFR) within
clusters using a semi—analytic model (SAM) of galaxy formation (e.g., Kauffmann,
White & Guiderdoni 1993, Somerville & Primack 1999, Cole et al. 2000, and references
therein). Here we employ a variation of the scheme described by Menci & Cavaliere
(2000, see also Bower et al. 2001), and we refer to their paper for a detailed description
of the method, while we refer to BGW for further details on the its implementation in
cluster simulations.

The hierarchical merging of DM halos is followed by means of the extended Press—
Schechter formalism (e.g. Lacey & Cole 1993), while model parameters describing the
gas physics, such as cooling, star formation and stellar feedback, are chosen so as to
reproduce observed properties of the local galaxy population, such as the Tully—Fisher
relation, or optical luminosity functions and disk—sizes (e.g. Poli et al. 2001). The
model prediction we are interested in here is the integrated star formation history,
My (z, My) ,of all the condensations which are incorporated into a structure of total
mass M, by the present time. For a halo of size similar to our Virgo-like cluster,
the SFR peaks at z ~ 4 in this semi-analytic model, while it is z ~ 2.5-3 for the
group—sized halos (see BGW, for a plot of the My—dependence of the cluster SFR).
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Figure 2.4: The density of the star—formation rate, p.(t), computed for the Lagrangian volume of
the object that corresponds to the z = 0 virial region of the simulated systems. Left panel: p.(t)
for the Virgo simulation (dashed curve), and for both the LR and HR runs of Group-1 (dotted and
solid curves, respectively), when no extra heating is included. Central and right panels: results for
the Virgo cluster, simulated with impulsive heating and SAM-predicted SN heating, respectively.
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The rate of total energy feedback released by type-II SN is then computed as

dEsy
dt

where 79 is the number of SN per solar mass of formed stars. This value depends on
the assumed initial mass function (IMF), and is obtained by integrating over the IMF
for stellar masses > 8 M. In the following, we will use the values 1y = 3.2 x 1073 M L
which follows from a Scalo IMF (Scalo 1986), ny = 7 x 1073M", from the Salpeter
IMF (Salpeter 1955) and 79 = 1.5 x 10_2M51, as an extreme case.

Since our simulations include cooling, radiative losses of SN energy do not need to
be assumed a priori, rather they are self—consistently computed by the code. However,
we need to specify the gas overdensity, d,, at which the SN heating energy is assigned
to the gas. In the following we take 6, = 50 or 500, and assume that Fgy is shared
in equal parts among all the gas particles at overdensity larger than d,. The choice
dy = 50 corresponds to assuming that the virial region of the whole halo is heated and,
therefore, that physical processes like galactic winds, for example, are rather efficiently
transferring energy to the IGM. Increasing J, implies two competitive effects: on one
hand, it decreases the number of heated gas particles, therefore it increases the amount
of extra energy assigned to each of them; on the other hand, the energy is assigned to
denser particles, which have shorter cooling time and, therefore, larger radiative losses.

= 10°ergs 1o 1. (2, My) (2.2)

2.2.4. The effect of extra heating on the cold fraction

As we have already discussed, introducing cooling causes a too large fraction of gas to
be converted into stars. This is a well known feature of hydrodynamical simulations,
which has been widely discussed in the literature (e.g., Suginohara & Ostriker 1998,
BGW). Even worse, the runaway nature of the cooling process causes its efficiency to
be highly sensitive to numerical resolution (see Fig.2.3, see also Balogh et al. 2001).
Therefore, one should be very cautious in the interpretation of results from simulations
that do not resolve halos with luminosity well below L,.

In Figure 2.5, we show the effect of the different heating schemes on the resulting
cold fraction within the virial radius of our simulated structures. As expected, we find
a decrease of f.q when non—gravitational heating is included. However, the efficiency
of this suppression of star—formation does not exclusively depend on the amount of
dumped energy. For instance, imposing an entropy floor of 50 keV cm? at z;, = 9 (left
panel of Fig.2.5) is far more efficient than at z;, = 3. The reason for this is illustrated by
the different patterns of SFR history, that we show in Figure 2.4. The impulsive heating
at z;, = 3 causes a suppression of the SFR at later epochs, but a fair amount of stars
are already in place at z, (central panel of Fig. 2.4). Quite interestingly, the results
for the two runs with heating at z, = 3 produce quite similar SFR. This indicates
that, once the heating epoch is fixed, the degree of SFR suppression depends only on
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the amount of heating energy, while being largely independent on its distribution as a
function of the local gas density.

However, heating at z = 9 with a comparable amount of energy does not allow gas
to reach high densities within DM halos and to cool before z ~ 1. Once cooling takes
place, it converts less than 10 per cent of the gas into stars, within a short episode
of star formation. The resulting SFR peaks at very low redshift, 2 ~ 0.3, which
is highly discrepant with observational determinations of the SFR history in clusters
(e.g., Kodama & Bower 2001). Of course, this is not the only feature which rules out
the picture of a strong heating occurring at such a high redshift. For instance, at z = 0,
stars are all concentrated in one single object located at the center, a cD-like galaxy,
while no other galaxy—sized DM halos contains significant amounts of collapsed gas.

As for the SN heating (right panel of Fig. 2.4), suppressing the star fraction below
the 10 per cent level requires a high, probably unrealistic value for 7. Also, taking
no = 1.5 x 1072M" generates an implausible SFR history, resembling that found for
the runs based on setting the entropy floor at z, = 9: the large amount of extra heating
at high redshift prevents the occurrence of star formation down to z ~ 1.5. Taking g
in the range 3-7x1073 predicts more realistic SFRs, but it is not able to suppress feoid
below the ~ 20 per cent level.

A general conclusion of our analysis is that heating schemes producing plausible
SFR histories are not efficient in suppressing the fraction of cold gas below the 20
and 25 per cent values at the cluster and group scales, respectively. Vice-versa, a
more efficient suppression is obtained by preventing gas to cool at high redshift, at the
expense of delaying star formation to unreasonably low redshifts.

2.3 X —RAY PROPERTIES OF SIMULATED CLUSTERS

2.3.1. The entropy of the ICM

Measurements of the excess entropy in central regions of poor clusters and groups are
considered to provide direct evidence for the lack of self-similarity of the ICM properties
(e.g., Ponman et al. 1999; Finoguenov et al. 2002a). In a separate paper (Finoguenov
et al. 2002b), a self—consistent comparison is realized between the entropy properties
of the simulations with impulsive heating, that we present here, and the observational
data for groups and clusters by Finoguenov et al. (2002a). The main result of this
comparison is that, although cooling and star formation tend to somewhat increase
entropy in central cluster regions, they still fall short in producing the entropy excess
which is observed at the group scale. While preheating at z;, = 3 is shown to increase
the entropy to the observed values, runs with 2z, = 9 are characterized by a low entropy
level in central regions of clusters and groups.

Instead of attempting any further comparison with observations, we want to discuss
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here the dynamical reasons for such a behavior. To this end, we show in Figure 2.6 the
effect of cooling and non—gravitational heating on the entropy profiles for our whole set
of “Virgo” simulations. As expected, when cooling and SF are included, low entropy gas
is selectively removed in central cluster regions, thus inducing a flattening of the profile.
This is explicitly shown in Figure 2.7: while the run including only gravitational heating
has a population of high—density low entropy gas particles, such particles are removed
from the diffuse phase once cooling and star formation are introduced. This result is
consistent with the expectation from analytical arguments based on the comparison
between cooling time—scale and typical cluster age (e.g., Voit et al. 2002, Wu & Xue
2002). The inclusion of extra heating has a non—trivial effect on the efficiency of cooling
in removing particles from the lower left side of the S—d, phase diagram. For instance,
imposing the same entropy floor at z;, = 9 and at z, = 3 has quite different effects on
the entropy pattern (see lower panels of Fig. 2.7). Heating at z, = 9 has the effect of
increasing the cooling time for most of the gas particles, so as to allow star formation
to take place only quite recently (see Fig. 2.4). The increased time-scale for cooling
causes this process to proceed in a more gradual way. For this reason, the entropy of
gas particles undergoing cooling decreases slowly, thus making their removal from the
hot diffuse phase less efficient.

2.3.2. The luminosity—temperature and luminosity—mass relations

The slope of the Lx—T relation also provides important observational evidence for
the lack of self-similar behaviour of the ICM. Since the first measurements of ICM
temperatures for sizable sets of clusters, it has been recognised that Lx o< T with o ~
3, although with a considerable scatter (e.g., White et al. 1998, and references therein).
Better quality observations established that a significant contribution to this scatter
is associated with the different strength of cooling flows detected in different clusters.
Either excluding clusters with pronounced signatures of cooling flows or correcting
for their effect (e.g., Markevitch 1998; Allen & Fabian 1998; Arnaud & Evrard 1999;
Ettori et al. 2002) results in a much tighter Lx-T relation, albeit still with a rather
steep slope. At the same time, hints have also been found for a further steepening
of this relation at TS 1 keV (e.g., Helsdon & Ponman 2000, and references therein),
possibly indicating that the mechanism responsible for the L x—T" scaling should act in
a different way for clusters and groups.

Simulations that allow for non—gravitational heating (e.g., Bialek et al. 2001; BGW)
and radiative cooling (e.g. Pearce et al. 2001; Dave et al. 2002; Muanwong et al. 2002)
have been shown to be able to account for the observed Lx—T relation. However, a
sometimes overlooked issue in determining the X-ray luminosity of clusters in simula-
tions concerns the contribution of metal lines to the emissivity. While this contribution
is negligible above 2 keV, it becomes relevant at the scale of groups. For instance, ne-
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glecting the contribution from line emissivity for an ICM enriched to a metallicity of
7 = 0.3Z leads to an underestimate of the X-ray luminosity by almost 50 per cent
at 1 keV, and by more than a factor 2 at 0.5 keV (e.g. BGW).

A correct procedure would require simulations that include a treatment of metal
enrichment and a self—consistent estimate of the contribution of line cooling to the X—
ray emissivity. However, only preliminary attempts have been realized so far to include
the treatment of ICM metal enrichment from SN ejecta (Lia et al. 2002; Valdarnini
2002). Pearce et al. (2001) include the contribution of metals to the cooling function
adopted in their simulation by assuming Z = 0.3 Z; at the present epoch, linearly
decreasing with time towards the past. Davé et al. (2002) did not include the metal
contribution in their cooling function, but estimated X-ray luminosities by assuming
a phenomenological relation between metal abundance and temperature of the galaxy
system. However, while the ICM metallicity at the scale of rich clusters is quite well
established from observations, the situation is less clear for poor clusters and groups
(e.g., Davis, Mulchaey & Mushotzky 1999; Renzini 2000, and references therein).

The cooling function used in our simulations assumes zero metallicity, but we com-
pute the X—ray luminosity by adding to the bremsstrahlung emissivity the contribution
from lines for a Z = 0.3 Z; plasma. This represents a reasonable approximation as long
as gas spends most of the time at low metallicity, being enriched to high metallicity
only recently. Owing to the uncertainties connected to these assumptions, the relia-
bility of Ly values at T'S 1 keV is unclear, however. Precise predictions will require
a fully self-consistent treatment of metal enrichment of the ICM from star formation
activity.

In Figure 2.8, we show the profiles of emissivity (energy released per unit time and
unit volume) for the different Virgo runs. As expected, including only cooling and
star formation has the effect of flattening the profiles in the central cluster regions as
a consequence of gas removal from the hot phase. When extra heating is included,
the profiles change according to the amount of gas left at relatively low entropy in the
central cluster regions. For instance, the fairly large population of low entropy particles
in the run with Sy = 50 keV cm? at z, = 9 (see Fig.2.7) is responsible for the spike
in the X—ray emissivity. In the same way, the efficient removal of low—entropy gas for
the run where an entropy floor was imposed at z, = 3 explains the flattening of the
luminosity profile in the central cluster region. These results confirm the existence of
a non—trivial interplay between the effects of cooling and extra heating. In some cases,
one reaches the apparently paradoxical conclusion that combining heating and cooling
increases the X-ray luminosity, although their separate effects are that of suppressing
LX'

Figure 2.9 shows the comparison between the simulated and the observed Lx—T
relation for clusters and groups. As expected, cooling causes a sizeable suppression
of the X-ray luminosity. At the same time, the emission—weighted temperature is
increased as a consequence of the steepening of the temperature profiles in the central
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halo regions (see below). While the mere introduction of cooling and star—formation
brings the “Virgo” cluster into agreement with observations, the simulated groups are
somewhat overluminous with respect to data. The inclusion of pre-heating at z, = 3
has a smaller effect on the Virgo cluster, consistent with the result from the luminosity
profile, while it further suppresses Lx at the scale of groups. A similar result is also
found for the runs with SAM-predicted SN feedback.

Quite interestingly, the Lx value for Group-2 in the runs with no extra heating
appears to be systematically in excess with respect to that inferred from the Lx—T
scaling of the other three simulated structures. This deviation is due to the occurrence
of a recent merger shock in the Group-2 run, which produced a sudden increase in the
X-ray emission. When extra heating is included, its effect is that of decreasing the
strength of the shock, thus also reducing the jump in luminosity.

A similar constraint is provided by the relation between X—ray luminosity and mass.
Reiprich & Bohringer (2002) have estimated this relation by applying the equation of
hydrostatic equilibrium to a fairly large ensemble of clusters and groups, under the
assumption of isothermal gas. They used ICM temperatures based on ASCA data, in
combination with ROSAT -PSPC data for the surface brightness profile. Ettori, De
Grandi & Molendi (2002) used the better quality data from BeppoSAX observations
to resolve the temperature profiles for a smaller ensemble of clusters. Although the
analysis by Ettori et al. explicitly includes temperature gradients when solving the
equation of hydrostatic equilibrium, it is restricted to clusters with TR 3 keV, thus
hotter than those simulated here.

For this reason, we here compare our simulation results to the data by Reiprich &
Bohringer (see Figure 2.10). In this analysis, the cluster masses, Msq, are computed
within the radius encompassing an average density p = 500p¢t, While observed lumi-
nosities are provided in the 0.1-2.4 keV ROSAT energy band. We use the MEKAL spec-
tral model to correct bolometric luminosities from simulations by assuming Z = 0.3 Z
for the global ICM metallicity. Consistent with the results from the analysis of the L x—
T relation, we find that the runs with heating at z;, = 3 and that with SN feedback,
based on a Salpeter IMF, are able to follow the steep slope of the observed L 1_o4— M50
relation.

In principle, the Lx—T and the Lx—M relations do not provide independent in-
formation, since masses are anyway estimated using temperature data. Still, both
relations are obtained by using largely different observational data sets and analysis
procedures. Therefore, the fact that the same simulations are able to account for both
scalings lends support to the robustness of our results and indicates that our conclusions
are not affected by observational biases or systematics.

Owing to the uncertainties mentioned above in modelling the luminosities of groups,
it appears prudent not to make strong claims about how much extra heating is needed
to reproduce the observations. Overall, we note that all the runs that produce a
delayed star formation, such as those with 2z, = 9 and the one with SN—feedback and
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large ny = 1.5 x 10_2M51 (see Fig.2.4), are quite inefficient in suppressing Lx. On the
contrary, runs with pre-heating at z;, = 3 or with SN—feedback combined with more
reasonable values for 79 succeed to account for the steep slopes of the L x—T and Lx—M
relations.

Having warned about the reliability of the emissivity modeling for gas at T" < 1
keV, a word of caution should also be spent on the reliability of the interpretation of
current observational data. Estimating temperature and luminosity for small groups
from pre—Chandra and pre-XMM data is not a trivial task, mostly due to the difficulty
of separating the contribution of the diffuse intra—group medium from that of member
galaxies, and of detecting X-ray emission out to a significant fraction of the virial
radius (see, e.g., Mulchaey 2000, for a review on the X-ray properties of groups). The
situation is likely to improve as newer and better quality data will be accumulated,
although we will probably have to wait for a few more years before a critical amount
of Chandra and XMM-Newton observations of groups will be available.

2.3.3. The mass—temperature relation

Under the assumptions of spherical symmetry and an isothermal gas distribution, the
condition of hydrostatic equilibrium predicts a precise relationship between the virial
mass of a cluster and its temperature:

kT = 1.3887 ML [0 Avie (2)]V3(1 4 2) keV for a gas of primordial composition, with
M5 being the virial mass in units of 10"°A~1 M and Ay, being the ratio between the
virial density and the average cosmic matter density at redshift z. Under the above
assumptions, the 3 parameter gives the ratio between the specific kinetic energy of
dark matter particles and the thermal energy of the gas. Simulations including only
gravitational heating demonstrated that this relation is reproduced quite well, with
B ~1-1.2 (e.g., Evrard et al. 1996; Bryan & Norman 1998; Frenk et al. 1999; BGW).
For these reasons, the M—T relation has been considered for several years as a fairly
robust prediction of hydrostatic equilibrium: gas temperature, unlike X-ray emissivity,
is primarily determined by the action of gravity and, as such, depends on global cluster
properties, and only weakly on local structure of the ICM.

However, data based on ASCA and ROSAT observations show an M-T relation
which is about 40 per cent lower than predicted (Horner et al. 1999; Nevalainen et al.
1999; Finoguenov et al. 2001b), a result which has been confirmed by BeppoSAX (Et-
tori, De Grandi & Molendi 2002) and Chandra (Allen et al. 2001) data for relatively
hot systems (TR 4 keV).

Non—gravitational heating could be naively expected to solve this discrepancy by
increasing the ICM temperature at fixed cluster mass. However, BGW have shown
that for a broad class of pre—heating models similar to those discussed here the M—
T relation is left almost unchanged by the injection of extra—energy (cf. also Lin et
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al. 2002). In fact, as long as gas has time after being heated to settle back into hy-
drostatic equilibrium within the gravitational potential well, its temperature is mainly
determined by the amount of collapsed dark matter, which is unaffected by the heating
process.

An alternative explanation for the observed low amplitude of the M-T relation,
based on the effect of radiative cooling, has been shown by Thomas et al. (2002) to
be much more promising. In this case, gas left in the diffuse phase flows towards the
central cluster region, where it is compressed, thus increasing its temperature. As
a result, the overall mass—weighted temperature remains almost unchanged, but the
emission weighted temperature significantly increases. Our results, as shown in Figure
2.11, actually confirm this picture and generalise it to a large range of schemes for extra
heating: while the value of Msq is left unchanged by the cooling/heating processes, Tey
increases as a consequence of the temperature increase in the central cluster regions.

In order to better understand the effect of cooling on the central temperature struc-
ture of the ICM, we plot in Figure 2.12 the gas pressure, P = pgaskpT/(um,), as a
function of gas density for the simulations of the “Virgo” cluster. We introduce here
the effective polytropic index v = dlog P/dlog pgs to describe the run of pressure as
a function of gas density. In the external cluster region the gas is characterised by
~v2 1, thus consistent with the slowly outward-declining temperature profiles, almost
independent of the presence of cooling and extra heating. However, cooling leads to
a loss of pressure in central high—density regions. As cooling partially removes low—
entropy gas from the diffuse phase, gas of higher entropy flows in from more external
regions. As long as this gas has sufficiently long cooling time, its entropy is conserved
and the gas is adiabatically compressed during the inflow. In this regime, the effective
polytropic index increases towards v = 5/3, thus indicating an adiabatic behaviour of
the ICM. This result is essentially independent of whether gas is preheated. The only
effect of imposing an entropy floor at z; = 9 is that of making the cooling process more
gradual. This allows a larger amount of gas to remain in the diffuse phase, so as to
reach higher density and higher pressure in central regions (see also Fig. 2.8).

2.3.4. The temperature profiles

The way in which cooling acts in reconciling the observed and the simulated M—T rela-
tions implies that temperature profiles should steepen in central cluster regions. From
an observational viewpoint, the possibility of realizing spatially resolved spectroscopy
has recently opened the possibility to determine temperature profiles for fairly large
samples of clusters. Interestingly, observations based on the ASCA (e.g., Markevitch
et al. 1998) and BeppoSAX (De Grandi & Molendi 2002) satellites show declining
temperature profiles in the outer regions, at cluster-centric distances & 0.2-0.3 Ry, (cf.
also Irwin & Bregman 2000). This behaviour is generally reproduced by simulations
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that do not include cooling (e.g., BGW). Furthermore, both BeppoSAX (De Grandi &
Molendi 2002), Chandra (e.g., Ettori et al. 2002; Allen et al. 2001; Johnstone et al.
2002) and XMM-Newton (e.g., Tamura et al. 2001) data for fairly hot systems, Tx< 4
keV, show temperature profiles declining towards the very central regions of clusters,
thus indicating the presence of cooling cores. Indeed, all XMM-Newton profiles are
consistent (Mushotzky 2004) with an isothermal profile out to R/ Ry, ~ 0.5, with the
exception of Kaastra et al. (2001) and, more recently, of Piffaretti et al. (2004); they
report, for 13 nearby cooling—flow clusters, mild gradients in outer regions (R < 0.3 Ry;;)
and strong decreasing within ~ 0.1R,;,, quite in agreement with results by De Grandi
& Molendi. Similar results are obtained by (Vikhlinin et al. 2004) from

Chandra observations. This behaviour is grossly at variance with respect to that found
for the “Virgo” runs, as reported in Figure 2.13: the only case where a somewhat de-
clining profile is produced is the one with gravitational heating, while cooling always
gives rise to steeply increasing profiles with no evidence for any decline, independent
of the presence of extra heating.

A more comprehensive comparison with the observations would require simulations
to be realized for a set of clusters with higher temperature. On the other hand, our
simulated Virgo cluster has been chosen as a fairly relaxed system. Therefore, as long
as observations suggest profiles to be universal for such systems (Allen et al. 2001),
such a discrepancy should be taken quite seriously. A steepening of the temperature
profiles caused by cooling has been already noticed by Lewis et al. (2000), Muanwong
et al. (2002) and Valdarnini (2002). The temperature profiles in Fig. 2.13 generalise
this result also in the presence of a variety of extra—heating mechanisms.

We also note that the steep temperature profiles predicted by simulations are also
at variance with respect to those predicted by the semi-analytical model for ICM
heating/cooling by Voit et al. (2002). A detailed comparison between the predictions of
semi—analytical models and simulations is beyond the scope of this Chapter. However,
a full understanding of the physical processes taking place in the ICM will only be
obtained if the reasons for such differences can be understood and eventually sorted
out.

If the discrepancy between observed and simulated temperature profiles will be
confirmed, it may indicate that we are missing some basic physical mechanism which
affects the thermal properties of the gas in the high density cooling regions. For
instance, thermal conduction has been advocated by some authors as a mechanisms
that, in combination with central heating, may regulate gas cooling (e.g. Voigt et
al. 2002) while providing acceptable temperature profiles for a suitable choice of the
conductivity parameter (e.g., Zakamska & Narayan 2002; Ruszkowski & Begelman
2002). In this scenario, one expects the outer layers to heat gas in the innermost regions,
S0 as to increase its cooling time, allowing it to stay in the diffuse phase at a relatively
low temperature. However, the detection of sharp features in the temperature map of
several clusters, as observed by the Chandra satellite, led some authors to suggest that
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thermal conduction is suppressed in the ICM (e.g., Ettori & Fabian 2000). Magnetic
fields are naturally expected to produce such a suppression (e.g., Sarazin 1988). Still,
it is not clear whether this mechanism can act in an ubiquitous way inside clusters or
whether the turbulence associated with the presence of magnetic fields is actually able
to maintain a relatively efficient thermal conduction (e.g., Narayan & Medvedev 2001).

DISCUSSION AND CONCLUSIONS

In this Chapter, we presented results from high resolution Tree+SPH simulations of
a moderately poor “Virgo”—like cluster and of three group—sized halos, including the
effects of radiative cooling and non—gravitational gas heating. The numerical accuracy
reached in these simulations was aimed at following in detail the pattern of gas cooling
and its effect on the X-ray properties of groups and clusters of galaxies. The main
results that we obtained can be summarised as follows.

(a) Including cooling and star formation causes a fraction f, ~ 0.25 of baryons to
be converted into a collisionless “stellar” phase in the Virgo cluster and f, ~
0.35-0.40 in the simulated groups. Given the sensitivity of cooling on numerical
resolution, it is likely that the result for the “Virgo” run should still be interpreted
as a lower limit on f,.

(b) The cold fraction is reduced by including non—gravitational heating. The degree
to which overcooling is suppressed depends not only on the amount of feedback
energy, but also on the redshift and on the gas overdensity at which it is released
into the diffuse medium. For instance, heating at z, = 9 is very efficient in
decreasing f, below the 10 per cent level, at the expense of delaying the bulk of
star formation to z< 1. A more realistic star formation history, peaking at z ~ 3,
consistently requires that most of the non—gravitational heating takes place at a
similar redshift, with at least 20 per cent of the baryons still being converted into
stars.

(c) Heating at z, = 3 with Ej ~ 0.75 keV /part is shown to produce scalings of X—
ray luminosity, mass and entropy vs. temperature which agree in general with
observational data. This result holds independent of whether an equal amount
of energy is assigned to all gas particles or whether an entropy floor is created.
A similar agreement is also found for the SAM-predicted SN feedback, once
realistic models for the IMF are used. Both, heating at z;, = 9, or using an IMF
which produces a large number of SN, are not efficient in suppressing the X-ray
luminosity, which is a consequence of the fairly large amount of gas that, while
avoiding cooling, is concentrated in central cluster regions.
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(d) Including cooling and star formation increases the ICM temperature in the central
regions. While this helps in reconciling simulations with the observed M-T
relation, it steepens the temperature profiles, which show no evidence for any
decline at small cluster-centric distances. This result, which holds independent of
the scheme for non—gravitational heating, is discrepant with recent observations.

Over the last couple of years, different groups have presented simulations aimed at
studying the effect of radiative cooling and feedback on the X-ray properties of the
ICM (e.g. Brighenti & Mathews 2001, Muanwong et al. 2002, Davé et al. 2002, Kay
et al. 2002, Kay et al. 2003, Borgani et al. 2002, Borgani et al. 2004, Tornatore
et al. 2003). Most of these studies are based on simulations which follow the gas
hydrodynamics within the full volume of a cosmological box (e.g., Muanwong et al.
2002; Davé et al. 2002; Kay et al. 2002; Borgani et al. 2002, 2004). One common
result of these simulations, which agrees with what we find in our analysis, is that the
effect of cooling is able to alleviate or even solve the discrepancy between simulated and
observed X-ray scaling properties of clusters and groups, but the fraction of baryons
converted into stars is too large. To remedy this problem, Muanwong et al. (2002)
pre—heated the gas by adding 1.5 keV thermal energy to all the gas particles at z;, = 4.
As a result, they found that the cold fraction in groups and clusters is decreased from
15 per cent to 0.4 per cent, which is somewhat smaller than the values found in our
simulations. Kay et al. (2002) implemented a feedback mechanism in their simulations,
which accounts for the rate of both type Ia and type II SN. By assuming an energetics
twice as large as that provided by standard supernova computations, they were able
to reproduce the observed X-ray scaling properties, while obtaining only 3 per cent
of the gas to be converted into stars. The main limitation of this type of simulations
is that one is restricted to relatively poor numerical resolution in order to limit the
computational cost. For instance, the simulations by Muanwong et al. (2002) have a
mass resolution which is about one order of magnitude worse than that of our “Virgo”
runs and almost two orders of magnitude worse than that of our group runs. A better
mass resolution within a smaller box was used by Kay et al. (2002), for which the
mass of gas particles are a factor 2.8 and 22 smaller than for our Virgo and Group
runs, respectively.

The results that we presented in Section 3 demonstrate that the cooling efficiency
is quite sensitive to mass resolution. For this reason, one has to be careful in drawing
conclusions about overcooling and how it is suppressed by extra heating, in the presence
of limited numerical resolution. In fact, our simulations demonstrate that the two main
problems caused by the introduction of radiative cooling, namely the overproduction
of stars and the steeply increasing temperature profiles in central cluster regions, may
not be easily solved by the introduction of non—gravitational heating.

Does this imply that none of our heating schemes is a realistic approximation to
what happens in real clusters? The energy release in all these schemes misses, although
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to different degrees, to faithfully follow the simulated rate of star production. A real-
istic scheme for SN feedback should dump thermal energy with a rate that accurately
follows the star formation rate, properly accounting for the typical life-times of dif-
ferent stellar populations. Furthermore, our schemes for energy release demonstrate
that for feedback to have a sizeable effect on the ICM thermodynamics, it has to act
in a non—local way, so as to assign most of the energy on gas particles which have a
sufficiently long cooling time. Such non-local feedback mechanisms may arise from
AGN activity, cosmic rays or galactic winds, for example.

However, as a word of caution, we must remind that while in the last years the
break in Lx—T relation seemed established, very recent observations question such
result. many conjectures of systematic biases have been discussed very recently and
improved observations have been presented (Mulchaey & Zabludoff 1998, Osmond &
Ponman 2004). What results is that early detections of a steepening of Lx —T relation
at the groups scale was possibly due to the large scatter observed in this mass range
(Mushotzky 2004) and to selection effect of previous samples (Ponman et al. 2003);
also, the ‘entropy floor’ detected by the pioneering works of Ponman et al. (1999)
and Lloyd-Davies et al. (2000) has become an ‘entropy ramp’, possibly with entropy
scaling S oc T%/3.

As for the M-T relation, Borgani et al. (2004) found that if masses of simulated
clusters are estimated with the same procedure used with observations (i.e. under
the assumptions of a fmodel in hydrostatic equilibrium with a polytropic equation of
state), they are found to be biased low by just the amount required to recover the
agreement with the observed M-T relation. Quite interestingly, a good agreement is
in fact found by comparing simulation results to the Ms500-T5500 relation based on the
Chandra data by Allen et al. (2001), which does not rely on the assumption of a
specific gas density profile. This suggests that the problem of the M-T normalization
may be solved by a better data treatment.

While further work is clearly needed to study such feedback mechanisms self-
consistently in simulations, a better understanding is also required as to whether
optical/ X-ray data really implies a stellar fraction as small as < 10 per cent within
clusters and groups. Balogh et al. (2001) used the 2MASS results on the K-band
luminosity function by Cole et al. (2001) to estimate the cosmic fraction of baryons
converted into stars. After assuming a Kennicutt IMF (Kennicutt 1983), they find
f« =~ 0.05 for our choice of 2, and h, and argued that no much evidence exists for
f« to increase inside clusters, or to depend on the cluster mass (cf. also Bryan 2000).
However, this estimate of the cosmic value of f, increases by about a factor 2 if a
Salpeter IMF (Salpeter 1955) were used instead. Furthermore, it is worth reminding
that the estimate inside clusters relies to some degree of extrapolation. For instance,
Balogh et a. (2001) obtained the stellar mass in clusters from the B-band luminos-
ity data by Roussel et al. (2000), using M/Lp = 4.5, and correcting for undetected
galaxies by extrapolating the luminosity function to the faint end slope. It is clear
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that a more robust determination of f, in clusters should rather rely on K- or H-band
luminosity, which is more directly related to stellar mass (e.g., Gavazzi et al. 1996),
rather than to B—band luminosity whose conversion to stellar mass is quite sensitive to
galaxy morphology. More recently, Huang et al. (2002) used the Hawaii-AAO K-band
redshift survey to estimate the K-band luminosity function in the local Universe. They
found that the K—band luminosity density is twice as large as that from 2MASS, thus
implying a twice as large f, value. In light of this discussion, a f, value somewhat
larger than 10 per cent, possibly as large as 20 per cent, may still be viable at present,
which would tend to alleviate the problem of ICM overcooling.

As for the temperature profile, our results indicate that the discrepancy between
observations and simulations is unlikely to be solved by the inclusion of feedback mech-
anisms that are similar to the ones explored here. If this is the case, it would demon-
strate that our simulations are missing some basic physical mechanisms. For instance,
as we discussed, thermal conduction has been proposed to be an important effect in
clusters. Another piece of physics which is currently missing from most simulation
work is the effect of magnetic fields (e.g., Dolag, Bartelmann & Lesch 2002). Their
introduction might give rise to non—trivial structures in the gas distribution if they can
locally suppress thermal conduction, or it they provide a non-thermal contribution to
the gas pressure.

There is little doubt that including such more complex physics will represent a
significant, non-trivial challenge for cluster simulations of the next generation. Most
of the processes involved require both, a rather sophisticated numerical method, and a
treatment of sub-grid physics. Still, the inclusion of more physics in numerical codes
is mandatory if the reliability and the predictive power of cluster simulations want to
keep pace with the increasing quality of observational data.
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Figure 2.5: The fraction of cold gas within the virial region of the simulated structures at z = 0. Left
and right panels show the effect of impulsive heating and of SAM-predicted SN feedback, respectively.
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Figure 2.6: The entropy profiles of the “Virgo” cluster simulations. The upper panels show the
effect of impulsive heating at z = 9 (on the left) and z = 3 (on the right), while the lower panels show
the effect of SN feedback from the SAM-predicted SFR history, after changing 1o (on the left) and
the density threshold for gas heating (on the right). For reference, the entropy profiles for the run
with gravitational heating and for the run including only cooling and star formation are shown in all

the panels with the dotted and the solid lines, respectively.
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density within the virial radius), computed within spherical shells. The two thin solid lines correspond
to effective polytropic indices v = dlog P/dlog pgas = 1 (isothermal model) and v = 5/3 (adiabatic
model).
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The sequence of panels is the same as in Figure 2.6.

90

r L I\ IIIIII T T IIIIII__ T T IIIIII T T IIIIII_
- — X . + -
o Virgo 1 7
- o T =
C —— Cool.+SF T b
— ---S25-9 -+ ---K75-3 —
- ——S50—|9 + ——S50—|3 .
i
NN T §
- - --SN50-1 ~ E
— — - SN50-2 — ---SN500-2 —
- SN5OI—3 + ——SN50|—2 .
.01 0.1 0.01 0.1
R/Rvir R/Rvir



CHAPTER 3

NUMERICAL APPROACHES TO
COSMOLOGY

B Chapter Outline

This Chapter sketches the basics of numerical
tfechniques involved in cosmological hydrody-
namical simulations. The focus is on describing
the SPH algorithms and the features of the GAD-
GET code.

Computational Hydrodynamics ... §3.1-83.2
Smoothed Particle Hydrodynamics ... §3.3.1
The GADGET code ... §3.4

3.1 BAsic HYDRODYNAMICS

The ICM has an atomic density of about n ~ 1072 cm™3, so that we can model him in
the dilute gas approximation. This means that the occupation number in the phase—
space is small so that the exclusion principle is unimportant. Hence the gas is thought
as an ensemble of classical point—like ballistical particles which collide with each other.
If we consider the phase-space density f(r, v), which live in the 6-th dimensional volume
with d®w = d®zd3v, balancing the flux of particles across the boundaries of a given
volume gives

d
= Vdﬁwf = —/SdSn-(fw)
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the Boltzmann equation for the phase-space density f(r,v) in non-relativistic case is
easily derived and reads

df 0

& < 5 X V) f (3.1)
In other words, along the paths of particles the space—density and the momentum-—

density must vary so that their product remains constant. This does not hold if we

take into account the effect of collisions which will scatter particles in and out of a

phase—space region:

df (0 . . _[(0f
de _(at+x VX_}_V.VV) f_(at)coll‘ (32>
Defining the velocity average of some function F as
[dPv fF 1 / 3
—J "I [y
) Tdvf n)*" 17

the conservation of F during collisions gives
af
& —= =0
/ ,Uf(V) ( ot )coll

8n<f>+8n<fv>+ 00 /dF\ _ 0
ot ox " ox dv /

where ® is the gravitational potential. Using the previous equation we can derive the
conservation of mass, momentum and energy. In the following we report their final
form, addressing the reader to reference text on hydrodynamics or statistical physics
for a more proper derivation (see e.g. Landau&Lifshitz (1959, 1969)).

and results in

(3.3)

Conservation of Mass

Setting F = m in Eq. (3.3) we obtain

dp

et . — A4
BT + V- (pu) 0 (3.4)
where p = nm and
[ & fv
u = ¥———
[ d3uf
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is the bulk velocity. Equation Eq. (3.4) is known as the continuity equation and tells
us that the mass variation within a volume must be equal to the mass flux across the
surface defining the same volume.
If the observer is moving along with the stream, it will observe
Dp
— = —pV-u 3.5
Di p (3.5)

being D/Dt = 0/0t +u -V the Lagrangian derivative.

Conservation of Momentum

If F =mv Eq. (3.3) yields to

d pu; N 0 p (v;vg) N 0 _

0.
ot oz, om,

Writing the velocity v as v = u + w where w is the velocity of ‘random’ motions
with respect to the mean velocity u and having p (v;ux) = Pdj — my with the gas
pressure

_ 2
P=p(w*) /3 (3.6)

and the viscous stress tensor
equation Eq. (3.3) now reads

0 pu; 0 B 0P
o T om (puiug + Py, — mix) = i

and using Eq. (3.4) we obtain the force equation
Du
P Dt

being (V- 7); = Omy/0xy.

= —pVO-VP+V.-7 (3.8)

Conservation of Energy

Equation Eq. (3.3) becomes the law of energy conservation if F = 1/2mov? = 1/2mu®+
1/2mw? + mw - u. To derive it, let us define the specific internal energy as

pe = p{w*/2) = 3P/2 (3.9)
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and the heat conduction flux F as
1 2
F, = §p<wkw ) (3.10)

so that we obtain the total energy conservation law

o (1 , o [1 9 0P
— | = — (= i (P, — m; F. | = —pup— (3.11
O (L) + 2 (S P ) = el 51
which can be rewritten as the following internal energy equation
dpe O peuy, oup, 0Fy
Zr —_—pt kg 3.12
81& 8xk a’L’k axk + ( )
where the rate of viscous dissipation ¥ is defined as
U = mpe—t = —m ) 3.13
Wkaxk o ik <8xk + axi) ( )
Using the continuity equation we have at the end
D
pﬁ;:PV-u—V-F—F\I’. (3.14)

Navier—Stokes Equations

Collecting together Eq. (3.4), Eq. (3.8) and Eq. (3.14), which represent the moments
of the Boltzmann’ transport equation, we can have all the Navier—Stokes equations:

0

<§+u-V)p = —pV-u
0

p(a—i-u-V)u = —pVO-VP+V. .7
0

p(ajtu-V)e = —PV-u—-V-F+VU
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being

p = m [ dofixv.t)

u = (v

¢ = 2Plp = 5 {w?)
m = p{|wl*6/3 — wawy)

F, = % p <wkw2>
0 U;
v = Tk axk .

Note that previous equations have been written in their non conservation form,
i.e. from the point of view of a particle moving in the fluid, which is the Lagrangian
approach that we use in simulations. It is also worthwhile to note that V® should be
substituted by a more general term f, which stands for a general external force per unit
mass exerted on a gas volume, when accounting for some other fields than gravitation,
e.g. magnetic fields (Dolag et al. 2002).

So far we have written three equations: the continuity equation, the Euler (or
momentum) equation and the energy equation. To close the system we also need
a fourth relation, namely the equation of state which relates the thermodynamical
variables with each other. This is:

P=(y—1)pu (3.15)

where v = 5/3 is the adiabatic exponent for a monoatomic ideal gas and e is the energy
per unit mass. Note that in this notation the sound speed of a pressure wave is

& =~P/p. (3.16)

The form we use in numerical simulation we run is quite different from Eqs. (3.4),
(3.8) and (3.14) because, as it is usual in cosmological simulations, we ignore the viscous
stress tensor and thermal flux terms, then considering the ICM as a perfect gas. Then
the governing equations are:

0

(a +u- V) p = —pV-u (3.17)
0 VP

(a +u- V) u = —Vo-— e (3.18)

<g+u-V)e = —Ev-u_ L(e, p) (3.19)
ot p p
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neglecting other terms than gravity as for the external forces and accounting for non—
hydrodynamical heating and cooling with the £ function.

3.2 DIFFERENT APPROACHES TO COMPUTATIONAL
FLuiD DYNAMICS

Considering Eq. (3.5) one can infer the existence of two different approaches to describe
the motion of fluids, namely the Fulerian and the Lagrangian “philosophy”.

As for the former, the fluid is studied considering the properties of a fixed volume
in space and studying their variations with space and time. This is what the left—hand
term in Eq. (3.5) refers to. In the second approach, the fundamental object of our
analysis is a volume of fluid whose properties are studied along its trajectory: then, the
derivative in the left-hand side (L.h.s ) of mentioned Eq. (3.5) will be for the density

dplry,zt) _0p  Dpdr  Opdy  Dpds
dt SOt Ordt Oy dt Oz dt

leading to the right-hand side (r.h.s ) of equation Eq. (3.5). Less formally, we can say
that the first term (0/0t) of the Lagrangian derivative carries informations about the
“local” or “intrinsic” variation whereas the second one (v-V, the convective derivative)
describe the variation due to the surrounding environment.

Both Eulerian and Lagrangian methods present advantages and disadvantages. A
comprehensive review is beyond the scope of this work, so we will summarize them
reminding that FEulerian approaches are best suited as shock—capturing methods and
resolve better underdense regions and arbitrarily large gradients, while Lagrangian
codes are not locked to a pre—defined geometry and can adapt the resolution to the
local needs allowing for wide spatial and dynamical ranges. Modern Eulerian codes
(e.g. Bryan 1996, Quilis 2004) make use of more refined algorithm to adapt the under-
lying basic grid to the typical scale of the problem, for instance in resolving shocks,
both having more grid—levels or a dynamic mesh refinement algorithm. Depending
on the problem one is dealing with, one choice or another is preferable: for a while
Lagrangian methods have been the ones used for the bulk of works in computational
cosmology since they are free of fixed geometries and the ability in managing the huge
dynamical ranges that a typical problem in this field present, e.g. with three or more
order of magnitude as for the density contrast. Recently, also AMR codes have proven
to be robust and practical in many similar problems, offering also a good capability
to capture and resolve hydrodynamical shocks. As a final, quite obvious, note, it is
worth to mention that Eulerian codes are better suited to easily calculate fluxes and
quantity exchanges, e.g. mass fluxes (and then diffusion equation), radiative transport
etc, while a particle description is useful when dealing with well-separated phases, e.g.
in studying the star formation.
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Moreover, equations derived considering infinitesimal moving fluid elements have
the so—called non-conservation form, whereas one would obtain the conservation one
starting from a space—fixed volume. The two forms differ essentially in using flux
variables (pu, (p + pu?)) as independent variables (the latter) or the primitive (p, u, p)
ones (the former). Because it is every time possible to derive one from the other, from
a theoretical point of view it is unimportant which one we choose to deal with. On
the contrary it arise to be quite different in the computational hydrodynamics. Let we
explain this with an example. The continuity equation in conservation form reads as

dp
. =0 3.20
L9 (o) (3.20)
while in non—conservation form it appears slightly different
dp
— -v=0. 3.21
g TV (3.21)

Now, when a shock occurs there are some constraints on the values of thermody-
namical quantities at the left and at the right of the shock edge, namely the Rankine—
Hugoniot conditions (e.g. Landau & Lifshitz 1959). The one for the specific energy
reads as

p1uUl = P22
(subscripts 1 and 2 refer to left and right sides respectively). Clearly the product pu
will not suffer of any discontinuity while the separate thermodynamical variables will
do. All the same, the Eq. (3.20) will not suffer for severe discontinuities in its primary
independent variable while the other one will do. Although this example is somewhat
simplistic it can clarify why using the conservation form would make easier to make a
high—quality shock—capturing scheme. 1.

3.3 A LAGRANGIAN VIEW: THE SMOOTHED PARTI-
CLE HYDRODYNAMICS

“Many of the most interesting problems in astrophysics involve systems
with large departures from spherical symmetry. [..] the standard finite
difference representations of the continuum equations are of limited use,
because of the very large number of grid points required [..]. A better
method is to make use of the Lagrangian description of the fluid flow
which automatically focuses attention on fluid elements.”

IThe shock-capturing schemes are those which are designed to have shock waves appearing naturally
as a result of the overall hydrodynamics. The case for an explicit, exact insertion of Rankine-Hugoniot
relations is that of Shock—fitting methods. Clearly, the formers are best suited for complex problems
involving shocks without any knowledge in advance of their position or number
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Gingold and Monaghan (1977)

“We wanted a method that was easy to work with and could give a reason-
able accuracy. The SPH method satisfied these requirements. As a bonus
we found the SPH was rugged, gave sensible answers in difficult situations,
and could be extended to complicated physics without much trouble.”

J. J. Monaghan (1992)

3.3.1. SPH Code Basics

Real fluids consist of an infinite number of infinitesimally—extended elements which
move obeying the Newtonian equations under the influence of pressure gradients and
other, if any, external forces like gravity, magnetic fields, inertial forces from rotating
systems etc. For obvious reasons it is definitely impractical to model such real fluids
in the computational realm, so that the standard approach is to select a set of N
finite elements, representing them by particles, and assume that their mass density is
proportional to the mass density of the fluid so that the latter can be inferred given the
former if the system is evolving following the laws of thermodynamics. In recovering
the density p of the fluid from the distribution of particles we are basically recovering
a probability distribution from a sample. To do this we have to smear out the local
statistical fluctuations due to the finite number of used elements. In the SPH technique,
this task is accomplished using the smoothing kernel method as first presented by Lucy
(1977) and Gingold and Monaghan (1977).

It is worth to mention that while in the earliest formulations of SPH the particles
were thought to have equal masses, later derivations (e.gMonaghan & Lattanzio 1985,
Hernquist & Katz 1989) of equations as well as numerical experiments (Monaghan &
Pongracic 1984) definitely showed that this is not mandatory.

Following the original discussion of Gingold and Monaghan (1977), the heart of the
SPH technique is the evaluation of a smoothed scalar or vector field f

(F(r) = / FOYW (0,1, B)dr (3.22)

by a Monte Carlo method from a set of N points at coordinates ry, ..., ry:
N f
(F)y =D St W (r =1, h) (3.23)
j=1""

where W (r,r’, h) is an interpolant kernel that is assumed to have the form W (r —r’, h)
which is sufficient general and simplify the analysis, n; is the local number density of
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points at the point r; and & is a sort of resolution in the sense that every property with
length scale | < h is strongly smoothed: for kernel with compact support, h is about
the size of the support itself.

The kernel W must satisfy the condition

/W(r, h)dr = 1. (3.24)

over the all space. Furthermore, we must ensure that

(f(x)) — f(r) (3.25)
(fe)y — () (3.26)

the former being true in the limit
lim W(r —r',h) =d(r — 1) (3.27)

h—0

which ensures the locality of estimates, and the latter being true as the parameter
h is linked to the number N of sampling particles such as h — 0 as N — oo. The
best choice of h depends on the problem being analyzed and is yet a debated issue
(e.g. Lombardi et al. 1999): as a general assert, a relation like A oc n~'/3 should be met
for constant smoothing length, and dh;/h; —%5 pi/ pi is expected for spatially varying
resolution. Quoting the original discussion of Gingold and Monaghan, we state that
the condition

(f(r))y — f(r) (3.28)
is met if the kernel W has the form

1
W(r,h) = ﬁK(r/h). (3.29)
If h—0as N — oo and if K(u) is a Borel function satisfying
/K(u)du =1, |u’K(u)| — 0as [u’| — oo, /|Ku|du < 00 (3.30)

then our request Eq. (3.28) is satisfied. Although the original paper of SPH used a
Gaussian kernel, to day it is more common to use spline—kernels Sec. (3.3.4).

It is worth to mention that the error in using Eq. (3.23) instead of Eq. (3.22) depends
on the disorder of the particles and is normally O(h?) or better (and references there-
inMonaghan & Lattanzio 1985, Monaghan 1992).

In the following we drop the subscript IV since it will be clear whether we refer to the
summation interpolant or the actual function.
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By using a differentiable kernel our estimates are also differentiable and the deriva-
tives of the interpolant are constructed just using derivatives of the kernel, so that

(Vf(x)) = /W( RV ) (3.31)

become, after integrating by part,

(Vf(r)) = /f(r’)VW(r — ', h)dr’ (3.32)

as long as we can ignore surface terms, which we are allowed to if f/W — 0 on the
boundary. This hypothesis is satisfied because generally the kernel vanishes rapidly for
Ir — r'| — o0, and is always true for kernel with compact support.

In the discrete approximation the previous equation become

~

S

(Vf(r)) = Z ;VW(r —1;,h). (3.33)

In other words, W must be differentiable up to the same order as that of terms
present in the equations to be integrated: for instance, VW must exist for non—
pressureless medium and V2W must exist if we introduce the diffusion equation (e.g.
to calculate heat conduction or describe diffusive phenomena).

3.3.2. Fundamental Equations of Hydrodynamics in SPH
The mass density p(r) can be estimated using Eq. (3.23) with n; = p;/m; so that

(plx)) = > my W (x =3, h) (3.34)

and therefore the density of the particle 7 is estimated as

N
pi =Y m;W(ri;, h) (3.35)
j=1

where from now on r;; = r; —r;.

Following Hernquist and Katz (1989), we note that the previous definition is suscep-
tible of two different interpretation: by the former, the so—called scatter interpretation,
at each point x the density is contributed by each neighboring particle with its own
profile, where “neighbor” means a particle j whose distance satisfy |r; —r,| < h if the
kernel has a compact support. This relation reads |r; — r,| < h; if the parameter h
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differs from particle to particle (so far we wrote equations as if it were constant for all
particles).

The second interpretation, known as gather one, assign at the point x a density that
is the sum of all neighboring particles each weighted according to W (r; —r,, k). In the
case of variable h we have to assign h, to the point. As is evident, this distinction is
relevant only if h varies from point to point. We shall return on this later on.

A direct translation of the continuity equation Eq. (3.4) in the SPH language using
Eq. (3.34) and Eq. (3.33) would read as

N
m.
= —p(r) Y v, VW (3.36)

Pj

dp(r)
di

J=1

where V; stands for the gradient taken with respect to the coordinates of particle ¢
and W;; = W (r; —r;, h). Nevertheless, using the estimate for p given by Eq. (3.34) we
would introduce an error greater than the second order truncation (Monaghan 1982):
for that reason it is better to rewrite equations with density inside operators. In this
case we have

pV-v=V-(pv)—v-Vp (3.37)

and the equation of continuity become

N
dp;

In a similar way we can derive the standard form of the momentum equation using
the identity

—=V—+—=Vp 3.39
p p P (3.59)
so that N

If we interpret the kernel as being Gaussian, we can write down the force on particle
a due to particle b as (Monaghan 1992)

2Mma My (Pa N by

2\ p2?

p2 p%) (I‘a — rb)Wab (341)

so that pressure force between particle pairs is symmetric central, then conserving both
linear and angular momenta. It is worth to note that this symmetric form would arise
quite naturally if equations were derived form the Lagrangian. Such a result would not
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be assured with a non-symmetric formulation and does not hold for a non-symmetric
kernel.
The energy equation becomes

du; [(P?\ &
(2 j=1
but reminding that
P P P
——V.-v=-V- (—V) +v-V <—) (3.43)
P P P
we can also write it as
du; P,
dt j=1 Pj

and taking the average of them we end up with

N
P = 3 ij <,0_; + ?) vij - VilWi; (3-45)
J=1 J

)

which shows the same symmetrization as Eq. (3.40).

The equations that GADGET actually integrates are quite different from those shown
above in many aspects: (1) it fully account for the Lagrangian nature of the SPH
letting the spatial resolution being spatial-dependent; (2) consequently from point 1,
it implement a symmetrized formulation with respect to h; (3) so far we have ignored
the artificial viscosity term, necessary to avoid particle interpenetration at shock fronts;
(4) following suggestions from Hernquist (1993) GADGET choose to integrate entropy
instead of energy. We discuss all these points in the following sections.

3.3.3. Non—Constant Spatial Resolution

As already outlined, the h parameter plays the role of “resolution” in estimating hy-
drodynamical and thermodynamical quantities and their variations, in the sense that
all characteristic scales | < h will be smoothed out. There is no theoretical reason
to assume, as done in the early implementations of SPH scheme, a resolution that is
time—dependent but constant in space, because, as long as the kernel is symmetric in
h, the momentum can be conserved. Rather, allowing each particle to have its own
resolution, depending on the local conditions, will fully retain the Lagrangian nature
of SPH. In fact, the statistical fluctuations from kernel estimates arise from the “noise”
associated to the variable number N of particles inside the smoothing volume: with a
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constant h estimates in underdense regions would be less accurate than in overdense
ones because the relative sampling error of the discrete approximation grow as N de-
creases, approaching unity for N = 1. Indeed, it would be far more preferable to
maintain the same computational accuracy all over the space. Furthermore we would
not get full profit from the distribution of particles to resolve local structures and we
would smooth over even more particles or even unresolve shocks that otherwise we had
better described.

In other words, letting h varying over the space arise quite naturally from the
Lagrangian approach.

To accomplish this task we have to rewrite all the above SPH equations in order to
symmetrize them with respect to h.

Clearly now, as already anticipated, scatter and gather interpretations differ: Eq.
(3.22) become

() = / W(e — ', h(r')) f() dr’ (3.46)
(@) = / W(r — ', h(r) f(r') dr’ (3.47)

respectively so that Eq. (3.23) is computed for the density as

(p(ri)) = ijw(ﬁjahj) (3.48)
(p(r;)) = ijW(Tz'j,hi). (3.49)

Since errors are of the order ~ O(h?) in both cases (Hernquist & Katz 1989), there

are no apparent reasons to prefer one or another form: nevertheless a key point to
consider is that, in both cases, when the particles of a pair exchange the role they will
play differently in the same definition then introducing a violation of Newton’s third
law. To avoid this drawback the equations of motion must be symmetrized in h; and
hj.
Although for an isoentropic nondissipative gas, dynamical equations can be derived
in either gather or scatter formulation in a momentum-—conservative form (Gingold &
Monaghan 1982), this cannot be easily generalized so that two possible solutions are:
(1) to substitute (h; + h;)/2 for h; and h;, bearing in mind that Hernquist and Katz
(1989) found errors on system integration; (2) symmetrize the kernel itself as

(W (rij, hi) + [W(rij, hy)] (3.50)

N —

Wij=
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where errors are again ~ O(h?) because this expression is a linear combination of gather
and scatter approaches.

As we allow h to depend on the space position and time, it might be that severe
errors arise in entropy and energy conservation in the case equations had not been
derived consistently. This is due essentially to the fact that the change in particles’
smoothing length acts as a non—adiabatic source of energy (Hernquist 1993). As a
consequence, when using the expression Eq. (3.34), if we integrate the energy or the
entropy equation, the total entropy or energy of the system will not be conserved,
respectively. To overcome this problem, density could be calculated following Eq.
(3.45) so that entropy (for an ideal isoentropic gas) will be conserved as long as we
integrate energy with one of the above formulae. In this case the drawback would be
the non—conservation of the mass (Monaghan 1992), provided that errors would scale
as ~ O(h?) (Hernquist 1993). Furthermore it this lack in conservation violation is
independent of the limit N — o0, since the amount of conservation errors does not
decrease when the system is approximated by a larger number of particles (e.g. Serna
et al. 1996). Rather, it depends on the incorrect derivation of the basic equations that
need to be derived from the true Hamiltonian with h included as a canonical variable
(Springel & Hernquist 2002, Monaghan 2002).

As a final remark, it is worth mentioning an interesting result on cosmological
simulations from Alimi et al. (2003): neglecting the so—called VA terms turns in to
an overestimate of density peaks associated with shocks, which, in turn, leads to an
overestimated efficiency of star formation process.

Deep inspections have been performed by Nelson and Papaloizu (1993, 1994), Serna
et al. (1996), Alimi et al. (2003). Because a detailed discussion of this issue is outside
the scope of this work, we address the reader to the above papers for further details.

3.3.4. The Kernel Choice

Under the general requests Eq. (3.30), many kernels can be found to work in SPH.
Although a Gaussian kernel 1/(h%m)3/ 2¢775/" would provide the easiest interpretation
of the physical meaning of equations, it has the disadvantage of a slow fall off with
the r;;/h ratio, so that virtually all particles will contribute to the properties of each
one. This is a disadvantage for two reasons. Firstly, it involves an higher computational
effort, especially in parallel environments where it translates mainly in a large amount of
communications among processors. Secondly, the local nature of the physical properties
will be also smoothed while it would be better to retain it at best as long as possible.
To avoid these drawbacks, other kernels have been proposed, mainly based on spline
functions with compact support as they ensure continuity of derivatives and good
interpolation properties.
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Some discussion on the kernel choice can be found in the literature (e.gMonaghan
& Lattanzio 1985): a widely used kernel is the B-spline based kernel

%—7u2+4u3; 0<u<l
2—u)?(35"); 1<u<?2 (3.51)
0; u > 2

3.3.5. Artificial Viscosity

Due to the intrinsic limitation in spatial resolution, every numerical methods will lead
to some piling of high frequency waves up to the extreme numerical mode: this could
result in more or less severe numerical instability when high wave numbers are in-
trinsically present as is in case of discontinuities, for instance when a shock occurs.
Furthermore, as for the “classic” SPH derivation, a method is needed to prevent parti-
cles’ interpenetration, which would make the fluid properties multivalued. Besides this
genuinely “numerical” issue, one also has to mimic the true physical viscosity that is
neglected in the ideal gas approach.

To this purpose, a Von Neumman—Richtmeyer approach of adding an Artificial
Viscosity (AV) is commonly followed. Many forms of AV have been proposed so far but
the symmetrized form of the classic AV suggested by Monaghan (1992) has probably
been the most widely used:

—QulijCij + bpuyj

I, —
! piJ

(3.52)

where  and 3 are constants, c;; = (¢; + ¢;)/2 (¢ = (yp/p)*/? is the sound speed), and

g = | Bt Vit <0 (3.59)
0 if Vz’j . rij >=0

having, as usual, v;; = v; — v, and r;; = r; — r;. This is a combination of a bulk
viscosity and a Von Neumann-Richtmeyer viscosity, respectively linear and quadratic
in p;;. This form is very effective in preventing particles’ interpenetration in strong
compression regions due to its dependence on pairwise products v;; - r;;. For the same
reason, when this terms are non—null but the particles are not getting a head—head
collision (as in shear flows), the resulting viscosity does not vanish, becoming a shear
viscosity which is a side—effect.
Balsara (1995) suggested a shear—correcting factor that Steinmetz (1996) and Navarro

and Steinmetz (1997) have implemented in the form

Hz’j —>1:Iz‘j: Hz’j }ij (3-54>
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where

:fi+fj

5 (3.55)

fij
and
f- | <V .-v>,|
Vv |+ <V XV > | +ac/hy

having added a < 1 to prevent numerical divergence. In the SPH formalism the
divergence and the curl of the velocity are calculated as

(3.56)

N

V VvV, = l ijvij . VZVVZ] (357)
Pi =
1 N

V x v, = p_ ijvij X VZVVZ] (358)
[t

where W;; is the evaluation of the kernel in the chosen symmetrization. This factor
acts like a switch vanishing when the vorticity become strong and approaching unity
for strong compressional flows.

3.3.6. Energy vs. Entropy

In order to describe the changes in the specific energy of gas, equation the Eq. (3.14)
provide a quite natural option and is, in fact, commonly used. Nevertheless, we can
rewrite it in terms of specific entropy s, as originally proposed by Lucy (1977). Defining
the specific entropy as

__n(P/p)

3.59
— (359)
we can also define the specific entropy function a(s) so that
P =a(s)p”. (3.60)
We can now write the energy equation using the function a(s) as
da(s) v—1
7 + (V : V)a(s) = — pV L. (361)

In absence of sources or wells, entropy can change only due to shocks: to allow this
possibility, the standard SPH formulation of the previous equation account for the AV
and is given by (Springel & Hernquist 2002)
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da;(s) v—1 al y
dt PR &)+ o > Ty - Vi Wi (3.62)

2 7j=1

where the derivative in the left—hand side is the Lagrangian derivative. Note that this
equation supply a far better control on sources of entropy. In particular, it ensures that
entropy will only grow with time (considering adiabatic evolution, so neglecting the
term £ ) and that its change is only due to shocks, external heating or energy losses
due to some specific physical process, like radiative cooling, brought by term L.

Springel and Hernquist (2002) have shown that this approach makes the difference
with respect to other “classical” formulations of SPH, providing a very accurate con-
servation of both energy and entropy when coupled with their elegant fully—consistent
derivation of SPH with fully—adaptive local resolution. This is all the more important
under conditions particularly severe but of strong astrophysical interest, as point—like
explosions, or cooling in poorly resolved halos. In both cases the SPH formulation
entropy conservative of Springel and Hernquist has proven to give very good results.
In the explosion test it succeed in conserving the energy and accurately describing the
wave propagation. Also, it show a fairly good ability in handle adiabatic compression
and cooling when halos are poorly resolved, so significantly reducing the amount of
condensed matter within cosmological simulations (see also Sec. (3.4.5)).

GADGET

GADGET is a State—of-the-Art code to simulate self-gravitating fluids allowed to inter-
act with collision—less matter in cosmological context. Besides gravitational and hydro-
dynamical treatment of the gas in an expanding background, the code also implements
several physical processes: radiative cooling, ionizing effect of the UV background, star
formation process for multi—phase gas, Magnetic Fields etc. We have substantially im-
proved the code adding a full treatment of stellar evolution and a detailed accounting
for the supernova energy in the thermodynamics of the gas. An exhaustive description
of such improvements is given in Chap. (4).

A comprehensive review of its features is given in a number of articles by its Author,
Volker Springel (Springel et al. 2001, Springel & Hernquist 2002, Springel & Hernquist
2003a, Jubelgas et al. 2004, Springel 2004), so we refer to them for all the details
about the code. Springel et al. (2001) give a complete reference for the earlier version
of GADGET . The current version (Springel 2004) contains substantial improvements.
In the following we summarize the main features of GADGET which are of interest for
this work.
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3.4.1. Gravity

Baryons and dark-matter particles are both subject to the self-gravitational field: in
this respect they can be modeled as a collisionless fluid obeying the Boltzmann equation
(Eq. (3.1)) for the mass phase—space density distribution function f(x,v,t)

df _8f af oo

having defined the gravitational potential ® through the equation

V20(r,t) :47rG/f(x,v,t)dv. (3.64)

The analytical solution of this problem for more than two bodies is notoriously

impossible, so we have to resort to numerical methods. The most obvious one is
the particle-particle (PP) method. As it exploits exact pairwise calculations, it
gives the best accuracy in force estimates, yet its computational cost is intrinsically
of the order ~ O(N?) for N particles, so it becomes highly impractical as N become
larger and larger. Two far more effective algorithms are the so—called particle-mesh
(PM) and particle-particle particle-mesh (P3M). Both rely on the fact that we can
resume the continuous density distribution field starting from its discrete representation
smearing the latter on a mesh. Then the Poisson’” equation, Eq. (3.64), can be resolved
on the mesh and the contributions from all mesh—points are added to each particle.
The computational cost is now of the order ~ O(N log N), so that the speed—up with
respect of the PP scheme is very high. PM entirely resolve the system this way: clearly
it is a reliable method as long as the mesh spacing is lower than the shorter wavelength
of interest and the number of particles which fall inside a mesh—cell is high enough to
maintain low the fluctuation level (Hockney & Eastwood 1981). However it provides a
poor representation of the local potential and force field, i.e. for those particles whose
separation is of the order of the mesh spacing.
P3M try to combine the computational advantages of PM with the more accurate
force representation of PP as for the local field: in fact it considers the force on a
single particle ¢ as the sum F; =5, Ffj’“m + Fmesh of a short-range term (the first
one) due to particles js which live within a given distance which define “locality” and
a long-range term due to the evaluation of Eq. (3.64) on the mesh. The first term
describes basically the rapidly varying field due to the very local mass distribution,
while the second one accounts for the slow varying field resulting from the large-scale
structure. Excellent works on this topic are the reference book by Hockney & Eastwood
(1981) and the classic paper of Efstathiou et al. (1985).

A further effective algorithm, of order ~ O(Nlog N) that is reduced to ~ O(N) in
most refined codings, is the hierarchical TREE code (e.g. Hernquist & Katz 1989).
This kind of approach is fully Lagrangian as it decomposes the entire simulated space
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in a hierarchy of cells, each containing a single particle or further sub—hierarchies, with
no restrictions on the global geometry or on the local resolution. While building the
tree, multipole moments of each cell are calculated and propagated upward in the hi-
erarchy so that each cell either contains a single particle or carries the monopole and
quadrupole moments of all the particles which live inside it.

Then, the force on each particle is contributed by direct summation from nearby parti-
cles or by evaluating the multipole expansions of distant cells (single particles or groups
of particles) at the particle location. Whether a cell is considered distant is decided by
the opening criterion. The standard choice in the algorithm by Barnes & Hut (1986)
implemented in GADGET is that a node of size [ has to be “opened” and “walked” (i.e.
the cells inside it must contribute separately to the force summation) if

[

where r is the distance of the cell’s centre of mass from the particle and @ is an accuracy
parameter which plays the role of an angle of view. Clearly, the accuracy in the force
calculation depends also on the criterion used to decide whether or not a multipole
estimate is a good approximation at the point of interest. A particularly delicate issue
is the force resulting from an almost homogeneous mass distribution, for instance from
the density field at high redshifts; in this case single contributions tends to cancel each
other and a relative small error can end up in a significant relative error in the final
results. The criterion shown above does not guarantee a sufficient accuracy, so that
other conditions must be fulfilled. We leave a complete discussion to Springel et al.
(2001), Springel (2004).

As a final note, we remind that GADGET leaves to the user the choice whether
to use a PM4+TREE or a pure TREE code evaluation of the gravity force (note that
in the earlier versions of the code only the second choice was allowed as described in
Springel et al. (2001)).

3.4.2. Hydrodynamics

GADGET use the SPH technique to account for the ideal gas physics, so that we will
refer to the equations given in Sec. (3.3). GADGET implements SPH in its fully—
Lagrangian form, thus allowing each particle to have its own resolution through an
individual h; parameter and its own time-step as for the time integration. The early
versions of the code neglected the VA terms (see Sec. (3.3.3)) in the SPH equations,
while the current advanced version fully include them by using equations derived from
the Lagrangian

N N
) 1 . 1 _
Mad) =52 mat = =5 3 middipl™ (3.66)
i=1 i=1
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where the independent variables are q = (ry,...,rn, 1, ..., hy), the thermal energy
acts as a potential driving the motion of SPH particles and density is a function of qgs
following equation Eq. (3.34) (see Springel & Hernquist 2002). The fully conservative
nature of this approach also relies upon a fixed mass being contained in the smoothing
volume of particles, i.e. (47/3)h3p; = Mspy where Mgspy = mNgpy roughly relates
Mspp to the average mass of particles and to the desired number of neighbours. The
equation of motion, having adopted the kernel symmetrization as in Hernquist & Katz
(1989), results in

dvZ

- Zmy {fz Vi iWij(rig, by )—i—f]p]V iWij (1, hy) (3.67)

J

where the factors f account for the h variation effects. From the above equation
Springel and Hernquist (2003a) derive the form

hi 9pi\ "
fi= (1 ta 6}?) . (3.68)

As for the description of the shocks, an artificial viscosity is then added (Navarro &
Steinmetz 1997), with the corrections suggested by Balsara (1995) in order to strongly
reduce the undesired shear viscosity (see also section 3.3.5).

GADGET also offers the possibility to activate an artificial viscosity which varies
with local environmental conditions (e.g. Morris & Monaghan 1997) through a para-
metrical time—varying factor o« which grows when the particle enters a shock and decays
otherwise. We refer the reader to cited papers on GADGET for further details.

3.4.3. Time Integration

When in the 1980’s accelerator-physicists were integrating equations over 10? orbits,
numerical violations of phase-space volume conservation became a delicate issue, as
well as in studies about the long—term stability of the solar system (Shadwick et al.
2000). This is related to the Hamiltonian nature of the system which is studied and
the existence of a “non—trivial structure that embodies important physical properties
which can affect the qualitative behaviour of the system” (quoted from Shadwick et al.
(2000)). Here “structure” must be interpreted in a broad sense: for instance it could
be the conservation of phase—space volume for Hamiltonian systems, the existence of
some constant of motions like energy, momentum etc.

As for these systems, we can think that a given real solution live on a n—surface:
then, numerical errors can be thought to be a tangent or a normal deviation to this
surface. Errors from the normal deviations will violate the structure of the system
then representing a qualitative error as the found solution does not lie anymore on the
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correct n—surface. Tangent deviations, instead, just represent a quantitative error in
the integration of he system equations.

in order to suppress the first kind of errors (‘normal’ errors), one resorts to the so—
called symplectic integration schemes. A integration scheme is said to be symplectic
when it preserves the phase—space structure of the system, or, in other words, represents
a canonical transformation, so that the calculated solution live on the same surface at
every time.

A second—order symplectic scheme commonly used, due to its simple implementa-
tion and low computational cost, is the Leap—Frog integrator (Quinn et al. 1997, Preto
& Tremaine 1999). From a numerical point of view, a “symplectic integrator is an exact
solution to a discrete Hamiltonian system that is close to the continuum Hamiltonian
of interest” (quoted from Quinn et al.). Then, the integration will conserve an energy
that is an approximation to the true energy of the system: if the difference is small,
almost all the orbits that are stable in the real system will continue to be stable in the
discrete representation.

Building a leap—frog scheme which allows each particle to have its variable timestep
is a rather challenging task, since this breaks the fundamental requirement of time
reversibility. With such a scheme, bouncing forward a step and then stepping backward
will not end up to the same point. Nevertheless, some techniques to build a variable—
stepping full reflexible leap—frog integrator have been introduced by (Quinn et al. 1997).
They make use of a decomposition of the overall integration time in power—of-two
subdivisions, then restricting the choice for the time step of the particle ¢ at the step
n to

n Ttotal
= ;kﬁ} . (3.69)

for some integer k" < K where Tyotar/ 2% is the minimum step allowed.
GADGET perform a symplectic leap—frog integrator; for further discussion and im-
plementation details we refer to the various papers on the code mentioned above.

3.4.4. Additional Physics: | - Cooling

As the gas of the ICM is assumed to be in collisional ionization equilibrium (Cox &
Tucker 1969, Cen 1992, Abel et al. 1997), we have at hand the possibility to estimate a
cooling function which only depends on the temperature and density of a particle. The
one used in GADGET model the emission from atom’s excitations and de-excitations,
ionizations and recombinations due to two—body collisions, bremsstrahlung and inverse
Compton for a gas of primordial composition, i.e. made by Hydrogen and Helium with
by-mass weights 0.76 and 0.24 respectively. This cooling curve has been calculated by
several authors (e.g. Abel et al. 1997, Cen 1992).

The only difficulty that arises in including radiative cooling is that it could lead
to extremely short cooling—times, namely the characteristic time required for the gas
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to entirely radiate its internal energy at a given cooling rate. In this case of a cooling
time shorter than the time—step, the energy of a very dense particle would become
negative over the particle timestep. To obviate to this problem, the energy loss is
treated semi—implicitly in an isochoric approximation and then added to the rate of
change of internal energy due to adiabatic gas physics. The maximum cooling rate is
restricted to half of the energy being lost in a single timestep (Katz & Gunn 1991).

3.4.5. Additional Physics: Il - Multi-Phase ICM & Star Formation

Although today we are able to reproduce the large-scale (2 10 Mpc) gravity—dominated
structure of the Universe with a considerable high precision, modelling the local gasdy-
namical processes related to star formation (SF henceforth) remains a challenge. Our
difficulties are due to a yet missing understanding both of the ISM complex structure
and of the feedback mechanisms. For the time being computational resources do not
enable us to have a dynamical range that allows a well-resolved ISM and a large vol-
ume to live in the same simulation. Therefore we are led either to explore some refined
modelling of the ISM or to rely on a phenomenological model of the sub-resolution
physics.

The common way to deal with such a model is to treat the gas as a single-phase
fluid converted into stars with a given time-scale t,, usually a function of the local
density through the local dynamical time—scale. Provided that, assuming an IMF, the
expected energy feedback per formed star mass is easily obtained, it is not clear how this
energy should be returned to the gas. Simply adding the energy to the internal energy
of the gas has proven to be completely ineffective in regulating the SF for the energy
being promptly dissipated by radiative cooling which is mostly effective in high—density
regions. As a consequence simulations continue to suffer for an overcooling problem,
namely the overlocking of baryons in a cold dense phase, which end up in too many
stars being formed. Such and effect arise owing to the fact that cooling is a run—away
process; when the gas cools it loose pressure support and tend to become denser; as
the cooling roughly depends on the square of the density, this calls for a more efficient
cooling and thus to a further lowering of the pressure support until the temperature
reaches the 10* K limit of null ionization at which the cooling function set to zero
(provided that we are not modelling further molecular cooling).

Several refinements or even different approaches have been tempted so far for (see
e.g. Kay et al. 2002), but no one has proven to be resolutive. Highly artificial recipes,
like constraining an adiabatic phase or a density lowering after the energy injection as
well as extreme “blow—out” models with instantly redistribution of cold gas around the
centre of gas clumps, have had the merit to point out how some physical processes could
deserve a particular attention when a sub—grid model is implemented in a cosmological
code.
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Several attempts to make multi-phase models have been realize at the end of 90s,
following the key theoretical work of McKee & Ostriker (1977). Springel & Hern-
quist (2003a) report about the model currently implemented in GADGET . We address
the reader to this work as the ultimate reference for what we describe in the follow-
ing. They started from few assumptions about the ISM in order to make an effective
sub-resolution “hybrid” model that use spatially—averaged properties to describe the
medium.

The fundamental step is to describe the ISM as an ambient “hot” gas with con-
densed cold clouds living therein. Pressure equilibrium is assumed to hold between
these two components. The clouds represent as the reservoir supplying matter to the
stars’ birth. This reservoir is continuously fueled by gas cooling from the hot phase.
Therefore the baryons are thought to be in one of the three allowed phases: the gas, the
clouds and the stars whose densities are addressed respectively as py, p., and p,. These
densities represent an average over small regions of the ISM as individual molecular
clouds cannot be resolved.

The total gas density is p = pp + p. since it is assumed that the regions used to
define the averages are of constant volume. Therefore, writing the energy per unit mass
of gas and clouds as uy and u., the specific energy of the gas is € = ppup, + pet.

The three phases interact with each other exchanging mass by three mechanisms:
the gas cools down to clouds, the clouds form stars and are evaporated by supernovae
explosions due to the stars more massive than M,, threshold value (see Sec. 5.4) which
restore mass and energy in the ambient gas. A pictorial view of the interplay among
the phases is given in Fig. (3.1).

B Star Formation

Clouds are expected to form stars over a characteristic time-scale ¢, with basically a
Schmidt (Schmidt 1959) law which reads:

d ps _ Pe

dt t,
where p. is the density of the cold phase from which star originate. If we assume that
a mass fraction J of these stars will instantly explode (see sec. 3.4.5) as supernovae we
can write

(3.70)

dpe  pe Pe Pe
=——p[—==(1-p0)— 3.71
dt t* t* ( /6) t* ( )
in this way SF depletes the reservoir of clouds and increase the mass of ambient gas
with a rate (p./t., because it is assumed that ejecta from supernovae are entirely
accounted as hot gas. A discussion about the values of the parameter 3 (about 0.1 for
a Salpeter IMF normalized in the mass range 0.1-100 M, ) is left to section 5.4. If egn
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is the energy released by supernovae explosion per solar mass of formed stars, the gas
heating results in

d d ps Pe

el = = =, 3.72

dt (Prun) . €SN dt. UsN ‘, ( )
where ugy = €, (1 — ()/5. For a Salpeter IMF normalized in the mass range 0.1
100 M, and assuming that each supernova explosion provide 10°! erg, ¢, takes is about

3 x 1015 erg per g per solar mass of formed stars.

B Evaporation

The model assumes that at the surface of cold clouds the condensed gas evaporates
when interacting with hot bubbles which inflate after the supernovae explosions. The
total mass of clouds which undergoes a phase change is taken to be proportional to the
mass in the supernovae:

d (& C
Pel = aple. (3.73)
At |y t,
The evaporation efficiency A is a model parameter, with functional dependence
on the density like A = Agp~*° (McKee & Ostriker 1977). The determination of th
parameter A is discussed in Sec. (5.5).

B Cooling

Cooling is taken into account as we described in sec. 3.4.4. Furthermore, the model
also includes the effect of thermal instability which operates in such a way that the
mass flux between the hot and the cold phase is

_ A(Ph,uh); (3.74)

TI Up — Ue

d pe
dt

__dp

TI dt

if the temperature and the total volume are kept constant during the cloud growth.
As long as up > u,, the internal energy of the clouds is unimportant for the model:
typically a temperature 7T, ~ 1000K is assumed but Springel & Hernquist (2003) report
that results are not affected by this choice as long as T, < 10K, which is the minimum
temperature allowed for the gas. This is the minimum temperature allowed for the gas
since further cooling would require molecular modelling.

In general gas is expected to be thermally unstable if the cooling rate is a declining
function of the temperature: in a primordial gas this is the case for T2 10°K. For the
onset of the thermal instability itself, a density threshold criterion introduced, thus
requiring that p > py, for the gas at density p to become thermally unstable.
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Figure 3.1: A pictorial view of the effective SF model described in Springel & Hernquist
(2003).

Finally, if f is a switch between normal cooling (f = 1) and thermal instable regime
(f =0), the evolving rates of hot and cold masses can be written as:

dpc Pec Pe _.f

= e apte A 3.75
& R — (Pn, un), (3.75)
dph Pec Pe 1_f
o~ ple g oapte A . .
az 625* + ﬁt* U — U, (ph,uh) (3 76)

where A(p, u) is the cooling function. We define A,,; function as the sum of the radiative
cooling function and the heating due to UV background, and ugy as (1 — 3)/Besn,
or, otherwise, as a “supernova temperature” Tsy = 2uugy/3k (~ 108K for a Salpeter

IMF and a supernova energy equal to 10%! erg). Thus, the energy budget of the gas is
written as

d e c
(ot + pette) = —Anapnun) + Busy — (1= B)Fu,  (377)

Summing up all the contributions, two separate equations can be written for the
energy of the hot and cold phase:
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d Pe Pec (1 - f)uc

B cYe — - We — A - We 7‘/&”8 ) *

P (peue) t*u ﬁt*u + p— ¢«(pn, up) (3.78)
d C C Up — uC

—(onun) = ﬁf—(uSN +ug) + Aﬁf—uc - %Am(ph, w).  (3.79)

Since the first of the two is dropped out by the assumption that u,. is constant, it
remains only to integrate the second one which now reads

dup, B pe B pe
&t (A+ Dup + L on (usy + (A+ Due). (3.80)

It is easy to show the from the previous equation that uy will tend to the equilibrium
solution

UsN
= c 3.81
U A (381)
with deviations decaying over a time—scale
t* Ph
= 3.82
" BAT D g (3:52)

Thus if SF if rapid enough with respect to adiabatic heating or cooling the specific
energy of the hot phase is retained to the value of Eq. (3.81), independent of ¢,. This
value is ~ ugy /A if A> 1 and ugy/A > u, as found usually.

A further interesting feature of this model is that it leads to a self-regulated cycle
of SF when the growth of clouds is balanced by their evaporation owing to supernovae
feedback. In such a regime the effective pressure of the medium

Peff - (/7 - 1)(phuh + pcuc> (383)

is expected to be constant. This imply

Pe _ Nner(pns un)
t* B 6USN - (1 - ﬁ)uc (384)

Since Apet(pn, un) = (pn/p)? Anet(p, up) the ratio of masses in the two phases is

Pe _Pr,, (3.85)
Ph P
having defined
t*Ane Y
y = t(p, ) (3.86)

 plBusy — (1= B)ud’
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The mass fraction locked in clouds turns out to be

. 1 I 1
S AR (3.87)

x —_—
p 2y y o 4y?

so that the effective pressure of the gas will be
Pepp = (v = Dp (1 = z)up + zuc]. (3.88)

The time-scale provided by Eq. (3.82) is short compared to the SF characteristic
time. This means that the conditions for self-regulation are met quite rapidly.

As for the numerical implementation, it is convenient to assume that conditions for
the self-regulation of SF are always satisfied, so that the codings is greatly simplified.
In fact it will not be necessary to store values for different phases and mass exchanges
will not be explicitly stated. Moreover, the SF process is not described for each singular
star but instead stochastically with expectation values consistent with the actual SF
rate M, = (1 — 8)zm/t, where m is the mass of the star-forming gas particle. If the
timestep is At, a new “star” particle is created with mass m, = m/N, in the case a
randomly generated number is lower than

o= — {1 — ep {_M] } . (3.89)

My ty

N, is an integer parameter which define the number of stellar population that a gas
particle is allowed to spawn. If a star—forming gas particle has already formed N, — 1
stars, it will entirely turn into a star particle.

This approach is quite mandatory to avoid an uncontrolled proliferation of particles
that will take place if the star-particle creation of whatever mass were permitted.
Also, this approach avoids an artificial dynamical coupling of the gas with the stars.
Furthermore, allows us to trace the actual SF ages straightforwardly.

We refer the reader to the paper by Springel & Hernquist (2003a) for more details
and discussions.

3.4.6. Additional Physics: Il - Winds' Model

Along with the SF model reported in the previous section, Springel & Hernquist mod-
eled the onset of winds due to injection of SN energy. Their phenomenology—cal recipe
intends to mimic the mechanism of galactic outflows in analogy with Aguirre et al.
(Aguirre et al. 2001b), but it serves also to account for the mass—loss of galaxies
within simulations of clusterized halos although they are much less resolved than in
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dedicated galaxy—forming simulations. It has proven to be very effective in extract-
ing the gas which lie in the star—forming regions harbored in very dense clumps of
particles..

The model for galactic winds can be summarized as follows. First, the disc mass-
loss rate that goes into the winds is proportional to the SF rate, M, = nM*. This
assumption is based on the observational evidence (n =1-5; (e.g. Martin 1999)) and
tells nothing about the ability of this mass to escape from the potential well. Second,
a fixed fraction x of the feedback energy is used to kick out the mass, 1/2m,v2 =
yesn M,. The value for y ranges in the interval 0-1, although in the model it can be
set to value larger than 1. In fact, this is just a phenomenological model and a precise
energetic balance is neglected. Clearly this will lead to a violation of the energy budget,
for the energy yesny being used twice, once to ensure the pressure support to the hot
gas and again to power winds. Owing to the uncertainties on the true value of egy,
this appears as venial sin in front of the complexity of re-adjust the parameters Ag and
t5. All in all, the velocity of winds is given by:

02 = 22X ey M, (3.90)
n
For the numerical implementation, a probabilistic method is exploited also in this

case. A gas particle joins the wind during the time-step At if a random number is to
be lower than

1— At
Pw=1—exp [—M] . (3.91)

The velocity vector of the gas particle then becomes
v =v+u,n. (3.92)

The direction n can be either a randomly chosen vector on the unit sphere, or the

vector v x V¢, where ¢ is the potential field, so as to mimic the raising of fountains
orthogonal to the galactic plane in spiral galaxies.
When wind particles depart from the inner parts of a star—forming regions, their ki-
netic energy is likely to be thermalized inside the region itself due to hydrodynamical
interactions. To avoid this undesirable effect and let the wind particles freely escape
from star—forming dense phase, a “decoupling” mechanism of the wind particles from
hydrodynamical interactions is provided; a wind particle is then only included in grav-
ity and density computation until either its density has fallen below 0.1py, or a time
of 50 Myr has elapsed.

As described in Chap. (4), we insert in this model the contribution from the
Snllwhich are below the threshold mass M,, and from Snla. In order to account for
such energy, we basically add it to egy in the previous equation.
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3.4.7. Additional Physics: IV - Thermal Conduction

Jubelgas et al. (2004) report about their implementation of thermal conduction in
GADGET , which is now a stable feature of the code.

As it is well-known, the problem is to describe the energy transfer by free electrons
ought to the local heat flux given by

j=—KkVT (3.93)

were T'(r) is the temperature field and « is the heat conduction coefficient. In other
terms, if u stands for the specific energy, the equation of interest reads

du 1 1
—_IV.-i=-V- (VD). .94

Spitzer, in his key book (1962), derived a classical result about the heat conductivity
due to electrons in a fully ionised plasma in absence of magnetic fields: it reads

KT\ M2
Ksp = 1.31Aenck ( ) ) (3.95)

Me
In the previous equation, A\, and n, are the mean free path and density of electrons
respectively. Since it is

3%/2(kT,)*
AeNe = —————— 3.96
" 4y/met In A (3.96)
approximating the Coulomb logarithm as in Sarazin (1988), one can write the relation
KgT, 5/2 erg
o= 8.2 x10% c . ——— 3.97
e 8 <10ke\/) e m s keV (3:97)

This expression for the Spitzer conductivity exhibits a strong dependence on the
temperature. We just quote in the following the SPH equations found by Jubelgas et
al., while addressing the reader to the references therein as for the effect of magnetic
fields, observations and further discussions.

The straightforward SPH implementation of Eq. (3.94) — the one that is derived
by differentiating the gradient of interpolated T multiplied by x — demonstrates to be
highly sensitive to the fluctuations in particle distribution. So that it is far better to
follow the approach described by Brookshaw (1985, 1994) leading to the equation

dul Zm] (kj + ki) (T; — T;)

" o xi;ViWi;. (3.98)
i ij

For a recent application of this algorithm to simulations of galaxy clusters, see
Dolag et al. (2004).
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CHAPTER 4

THE NUMERICAL IMPLEMENTATION OF
CHEMICAL ENRICHMENT

Chapter Outline

In this Chapter we give the details of our imple-
mentation of the stellar evolution, the supernova
explosions and the production of energy and
heavy elements. Before that, we review the SF
algorithm of GADGET and the adopted stellar
evolution model.

SF algorithm in GADGET ... §4.1
The adopted Stellar Evolution Model ... §4.3-§4.5
The Spreading algorithm ... §4.6

Additional Physics:
Metallicity-Dependent Cooling,

IRA threshold, Energy from SN

. §4.7-54.9

INTRODUCTION

Accounting for the effects of the stellar evolution will provide alternative ways to better
understand and/or to constrain both the history of the star formation and the thermo-
dynamical history of the ICM, so that the main aim of our work is to include a detailed
description of the chemical enrichment process in simulations of galaxy clusters.

We choose to include such physics into the publicly—available state-of-the-art
TREE-SPH code GADGET , that have been kindly provided in its most advanced
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version to us by the author, Volker Springel; in Sec. (3.4) the main features of this
code that are of interest for our work have been described and briefly discussed.

The GADGET original implementation only performs an “overall” production of
metals by Snll with no delayed releasing of elements; as well no dependence of SF
process on the metal content of the gas is included.

Instead, we implement a complete treatment of stellar evolution, fully accounting
for the delayed production of elements and making the star formation process itself
dependent on the energetics of supernovae explosions and gas metal content. A detailed
description is given in the following sections.

In Sec. (4.1) we review how the SF is treated in GADGET ; in Sec. (4.2) we
summarize the key assumptions of our implementations, which concern the stellar
evolution model to which we refer, the IMF and how the formed metals reach the ICM.
In the following sections, Sec. (4.3), Sec. (4.4), Sec. (4.5) and Sec. (4.6), we exactly
review the stellar evolution, the adopted Initial Mass Functions and the spreading of
supernoave ejecta on the gas particles surrounding the star particles. In particular,
all the equations needed to compute the metal and energy production as a function
of time are given in Sec. (4.4). We also have modified the cooling function and made
the effective model for star formation dependent on the star formation energetics in a
different way than in the original code; a full description is given in Sec. (4.7), Sec.
(4.8) and Sec. (4.9). Finally, we account for the energy of Snla in the wind model, as
reported in Sec. (4.9).

The implementation of accurate stellar evolutionary models and chemical enrich-
ment in the GADGET code discussed in this Chapter represents a further refinement
of what discussed in the paper (Tornatore et al. 2004) and reported in several inter-
national workshops (e.g. 7, 7, 7). All the details will appear in a paper (Tornatore et
al. 2005) now in preparation.

4.1 STAR FORMATION IN GADGET

As we mentioned in Sec. (3.4), the star formation is not described “smoothly” but
instead treated probabilistically as pioneered by Katz, Weinberg & Hernquist (1996).
This means that we do not keep trace of the continuous star formation rate of each Gas
Particle creating a Star Particle each time a star formation activity occurs. This would
lead to an unmanageable large number of new particles. Furthermore, severe effects of
two—body heating and mass segregation will arise because most of them would also have
a mass much smaller than the mass of gas or dark matter particles. Instead, the code
“spawn” a collisionless star from a Gas Particle each time some conditions are fulfilled.
At the end of a large number of star formation events, the “true” star formation rate
and history will be recovered by the creation of Star Particles. In the following, we will
refer to particle representing “stars” in our simulations as “Star Particles” or “Stars”,

122



4.1. Star Formation in Gadget

whereas we will refer to real stellar object as “stars”.

In the effective model for a multi-phase ISM implemented in GADGET , the star
are formed from the cold gas of the cloud phase. The rate of gas locking in stars is
estimated as

m, = (1 — 3)xm/t, (4.1)

where ( is the fraction immediately returned to the hot—gas phase by the explosion
of Snll, m is the mass of a Gas Particle, that comprise both the hot gas and the cold
clouds (see Sec. (3.4.5) as for the definitions of both), x is the fraction of mass that is in
the cold phase, so that zm is the mass of the reservoir for star formation. Furthermore
t, is the characteristic time for the cloud consumption, calculated as

to(p) =ty (p/pwn) (4.2)

where p is the density of the Gas Particle, being p = peoia=+prot, pin is a density threshold
for star formation that acts as a physical cut—off threshold, and ¢ is a parameter which
give an overall star—formation time-scale as found by Kennicutt (1998). Both p;h and
t5 have been introduced in Sec. (3.4.5). Constraints on both py, and t§ have been
discussed in 3.4.

This leads to a Schmidt-type law (Schmidt 1959) for the star formation rate

pr o< p" (4.3)
which with n = 1.5 has been widely used since the ’50s as a gross estimate of the rate of
star formation phenomenon in very different environments. Note that this functional
form has also been commonly used in numerical simulations, with ¢, estimated as the
local dynamical time of the gas, t4,, = (Gp)~Y/2. From Eq. (4.1), we have m, = am/t,
whose integration gives

At
My = m— (4.4)
by
that would imply an unphysical result for At > t,. Instead, writing

Px = —Pg = Qg (4.5)

with « having the dimension of a inverse of the time, this results in

px(t) = Dpg = py(to) * (1 — e_am) (4.6)

which can be read as the “probability” that a star mass density p, were formed from
a gas mass density p, in the time interval At, equal to (1 — e~*2!). Here a accounts
here both for the local characteristic time of the star formation and for the fraction of
density p, prompt to be locked in stars, if any. So that, recovering the notation of Eq.
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(4.1), the expected mass m, to be formed from a star—forming Gas Particle of mass m

m, =m {1 — eap GW) } (47)

1S
L

Then, a Gas Particle is converted into a Star Particle when a random number,
drawn in the interval [0, 1] with uniform probability, falls below

=1 (222220 »

by

At the end of a reasonable number of star formation events, the Star Particle
formation rate would recover stochastically the “true” star formation rate. The main
advantage is that this will not lead to an uncontrolled proliferation of new particles
and will keep constant the mass resolution of both Star and Gas Particles. Moreover,
every artificial coupling of the collisionless star dynamics with the collisional dynamics
of gas is avoided. This is not the case in the “hybrid scheme” (e.g.Katz et al. 1996) in
which every Gas Particle carries on its own star fraction. What is also remarkable, is
that it is straightforward to provide each Star Particle with its own formation time, so
that the distribution of them directly relates to the star formation history.

In order to increase the mass resolution in following the star formation history, the
above scheme has been slightly modified in the original GADGET code. This will also
have some advantages as for the chemical enrichment as will be discussed. Instead of
converting a whole Gas Particle of mass m into a Star Particle of equal mass, a finer
representation can be obtained by converting a given fraction of gas: then, if N7 is
the number of “stellar generations” that arises from each Gas Particles of mass my,
then a Star Particle of mass mg = mg/N; is spawned from an eligible Gas Particle if
a random number in the interval [0, 1] falls below

S ) o

0 t*

If a Gas Particle has a mass m < (3/2)mg or if it has already spawned N} — 1
stars, then it will be turned into a Star should it become eligible for. If Ny< 1 the
total number of particles will of course grow, still it will be kept under control, while
a reasonable constant mass resolution holds for the gas phase.

IMPLEMENTING THE STELLAR EVOLUTION

Given the scheme described above, we are provided with Stars each with its own mass
and formation time, so that conceptually it appears straightforward to add the stellar
evolution features to the code. We choosed a different approach than the fully stochastic
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one by Lia et al. (2002), as we would like to describe in the most accurate way also the
local evolution of metal enrichment along with its global properties. Hence, we choose
to calculate exactly the evolution of each Star at each time and to restore the ejecta
from supernovae into the gaseous phase as properly as possible. This approach should
better ensure that the metal enrichment is described at a constant “metal resolution”
even in stellar regions which are poorly resolved or as for the diffuse stars which are
scattered outside “galaxies”.

This task requires three assumptions about the pattern of star formation and evolu-
tion: the first one is the IMF with which the stars form, the second concerns the choice
of a specific stellar model and the third one about the spreading, i.e. the mechanism
with which the ejecta are returned to surrounding Gas Particles. In turn, the stellar
model involves assumptions about the lifetime of a star, which is a function of its mass,
and about the metal it produces during its life, basically a function of its mass and
initial abundances of heavy elements. Each of these assumptions can be considered
as a “free parameter” of the code, in the sense that to some degree we are allowed
to change them to make our simulations fitting the observational data. In turn this
provides constraints on each assumption, or even rule out some of them, what can
be called a “backward approach”. Alternatively, we can take some or all of them as
firmly stated by physically grounded arguments from other fields of the (e.g. stellar
evolutionary studies, chemical enrichment of the solar neighborhood etc.), taking out
some conclusions about the ones left as “free” or, more likely, on our modelling of the
physics, to improve it or to add other neglected physical effects that instead turn out
to be important.

In the following sections we describe each one of the assumptions we made and the
technique used to implement them.

THE STELLAR EVOLUTION MODEL

In the framework of the standard Big Bang model we know that nucleosynthetic chan-
nels were acting during the primeval explosion so that the pristine gas were made up by
a huge amount of Hydrogen (about 0.76 as for the mass fraction) and Helium (about
0.24) and traces of D, 3He, *He and slightly heavier elements up to ®Li, “Li. Due to
Coulomb barriers and the lack of stable nuclei with mass 5 and 8 further nucleosynthe-
sis has been prevented. This is what we refer to when talking about the “cosmological
abundance”.

Whereby, as far as we move within this picture, all the elements whom signatures
we actually observe, and by whom we are made, must have been built by stellar nucle-
osynthetic activity. Therefore, at the heart of the study of the chemical enrichment of
galaxy cluster are stellar evolution models and metal production networks from which
we can derive the ‘yields’ for every single element. The term stellar yield is commonly
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used to indicate the masses of elements produced and ejected by a star of initial mass
m and metallicity Z.

Being this field not so well-known to people usually dealing with cosmology, in
this section we briefly review the stellar evolution and nucleosynthesis, addressing the
reader to cited references for a deeper glance of the matter.

We proceed by sketching the evolution of a single stars, then describing our adopted
model as for both Supernovae (SNe) Type II and Type Ia (respectively Snll and Snla
hereafter). Then we introduce basic concepts as the Initial Mass Function (IMF) and
the Star Formation Rate (SFR).

The history of a star is the history of the quest for equilibrium between the pressure

supplied by its own internal energy and the gravitational force, which tends to collapse
the gas. The internal energy of a star originates from nuclear reactions ignited when
high enough density and temperature are reached.
Accordingly to their initial mass, stars evolve quite differently and have very different
lifetimes. The “lifetime” of a star is defined as the time spent in the Main Sequence
(MS) phase, i.e. when the hydrogen is burned in helium. Such a phase last for about
90% of the lifetime of each star (where lifetime is intended in strict sense). The lifetime
of a star decreases with the initial mass, owing to the luminosity scaling as the fourth
power of the mass:

Lass oc M*. (4.10)

Since the nuclear energy Fy is roughly proportional to the mass, the ‘energetic’
lifetime can be estimated by writing

tMgO(EN/LMS O(M_g. (411)

As the initial mass increases, also the temperature and pressure in the inner regions
increase and the star become able to proceed along successive nucleosynthetic channels,
and ignite all the six main hydrostatic nuclear burnings (H—, He—, C—, Ne—, O— and Si—
burning). After this, an inert Fe core is formed, owing to the well-known fact that the
binding energy per nucleon reaches the maximum with the Iron nucleus. This limit is
reached starting from massive stars (M > 10 — 12Mg, ). Following (Iben & Renzini
1983) we individuate the following crucial mass ranges:

e Low mass stars, namely stars having mass m < My.r, where My, is the limiting
mass for the formation of an electron—degenerate He—core.

e Intermediate mass stars, namely the stars in the range My.p < m < M,,. My,
is the limiting mass for the formation of an electron degenerate C-O core.

e Massive stars, all stars with masses m > M,
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Other important limiting masses are My, the lowest mass needed as to ignite the
H core, M, the limiting mass for the formation of a C-O white dwarf and Mg, 7,
the limiting mass for the occurrence of Snll Beyond this mass, a star either become a
Wolf-Rayet star or implode as a black hole.

4.3.1. Low Mass Stars

Stars having m < My, never ignite and, once they have radiated the energy stored
during the slow gravitational collapse, stand as dark objects. A value for M; which
is commonly adopted by most models is M, ~ 0.08 — 0.09 M, . Stars in the range
My <m < 0.5Mg end their life as He-dwarfs, as they never become as much hot as
necessary to ignite the Helium core. Finally, stars in the range 0.5 My < m < Myer
evolve after the MS phase burning the Helium and becoming C-O dwarfs after passing
along a series of intermediate phases. During these steps, the stars loose a fraction of
their mass (a ~ 1M star becomes a C-O white dwarf of ~ 0.6 My ) and this is the
way they restore processed and unprocessed material into the Inter Stellar Medium

(ISM).

4.3.2. Intermediate Mass Stars

Describing the complicate life of these stars is beyond the scope of this work, then we
address the reader to, e.g. Matteucci (2003) and references therein for further reading.
Here we only remind that the value of M,, is still strongly debated, as it is highly
sensitive to the treatment of convection within the star. Classical stellar models give
M, ~7—9Mg , while other models indicate M, ~ 5 — 6 Mg . The value of M, is
also a non—monotonic function of the initial metal content of the star. In this work we
choose the fiducial value M,, = 8 Mg .

4.3.3. Massive Stars

We defined above the massive stars as those which ignite Carbon non—degenerately.
Stars in the range My, < m < (10 — 12) M ignite their cores and end as SNe of
type II leaving a neutron star of ~ 1.3 My . Their final state is still debated. Stars in
range (10 — 12) My < m < Mwr evolve through all the six main hydrostatic nuclear
burnings and form an Fe-core, then exploding as iron—core collapse Sn. Here My g is
the limiting mass for a Wolf—Rayet star, which is basically a star that has lost its H-He
envelope. The explosion mechanism is still unclear, and is based on the principle of a
core—bounce that occurs when the Fe-core, which is not burning, reaches the density
of atomic nuclei. Stars having Mwgr < m < 100 M, can end as SNe but not of Type
IT as they are missing the H-He envelope, whereas Snll are characterized by H lines in

127



THE NUMERICAL IMPLEMENTATION OF CHEMICAL
ENRICHMENT

the spectrum. The limiting mass Mgy, is not known exactly. For a solar metallicity,
Mwygr > 40Mg .

4.3.4. Supernovae

We mentioned above that Snll arise from massive stars, namely from stars having
mass m > M,,, where our choice is M,, = 8 Mg . Nevertheless, we never mentioned
so far how Supernovae are classified. Basically, SNe are called Type II if they show
strong Hydrogen emission lines in their spectra and Type I otherwise. In turn, Snla
are sub—classified as being Ia, Ib and Ic; such sub—types are defined by the properties
of the early time photospheric spectra. Also Snll are sub—classified. Depending on the
shape of their light curve, they are named SnII-L (linear), SnII-BL (bright linear) and
SnlI-P (plateau). We address the reader to the literature for further reading on this
topic. From the viewpoint of the chemical enrichment, roughly speaking the Snla are
the main producers of Iron whereas the Snll produce the bulk of N, 2C' (stars in
range M,, < m < 10 —12Mg, ) and of the so-called « elements 90, **Mg, 28Si, 325,
0Cq etc.

Snla represent a class of very homogeneous objects, so that they are good standard
cosmic candles. They are thought to originate from white dwarfs in binary systems
exploding by C—deflagration once they achieve the Chandrasekar mass by accretion
from the companion. In spite of various debated details and uncertainties, there is a
common consensus that Snla originate from the thermonuclear disruption of a C-O
white-dwarfs accreting H-rich material from a companion, such a disruption occurring
when the C-O dwarf reach the Chandrasekar limit and ignite the Carbon.

B Details on the Model for Supernovae Type la

As we have outlined above, the main spectroscopical features of Snla are the lack of
hydrogen lines and the presence of Si II lines together with a number of intermediate
mass elements (Ca I, S II, O I) which dominates the spectra near the time of maximum
light. In later phases the spectra are dominated by Iron. A general consensus has been
reached on the general picture about the progenitor of Snla; they are thought to origin
from the thermonuclear disruption of a white dwarf (WD) which accreted material
from a companion in binary systems. Actually, no firm conclusions have instead been
reached about the nature of the companion (MS star, Red Giant star or another WD),
the nature of the WD (C-O—, He—, O-Ne-Mg— WD), the mass reached by the exploding
WD (Chandrasekar or sub-Chandrasekar) and the details of the explosion mechanism
itself (delayed—detonation, detonation or deflagration). Nevertheless, it is commonly
assumed that the best representation consists in a Carbon deflagration in a C-O WD of
Chandrasekar mass. Among models which relates on such a representation, the most
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common are the followings (for more details and references see e.g. the discussion by
(Matteucci & Recchi 2001)):

a) double-degenerate The explosion is due to the merging of two C-O WDs; they
approach owing to the energy loss by gravitational waves and then reach the
Chandrasekar mass.

b) single-degenerate A WD reach the Chandrasekar mass after accretion from a
nondegenerate companion. Only a narrow range of mass accretion rate leads to
a stable accretion; otherwise, a nova explosion will occur and the Chandrasekar
limit will not be reached.

c) A C-O WD explodes after accreting Helium from an He—star companion.

d) A recent model, based on the single-degenerate scenario, predicts metal-licity—
dependent effects that stabilize the mass transfer. Nevertheless, it has to be yet
tested.

In this work we assume the single-degenerate model, in whose framework the ex-
plosion timescale is given by the lifetime of the secondary. We choose the formulation
by (Greggio & Renzini 1983) as for the characteristic masses of the system. The max-
imum allowed mass to form a C-O WD is 8 M, (as for classic stellar model; ones whit
overshooting predict lower values) and the smallest permitted secondary is 0.8 M, .
Therefore the explosion timescales vary from ~ 3 x 107 yrs to about the present age
of the universe. The minimum mass of the whole binary system is 3 My, , to ensure
that the WD and the companion are large enough to allow the WD with the minimum
possible mass (~ 0.5 Mg ).

Hence, the explosion rate of Snla is given by:

MB sup 0.5

4 o(m) [ F0E(t — ) du| dim (4.12)

MB inf

Hmin

The extremes of the outer integral are the minimum (Mp,,) and maximum (Mpy/)
mass of the binary system at a given time. We mentioned that the Mp,, lower limit
is 3Mg . As for the upper limit of Mp), it is twice the maximum mass which form a
C-O WD, thus 16 Mg, . At a given time, the limits of outer integral are given by:

Mp jnt = max[2Ms(t), Mpy)
(4.13)
Mp gup = 3Mpy + Ma(2),

where M, (t) is the mass of those secondaries which are exploding at time ¢. We define
= My /Mp as the ratio of the secondary mass over the total mass of the system and
f(p) as its distribution function, so that at each time the limit fi;, of the inner integral
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is set accordingly to the value of My(t). Statistical studies (see (Matteucci & Recchi
2001) and references therein) indicate that mass ratios closed to 1 are preferred; the
commonly adopted form for the distribution function f(u) is then:

flp) =271+ y)p” (4.14)

where v is a free parameter commonly set to v = 2. As for the adopted lifetime
function, we report it in Sec. (4.4).

4.3.5. The Star Formation

Despite the fact that most of the physics of the star formation process is still uncertain,
a general framework has been drawn. Basically, once a cold clouds of gas is in place,
having a large enough density, the formation of low mass stars proceed by fragmen-
tation of those clouds and subsequent collapse of each piece. This is thought to be
a self-propagating process; when the first star appears, they immediately produce a
surrounding HII region, i.e. a volume within which the hydrogen is heated and ion-
ized by the emitted photons. Then, the HII region starts expanding in the colder and
less dense environment, thus inducing gravitational instability of gas in surrounding
regions, thereby triggering the formation of new stars. Instead, the formation of mas-
sive stars is thought to be a secondary process as it implies a slow accretion in dense
environments.

B The stellar BirthRate and the Initial Mass Function

Once the star formation process begin, stars of different masses start to form. The
number of stars whose mass lives in the interval m, m + dm and formed in the time
interval ¢, t + dt gives the so—called birthrate function B(m,t). Usually this function
is written as the product of two independent function; the first, namely the Initial
Mass Function ¢(m) (IMF) depends only on the mass m, and the second one, the Star
Formation Rate ¢ (t) (SFR) is a function of time. Thus, the birthrate is written as

B(m,t) = p(m)(t) dmdt. (4.15)

The current mass distribution of MS stars per unit sky area (the present day mass
distribution, PDMF) in the solar neighbourhood, indicated with n(m), can be written
for stars having lifetime equal or larger than the age t of the Galaxy as:

n(m) = /0 “ o(m)(t) dt. (4.16)

Usually, ¢(m) is assumed to independent of time and thus:
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n(m) = p(m) (¥) te (4.17)

where (1) is the average star formation rate in the past. For stars having lifetimes 7,
much shorter than tg (i.e. m< 2Mg ) we can write instead:

tg

n(m) = /t w(m)y(t) dt. (4.18)

G~ Tm

Supposing again that ¢(m) does not change with time, we derive:

n(m) = e(m)y(te)mm (4.19)

if the assumption that the star formation rate at present time ¥ (tg) = ¥(tg — ) is
valid. Stars with masses in range 1 —2 M have lifetimes comparable with ¢s so that
we can apply neither of the two previous approximations. Therefore, the IMF in this
mass range depends on the ratio between the present time SFR and the average mass
of stars ever formed in the galaxy life, which is written as:

Y(ta)
(¥(te)) ta
Once the PDMF has been obtained from observations, one can derive the IMF using
the previous equations and assuming a form for the SFR:

b(te) = (4.20)

PDMF/({¢)ta) m, < 1Mg
IMF = PDMF/7,3(tc) m, > 2Mg (4.21)

PDMF/ [}° w(t)dt 1My <m, <2Mg

Many authors have shown that the best approximation of the IMF in the solar
neighbourhood is given by a power law:

o(m) = A;m~ 1) (4.22)

which is supposed constant in time and space. The normalization constant A, is
obtained imposing the following normalization condition:

/000 me(m)dm = 1. (4.23)

The most popular and widely used IMF is that by Salpeter (1955), having the expo-
nent x = 1.35. This IMF had been derived for masses in range 0.4 M, > m < 10 Mg
though it is generally employed in the range 0.1 M, — 100 M ; the low mass limit
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is imposed by the faintness of low mass stars, while the high mass limit is still uncer-
tain. Spectroscopic analysis seems to indicate a limit of 100 Mg (Matteucci 2003).
Nevertheless, Scalo (1986) showed that a single power law is not a good approximation
of the IMF and since his work power laws with mass—dependent exponents were pre-
ferred. The low mass tail is the main source of disagreement among different authors,
as the observations are highly uncertain due to the faintness of these stars owing to
the rapidly declining of their mass—luminosity relation. Discussion mainly concerns
whether the IMF in this mass interval increases, flattens or even decreases.

Anyway, all the proposed IMFs have been derived from data coming from the solar
neighbourhood and we do not know whether the IMF' is universal or instead it does
depends on the surrounding environment or even on time. Such dependences are highly
unclear and no firm conclusions have been reached so far. Since in metal-poor envi-
ronments the cooling efficiency is much smaller (see Sec. (4.7)), the temperature in
such regions will be larger; therefore, the basic idea is that the formation of massive
stars should be preferred as the Jeans’ Mass should also be larger. A number of obser-
vational facts seem also to suggest that the IMF has suffered for variations with time
(Larson 1998); among the others:

[ 1] the standard cosmological model predicts that the first stars formed in a non-
enriched environment; nevertheless,no metal-free stars have been detected yet.

[ 2 ] Chemo—photometric calculations suggest that the ICM has been enriched by stel-
lar populations composed by a larger fraction of massive stars than the local one.

[ 3] Simple models of chemical evolution predict an excess of metal-poor stars with
respect to the observed number (“G-Dwarfs” problem).

We note that Larson (Larson 1998) has proposed recently an IMF which maintains
the Salpeter shape at the high-mass end, while flattening below a characteristic mass
which can also be made time—dependent to account for the evolution of the Jeans’ Mass.
We report this IMF in Sec. (4.3.5) as we have adopted it in some of our simulations
(see Sec. (5.8)).

4.3.6. The Basic Equations of the Chemical Evolution

In this Section we briefly report the main equations for the stellar evolution and the
chemical enrichment. We divide the discussion in two parts; in the first one we describe
the Simple Model by Tinsley (1980), while in the second one we report our adopted
equations.
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B The IRA Assumption

Basically, the Simple Model for the chemical evolution with a constant ¢(m) is valid
for a volume in which the gas is homogeneous and the mass flux is null (“closed—box
model”). Moreover, a key assumption is that at every time the produced elements are
well-mixed. In the followings we use the notations defined here below; the mass fraction
of gas is labelled by p = Myas/Miot, the total mass is defined as M, = Myqs + M,
and the metallicity is defined by Z = My /M. if My is the mass in metals. The basic
equation for the gas evolution is then given by:

d Myes
2 — (1) + E() (4.24)

where E(t) is the rate at which enriched and non—enriched material is restored into
the ISM; such quantity is given by:

mwz/wmhw@m»wvwm¢mwm (4.25)

m(t)

where m(t) is the mass born at ¢ = 0 and dying at time ¢, Mg(m) is the mass of the
remnant of a star of mass m and 7, is the lifetime of the same star. Substituting Eq.
(4.25) into Eq. (4.24) provide an integro—differential equation which can straightfor-
wardly solved neglecting the stellar lifetimes in Eq. (4.25). Such assumption is named
Instantaneous Reciclying Approximation (IRA).

The total mass fraction which is restored in the ISM by a stellar generation s defined
by:

R= /loo(m — Mg)p(m) dm. (4.26)

The mass of element 7 produced by a stellar generation per solar mass of formed stars,
namely the effective yield, is defined by the following equations if pz,(,) is the mass
fraction which ends in the newly produced and ejected element i by a star of mass m:

Yz, / mpz,m)ye(m) dm. (4.27)
Hence, we can rewrite Egs. (Eq (4.24), Eq. (4.25)) as

M s

20— _(t)(1 - R) (4.28)

and

E(t) = (t)R (4.29)

so that we can write the equation of metals:
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% — Z0(t) + Ex(t) (4.30)
having defined
Eal) = [ O; [(m — Mp) Z{t — ) + mpzgm)] 0( = Ta)p(m) dm. (431)

Note that the first term in square bracket accounts for the non—processed gas
whereas the second term represents the newly formed elements. When neglecting the
stellar lifetime 7,,, this equation become:

Bz = $(O)RZ() + yz(1 - R)(1) (4.32)

which admits the following analytical solution:

1
Zi =yz In (;) : (4.33)

B Numerical Models for Metal Enrichment

The Simple Model that we have presented in the previous Section has the serious
drawback of neglecting the stellar lifetimes; as this hypothesis may be acceptable when
dealing with massive stars, whose lifetime is in fact negligible compared with the evo-
lution time of the system, it is no longer a good approximation approaching stars of
intermediate mass, whose lifetimes are of the order of tenth or hundred of million years.
Hence, to better describe the releasing of heavy elements, one must solve the following
complete equation (Matteucci 2003) for each chemical specie, where o; is the surface
mass density of element ¢ in the gas and X; = /0,45 is the abundance by mass:

&i(t) = )+ Jarm ap(t — 7(m)) Qi (t — Tan)p(m) dim+

J\]/‘Ifn;lp [fomsn F) Yt = Tony) Qi (t — Tony) dpt| dm+
(4.34)

(1= A) [y 2t = 7(m)) Qi (t — Tn)p(m) dm+

St —7(m)) Quui(t — 7)o (m) dim.

Here below we give a short description of the meaning of each term. The quantity
Qmi(t) is defined as Qni(t — 7n) = Qij(m)X,(t — 7,) is basically the same quantity
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as pz,m), though it accounts for the chemical composition of star to calculate the
produced elements. This dependence is brought by @);; terms that are the entries of
the production matriz which relates the production of element i to the presence of
element j. The information on initial composition of stars dying now is contained in
the factors X;(t — 7,,,) that describe the abundances of gas at the formation time of
those stars.

—1(t) X;(t)| This represents the locking of metals in stars, which are more and
more enriched when subsequently forming in star—forming regions.

f M, mab(t — Tp) - .. dm | This integral represents the enrichment due to the mass

loss by low mass stars.

Af 1\];[; S;‘p .. dpldm | This term accounts for the materials ejected by
Snla.

(1—A) ]%fn]f ¥t —Tm) ... dm | This term gives the mass of metal restored
by single stars (m < 8Mg ) not ending in Snla-like binary systems or Snll
f pm ¥ Tm) - .. dm | This last term accounts for the SnIl explosions.

4.4 DETAILED EQUATIONS FOR METAL PRODUCTION

As we discussed above, our Star Particles are the stochastic representation of the star
formation process, i.e. they depict the stars that formed over a time interval over a
number of gas particles, or in other words within a space-time volume. Hence, we
loose some information about the exact mass with which they formed at what exact
time. This loss will define the resolution that we have in such a representation. As
an example the left panel of Fig. (4.1) shows the time that elapse between subsequent
samplings of star formation, as a function of the time of simulation, while the right
panel of the same figure shows the ratio between the true star mass and the sampled
one (solid line) and the same quantities integrated over time (dashed line), both again
as a function of time. The graphview are taken from one of the simulations we present
in Sec. (5.1), but can be considered as representative of the average case.

Then, the stochastic model of star formation “samples” the process in average each
few million years and estimate the underlying stellar mass fairly well, as all along the
simulation we have a scatter no larger than few percent. Only at the very beginning
the sampling is relatively poor, due to the low number of star formation event at high
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Figure 4.1: [Left Panel] The average time, in Million Years, that elapses between subsequent events
of Star Particle creation. [Right Panel] The average ratio between the “true” stellar mass and the
stochastic one ever formed at a given time. The x-axis for both panels indicate the Gyr elapsed from
the birth of the universe, so that today is at the extreme right.

redshifts. For the same reason, the “time resolution” is a bit worse also at late times,
the star formation rate is strongly decreasing.

In order to calculate the evolution of each Star Particle, we need to know the star
formation rate underlying its creation. Since from the above discussion it descend that
we cannot recover the real rate, we assume an impulsive SFR W(t) = 6(¢) for each
Star Particle, that is equivalent to assume that all the considered stars which live into
that particle are exactly coeval. Such an ensemble of stars is named a Single Stellar
Population (SSP).

Here below we derive the form of the rate for both Snll and Snla under this as-
sumption, given that the Stellar Model we refer to is the one described in Sec. (4.4).

The last ingredient that we must provide is the stellar lifetime. This is a function
of the star mass, the more massive stars having the shortest life. Several lifetimes have
been proposed in the literature. Following (Matteucci & Recchi 2001) we choose to
adopt the lifetimes given by (Matteucci & Padovani 1993). The analytical formula to
calculate them is the following:

10((1.338—\/1.790—0.2232*(7.764—log10(m)))/0‘1116)—9 m < 6.6 M,
T(m) = (4.35)
1.2 x m~ 1% 4+0.003 otherwise

Since the lifetime function affects both the rate of supernovae and the time-scale
of stellar evolution, we expect the results to be sensitive to this choice. Therefore,
we have also run simulations with a different lifetime function in order to check this
sensitivity. As an alternative, we choose the lifetime function provided by Maeder &
Meynet (1989):
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( 10—0.654510gm+1 m<1.3 M@
10—3.710gm+1.351 13 <m S 3M@
10—2.5110gm+0‘77 3<m S 7M@
7(m) = (4.36)
10—1.7810gm+0.17 7T<m S 15 M@
10—0.8610gm—0.94 15 < m S 53 M@
[ 1.2 x m~18 4+ 0.003 otherwise

As this equation predicts lifetimes for low—mass shorter than those from the formula
by Padovani & Matteucci, we expect then to maximize the differences in the production
of Iron—peak elements, that are the most direct indicators of the ICM metal enrichment.

In the following all calculations are made using the lifetime function given by
Padovani and Matteucci, if not otherwise stated. We refer to their lifetime as “PM”,
whereas the lifetime from Maeder & Meynet is referred as “MM”.

4.4.1. Computing the Supernova Type Il Rates

Because the Snll originates from stars which are more massive than 8 M the rate
with which they explode at the time ¢ is simply given by the integral

N (Mpm) dmi(t
Rour == [ plm@lw e~ rim(o) Coar (4.37)
T (My)
Here 7(m) is the lifetime function, so that m(t) = 77!(¢) is the mass of stars

exploding as supernova at time t. Because we are considering impulsive star formation
rate, this becomes

Rer = o mit) x (=257, (133)

4.4.2. Computing the Supernova Type la Rates

We remind that the number of Snla exploding at time ¢ is given by

MB,sup Msup
Rut)=A [ " ptms) [ $0) (e~ ) dm (439)
MB,inf Hmin

where mp is the mass of the binary system ranging in Mp nrMp sup, f(1t) is the
distribution of the mass fraction of the secondary star in the binary system function

for the secondary star, namely p = Ms/(M; + Ms). A is the fraction in the IMF of
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binary systems with the right properties to give rise to Snla (see Sec. (4.3.4)); my is
the mass of the secondary star such that = my/mp and 7, is the lifetime for a star
of mass m.

At a time t elapsed since the birth of the SSP, stars of mass m die having a lifetime
7 that matches 7(m) = t.

The inner integral

/ Wt )

inf

gives how many binary systems of mass mp have secondary stars of mass m = umpg =
771(t) so that we re—write it as

7 (Hint) dult
1
[ )0 = ) (4.40)
7 (psup)
Taking into account the impulsive nature of ¥, it results into
d fim,
) SHme 4.41
Flpna) 2 (1.41)

that using p = 2'77(1 4+ v)u” with v = 2 (e.g. Matteucci & Recchi 2001) finally gives

24 (@)2 L dma(t) (4.42)

mpg my dt

The rate of Snlanow reads

MB,sup 1
24m3 A @(mB)m—3de. (4.43)

mo=7-1(t) Mg, iny B

dm(t)

RSnIa(t) = - dt

For a power—law IMF of the type ¢(m) = A, - m~1*% the rate of Supernovae Ia is

1
24 mg A Awg_‘_—x |:MB7inf—(3+z) - MB’Sup—(3+z):| (444)

dmf(t)

RSnIa(t) = - dt

m2

while for a Larson IMF, p(m) = A, -1/m - (1 4+m/my)~", the result is

MB,sup —T
24m§AA¢/ <1+m3) dmy. (4.45)

M mp

dm(t)
dt

RSnIa (t) = -

mo Mp iny
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Figure 4.2: [Left Panel| The energy ejection rate for different IMFs due to both Snll (time range
[~ 3 — ~ 28] x 10°yr) and Snla as a function of time. Arrows indicate the lifetime of labelled masses.
[Right Panel] The energy ejection rate for a Salpeter IMF, using different lifetime functions; bold
line indicates the rate given by using PM lifetimes and thin line that given by using MM lifetimes.

4.4 3. The Energy Ejection Rate

The above results (Eq. (4.39) and Eq. (4.43)) give the number of Snll and Snla,
exploding at the time ¢, per unit time for a stellar population of mass m. Then the
energy ejection rate is immediately calculated as

Rg‘n = egnir X RSnII + esnrq X RSnIa = €gn X (RSnII + RSnIa)> (446>

once we assume that all supernovae eject the same amount eg, = 10 erg of energy. In
Fig. (4.2) we show this rate for different IMFs in the left panel and for the Salpeter
IMF using the lifetime function given by PM and the one given by Maeder & Meynet
(“MM” henceforth) (1989).

4.4.4. The Low—Mass Stars

Stars with mass below 8 M, does not explode as Snll, and, if not exploding as Snla,
they terminate their life progressively fading. In the late stage of their evolution these
stars loose their external envelope, then diffusing in the ISM the heavy elements that
were in this region. Because this loss happens at the end of their evolution, one can
calculate the rate of events in the same way as for the Snll. The only difference is that
we have to multiply by a factor (1 — A) in order to account for the fact that a fraction
A ends up in binary systems from which the Snla arise. Then, the rate is expressed by

Riy—(1— A) x ¢ (m(t)) x (—d%p) . (4.47)
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Since the fraction A usually amounts to few percent, the common usage is to ignore
it in the previous equation.

4.4.5. The Ejection Rate of Metals

The “fallout” of heavy elements in the ICM is the consequence of the explosion of a
supernova or of the mass—loss by a low-mass star. Therefore, in order to calculate the
rate of pollution due to a stellar population we have to multiply the integrand in the
previous rate—defining equations by the yields related to the element of interest. In
this way, if we consider the element Z; that is produced with a yield y%( (m), which
is function of the star mass, the production rate of this element by each considered
source X is given by

R (t) = yH (m(t) x ¢ (m(t)) x <_dv§t(t>>

Rg;lla(t) = _dfgt(t) 24 m% Afjj‘/[w;;:;li yétzz (m(t)) gO(mB)mLSBde (448>
mQETfl(t) J
RE () = yEM (m(t)) x ¢ (m(t)) x (_dqg_t(t)) .

In Tab. (4.1) and Tab. (4.2) we list the yields adopted in this work for Snla and SnlI
respectively. The yields for Snla Tab. (4.1) are taken from the model W7 of Nomoto et
al. (1997), the yields for Snll Tab. (4.2) are taken from the lowest-metallicity model
of Woosley & Weaver (1995) and the effective yields for the low—mass stars are taken
from Renzini & Voli (1981). As the latter yields stops at m = 1, we didn’t extrapolate
it down to m = 0.8, so that the minimum mass that give raise to Snla progenitors
is slightly different from standard assumption in our reference model (see Sec. 4.4).
Nevertheless, the difference has a negligible impact on the final results.

As for masses beyond 40 M we choosed again to not extrapolate up to 100 Mg
but to keep the 40 M, yields also for larger masses. This could make some difference
in final results, though this mass range account only for the high-mass tail where the
IMF is rapidly declining. Considering a Salpeter IMF, stars with mass m > 40 Mg
represent a fraction as large as 2.2 x 10~* and 0.037 respectively in number and in
mass, while for an Arimoto—Yoshii these fractions amount to 1.96 x 10~3 and 0.15
respectively. As for the heavy elements production (see the right panel of Fig. (4.3)),

Remn H He others C N (0] Mg Si Fe

1.4E400 | 0.00E+0 | 0.00E4-0 | 4.299E-1 | 4.83E-02 | 1.16E-06 | 1.43E-01 | 1.58E-02 | 1.50E-01 | 6.13E-01

Table 4.1: Yields for Snla from Nomoto et al. (1997). Values are expressed in units of solar masses.
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mass | y My, H He | others C N o Mg Si Fe

1 0.426 | 0.291 | 0.126 | 0.001921 | 0.000991 | 0.000873 | 0.00409 | 0.000281 | 0.000303 | 0.000541
2 1.188 | 0.814 | 0.345 | 0.002611 | 0.0093 | 0.00265 | 0.0113 | 0.000784 | 0.000845 | 0.00151
3 1.988 1.34 | 0.59 | 0.00246 0.0274 0.0043 0.0186 | 0.00131 | 0.00141 | 0.00252
4 2.794 | 1.82 | 0.864 | 0.01039 0.06 0.00583 | 0.0264 | 0.00184 | 0.00199 | 0.00355
5 3.6 223 | 1.2 | 0.01458 0.103 0.00821 | 0.0347 | 0.00238 | 0.00256 | 0.00457
6 4.6 2.79 | 1.63 | 0.00775 0.105 0.0123 | 0.0428 | 0.00304 | 0.00327 | 0.00584
8 6.6 4.08 | 2.31 | 0.00197 0.11 0.0173 | 0.0633 | 0.00436 | 0.00469 | 0.00838
10 8.7 54 | 295 | 0.10697 0.107 0.0255 | 0.0876 | 0.00574 | 0.00619 0.011
11 9.7 5.59 | 3.73 0.103 0.0532 0.0367 0.139 0.0121 0.0231 0.0129
12 10.7 5.96 | 4.11 0.1729 0.0815 0.036 0.218 0.0111 0.0927 0.0178
13 11.6 6.32 | 451 | 0.2309 0.115 0.0468 0.274 0.0228 0.0619 0.0186
15 13.6 6.98 | 5.24 | 0.33541 0.162 0.0541 0.684 0.00399 0.116 0.0245
18 16.3 7.89 | 6.28 | 0.4422 0.249 0.0569 1.13 0.0771 0.146 0.0288
19 17.1 8.08 | 6.46 0.412 0.285 0.0572 1.44 0.0459 0.285 0.0349
20 18 824 | 6.72 | 0.4317 0.214 0.0599 1.95 0.0495 0.3 0.0349
22 20.1 8.79 | 7.51 0.6262 0.242 0.0674 2.38 0.0624 0.382 0.04
25 23.1 9.4 | 864 | 0.8642 0.323 0.0795 3.25 0.162 0.339 0.0423
30 26.95 10.5 | 104 0 0.292 0.104 4.88 0.347 0.385 0.0446
35 31.3 11.5 | 11.9 | 1.0453 0.322 0.125 5.82 0.391 0.166 0.0307
38 31.8 11.3 | 124 1.1801 0.343 0.132 5.91 0.379 0.124 0.0319
40 32.5 11.1 13 1.3865 0.365 0.141 6.03 0.364 0.0801 0.0334

Table 4.2: Yields for Snll (m > 8 Mg ) and Low—Mass stars (m < 8 My, ) from Woosley & Weaver
(1995) and Renzini & Voli (1981). Values are expressed in units of solar masses.

in the considered mass range a Salpeter IMF will produce about the 22% of the total
amount, while an Arimoto—Yoshii IMF will produce the 33% of the total amount.

Oxygen accounts for most of the metals produced, especially in the high-mass tail

(see Fig. (4.3)); stars with m > 40 M, synthetize about 30% of the overall amount of
Oxygen for a Salpeter IMF and an even larger fraction for a top—heavier IMF. Since
these stars burn their nuclear fuel very quickly, exploding within few million years, this
huge amount of Oxygen is promptly returned to the surrounding gas. Uncertainties on
the yields in this mass range will also reflect on the ratio between the a—elements and
the Iron abundances in regions of recent or on—going star formation.

A natural way to extrapolate the yields for masses > 40 M would be to keep them
fixed at the value for 40 M, stars. Using such extrapolated yields would increase the
importance of very massive stars: the mass of Oxygen released grows up to 50% of the
total oxygen produced and the overall fraction of metals raises up to 30%.

In summary, since our adopted yields do not extend beyond a given upper mass
myp, we prefer to assume their value to be constant for m > my, as this appears to be
the least arbitrary procedure.

In Fig. (4.5) the ejection rates of both Oxygen and Iron are shown. Left panel
shows the comparison between Salpeter and Arimoto—Yoshii IMFs, whereas the right
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Figure 4.3: [Left Panel] The yields presented in Tab. (4.2). Note that the Oxygen dominate by an
order of magnitude among the considered metals, and the negligible Iron production. [Right Panel]
Continuous lines show the fraction of heavy elements provided by Snll as a function of mass both for
a Salpeter (bold) and an Arimoto-Yoshii IMF (light), comparatively with all the elements provided by
all SnIT and Snla; dotted and dashed lines show the cumulative contribution for a Salpeter and an
Arimoto-Yoshii IMF respectively.

panel shows the effect of assuming different lifetime functions.

The effect of assuming the Arimoto—Yoshii IMF is evident most of all at high

masses (which correspond to shortest time-scales to the left of the x—axis), but it is
also significant as for the enrichment due to Snla. In fact, as shown in Fig. (4.6), the
Arimoto—Yoshii IMF falls below the Salpeter one only for m ~ 1.8 M, , becoming the
26% lower at m = 1M, while being two times higher for m > 10 My . Therefore
the mass range where the Salpeter IMF dominates is essentially the one of dwarf stars
that never explode. The net effect is a much higher metal ejection of the Arimoto—
Yoshii IMF.
The same effect can be seen in Fig. (4.5), where the Salpeter IMF is compared to our
adopted Larson IMF computed for z < 2 (Left Panel) and at z = 5 (Right Panel). Since
this Larson IMF is heavier at higher redshift, the described effect is even enhanced,
also owing the fact that the Larson IMF dominates over the Salpeter IMF down to
very low masses (see the Right Panel of Fig. (4.6)).

As for the effect of using the lifetime function from MM, the variation is mainly
important for Snla, where the MM lifetimes for stars of ~ 1M are few Gyr shorter
than the PM lifetimes do, and to concentrate the death of these stars in range 1 M, <

< 1.3Mg in a very narrow time interval around 9 Gyr.

If we account for stars in the mass range 0.8 My < m < 1My and, at the same
time, we use MM lifetimes, would maximize the amount of elements produced by Snla.
Instead, by using the PM lifetimes we miss all the elements produced by recently formed
low-mass stars. Moreover, if we neglect stars with m < 1 Mg , we miss an additional
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Figure 4.4: The ejection rate of Iron (dashed lines) and Oxygen (solid lines). Left Panel shows the
comparison between a Salpeter (bold lines/dashes) and an Arimoto—Yoshii (light lines/dashes) IMFs
and Right Panel the comparison between using PM and MM lifetimes.

fraction of Iron—peak elements. Still, the total mass of these missed metals turns is
only about 2 — 2.5% both for a Salpeter and for an Arimoto—Yoshii IMFs.

4.5 THE IMF

As we outlined in Sec. (4.3.5), the IMF is defined as the number of stars ever formed
per unit area per unit mass. In practical usage different than observations of projected
quantities, the “area factor” will drop so that the IMF become the number of stars ever
formed per unit mass interval, in units of mass of the considered stellar population, so
that given a functional form

p(m) = Ap(m) (4.49)

the following relation must be satisfied:

/wAn@mwmn:L (4.50)

This defines the normalization constant A by mass. As already stated, the most
common form for ¢(m) is a power-law like form ¢(m) = m~0+%). Within this family of
IMFs, the most common is the Salpeter (Salpeter 1955) one that has x = 1.35. As other
slopes have not been yet ruled out, we treat the IMF as a parameter. In the following
we will also consider more top—heavier IMFs like the Arimoto—Yoshii (z = 0.95) or
other IMFs with a different functional form, like the one proposed by Larson (Larson
1998), having a time-dependent shape, as proposed by Finoguenov et al. (2003b).
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Figure 4.5: The ejection rate of Iron (dashed lines) and Oxygen (solid lines) for different IMFs. In
both Left and Right Panels Salpeter/Larson IMFs are drawn in bold/light lines and dashes. In Left
Panel the Larson parameter m; is 0.35 (z < 2), in Right Panel it is set to 3.52 (z = 5).

Changing the IMF results significant differences in final results, for both the abun-
dances of single elements and the ratios of abundances among different ones. Such
variations are due to the different fraction of stars which lie in a given mass interval
M-M + dM when the IMF varies. In Fig. (4.6) we plot the IMFs used to run our
simulations.

Finoguenov et al. (2003b) argued about the need of a strong IMF evolution at

= 4 in order to reconcile the element ratios between groups and clusters of galaxies.
Following Ferrara and Hernandez (2001), they take a Larson IMF

d¢(m)/dlogm oc (14+m/m,) " (4.51)

and identify the characteristic mass scale m, with the Jeans mass of the star—forming
clouds, then making it dependent on the redshift at which the clouds are considered.
They found that it is necessary to keep m, = 0.35 constant below redshift 2 and impose
a linear growth of logmg from that epoch on. We take their results as an example of
time-varying IMF, making mg changing as

(logg (s, ing) Z < Zinf
Z— z
logo(ms(2)) = ﬁ X (logyg M, sup — 10810 Ms inf)  Zing < 2 < Zeup  (4.52)
\ loglo (ms,sup) z 2 Zsup
with
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Figure 4.6: [Left Panel] Salpeter IMF is plotted (solid line) along with an Arymoto—Yoshii IMF
and the Larson IMF of Eq. (4.52) for different redshifts. Note that the plot is by number fraction.
[Right Panel] ¢rarson(M, 2)/@salpeter(m) and @ay(m, 2)/saipeter(m) are plotted. It is clear how
much the high—mass tail of the Larson IMF becomes more and more important at high redshifts.

Zinf = 2
Zsup = 10
ms,mf = 0.35
M, sup = 10

In this way my is constant and equal to 0.35 and 10 respectively below z = 2 and
beyond z = 10, and log,, (ms) linearly varies at intermediate redshifts. Fig. (4.6)
shows the obtained functions ¢(m) at some redshifts in the left panel, while the right
panel shows how the number of stars falling the low—mass and high—mass tails changes
with redshifts, with respect to the Salpeter IMF (straight line).

4.6 METAL-ENRICHING THE (GAS PARTICLES

Once a Star Particle has been created, it starts to evolve accordingly with the model
we have described above. Because each Star Particle is considered as a Single Stellar
Population, we can straightforwardly apply the evolutionary equations presented in
Sec. (4.2) for the metal production as well as for the energy ejection.

We outline here again that a Star Particles is a stochastic representation of the local
star formation process surrounding the Gas Particle from which it originates. Hence,
each of them “contains” the stars born in some volume during a typical interval of few
million years (see Fig. (4.1)). We remind that the mean mass of a Star is mg = mo/N;,
being mg the mean initial mass of Gas Particles and N the number of Stars that each
Gas Particle is allowed to form.

Therefore, at the typical resolution of our simulations, for N; = 3 each star particle has
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an average mass of ~ 10%5=7 M, . Hence, we deal with object as massive as a very rich
globular clusters or more, and have to distribute their products over the surrounding
gas.

What is exact the meaning of “surrounding” remains fairly arbitrary. The most
common and, to some extent, natural answer would be to translate it in the language
of SPH. This means (1) to consider as “surrounding” all the Gas Particles which would
contribute to the definition of the hydrodynamic properties of a Gas Particle that were
in place of the considered Star, and (2) to make each neighbour Gas receiving a fraction
of ejecta as large as its SPH weight, calculated using the same SPH kernel used for
hydrodynamics.

This approach was suggested by Katz et al. (1996) and followed by later works. Obvi-
ously, this amounts to define some characteristic gas mass that receives the ejecta from
Stars. This mass will be roughly equal to NV,, x myq if N,, is the number of neighbours.
Using N,, equal to the neighbours number used for SPH calculations is in turn a natural
choice in this framework.

In fact, N,, gives the mass—scale for the accuracy of lagrangian treatment of hydrody-
namics. Still this has little or none to do with the “deposition” of supernovae ejecta
for several reasons.

(1) Our Stars are not exactly the stars related to the star formation that is physically
dependent on the hydrodynamics of the surrounding.

(2) How far the blast wave will penetrate the gas is more a matter of insterstellar
medium physics than ICM physics. In other words, it involves length—scales that are
about two orders of magnitude below the better spatial resolution of typical cosmolog-
ical simulations. The extent of penetration, and then of deposition, is not immediately
related to the SPH resolution.

(3) The SPH kernel assigns much more weight to very close neighbours than to the
more distant ones, so that few Gas Particles receive most of the metals and of the
energy. We expect this situation to take place in real Sn explosions, with nearby gas
being more heated and enriched. However, in the stochastic representation of star
formation we are somehow loosing information on the locality this process. For this
reason, an equal weighting of all neighbors, independent of their distance from the SP,
may be more consistent with our stochastic representation.

As at present there are no comprehensive studies about this topic, and it is unclear
how and how far the results depend on the choice made. In the following we outline a
discussion of this dependence.

B The Theoretical Kernel’s Weight Distribution

We show in Fig. (4.7) the SPH kernel that we use to run our simulations, as described
in Sec. (3.3.1). The equal-weighting of the particles that we mentioned right above
would be obtained by a Top—Hat (TH) Kernel, which assigns to all neighbour particles
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a constant weight equal to 1/N,,. Given the explicit expression of the TH kernel, in
Fig. (4.7) it would be represented by a straight line at weight value of 1.

Relative Weight

0 1 1 1
0 0.2 0.4 0.6 0.8 1

Distance in units of h

Figure 4.7: The cubic-spline SPH kernel used in simulations.

In order to assign its relative weight to a particle ¢ that falls within the radius R,
enclosing the N, neighbours, we have to calculate first the sum of absolute weights of
all the neighbours, so that the relative weight is given by

_ K(r;, h)
Zj'vznl K(TJW h)

where K (r, h) is the value of the Kernel function at the distance r and h is the measure
of the Kernel support, i.e. roughly the distance of the most distant Gas Particle. Hence
the relative weight of a particle is a function only of its distance from the Star. If we
want to study how the relative weights distribute with respect to the relative distance
of the particles, or with respect the relative mass enclosed within this relative distance,
we must assume a distribution function for the Gas Particles. Assuming that each
Particle has the same mass, or that no segregation effects are in place and Particles of
different masses are well-mixed, this is equivalent to assume a density function for the
gas. For the purpose of this discussion, we will model the density of gas around Stars
simply as a power—law

[

(4.53)

p(r)=r* (4.54)
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so that a > 0 will hold for Particles that tends to distribute over spheres around Stars,
a = 0 means a uniform distribution and a < 0 for gas particles concentrated around

Stars.
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Figure 4.8: The relative weight distribution. Thick lines give the mass fraction which is receiving a
given relative weight. Thin lines indicate instead the number fraction.

In Fig. (4.8) the three cases a = 1, @« = 0 and a = —1 are shown. The bold curves

are the functions

r(m)/h r(m)/h
flewm/mror, h) = / K(r,h) - p(x) - dxrdr = / K(r,h) - 4zr*+2dr
0 0

where 7(m) is the radius which encompasses the mass m. It is convenient to deal with
normalized quantities, so that hereafter we call » and m the fractions of radius and
mass and, hence, h is identically equal to 1. Bold lines in Fig. (4.8) give the relative
weight assigned to a given mass fraction. The thin lines are given by

fla,r h) = / K(r.h) - p(x) - 4rrdr = / K(r,h) - Arrot2dr
0 0
and then give the relative weight falling within the radius 7.

What can be immediately inferred is that the more concentrated is the gas, the
larger is the mass fraction which receives a given fraction of metals (in what follows we
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will use “weight”, “ejecta” and “metals” as synonym). As the gas is more and more
concentrated around the Star, the radius at which the integral of relative weights reach
a fixed value decreases. On the contrary, for a > 0, the mass which receives the same
amount of metals is lower while the radius is larger. For instance, as a grows from —1
to 1, 50% of the weight is assigned to about 12% (a = —1), to the ~ 8% (a = 0) and
finally to the ~ 6% (a = 1) of the mass. Though the absolute values do not changes so
much, the relative ratios are as large as a factor of two, and can become larger if gas
become more concentrated. This does matter as we must reason in terms of particles,
namely discrete numbers.

So far we used pyqs(7) as a tracer of the Particle density p,,(r) under the assumption
that all Particles have the same mass (or that different masses are well-mixed). It is
worth to mention that, since we are interested precisely on the final effect about using
SPH Kernel to spread over particles, we must take care to use p(r) properly, that is
rescaling h (i.e. the radius enclosing all the mass and then all the particles) in such a
way that the total mass inside this radius be always the same as « changes; in fact we
would take a given fixed number N,, of particles independently of p,,(r).

B The Distribution of Weights in Simulations

We run few simulations in order to check to what extent the results on metal distribu-
tion are sensitive to the adopted spreading scheme. We address the reader to Chap.
(5) for details about the runs; here it is sufficient to know that all simulations are
homogeneous as for the implied physics, the only difference being the number of neigh-
bours N,, (4, 32 and 128) and the Kernel used for the spreading (SPH or TH). The test
simulations have been also run using two different mass resolutions, the higher being
height times better than the lower. We will refer to such simulations using letters L
and H for low and high resolutions respectively. The pedix will remind the value of
N,, and apex the kernel used, so that L7 is a low-resolution simulation using N,, = 4
and the SPH Kernel, while H1, stands for an high-resolution run with N, = 32 and
the TH Kernel.

The resulting Iron profiles are reported in Fig. (4.9). The first line shows the
lower-resolution results and the second line the higher-resolution ones. While the
formers exhibit a remarkable instability as N,, and Kernel are changed, the H-results
are instead stable and seem to have achieved a good numerical convergence.

Therefore, we are confident that our high-resolution results are not biased by the
choice made as for the spreading.

If we consider the distribution of Gas Particles with the Iron abundance, as shown
in Fig. (4.10), this conjecture is strongly supported. In fact, the distribution in high—
resolution runs is basically independent of the choice made as for the spreading, while
the abundances in low—resolution simulations are strongly affected by both changes of
N,, and of the Kernel, in such a way that increasing NN,, tends to flatten the distribution
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Figure 4.9: Profiles for Iron abundance (in solar units). The radius is in units of the virial radius.
[Top Panels] show the Low Resolution Runs, and [Bottom Panels| show the High Resolution Runs.
Profiles shown in [Left Panels| are emission weighted while the ones on [Right Panels] are mass
weighted.

while stretching it towards low abundances and suppressing the high—Z tail.

When the TH Kernel is used instead of the SPH one, the mean Iron metallicity
of the gas increases, and the very—low abundance tail is greatly reduced while the
population with low and mean metallicity grows. The very—high abundance bins are
rather stable as they lie in regions of very strong star—formation and high gas density,
where the star—-number to gas—number ratio is quite high.

A comprehensive analysis of such features are much less simple, and we do not
go further in the matter. From the results shown here, we assume that our high—
resolution results are not biased by the choice made as for the number of neighbours
and the spreading. We defer a more detailed discussion to a forthcoming paper.
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Figure 4.10: The gas mass distribution vs Fe (Upper Row) and O abundances (Bottom Row). Low

resolution results are shown on the Left Hand Side whereas High resolution results are shown on the
Right Hand Side.

TION

THE METALLICITY-DEPENDENT COOLING FUNC

Once the Gas Particles have been metal enriched, the physics governing their evolution
will also change, basically for the net energy emission being far more efficient due to
the line emission of heavy elements. The exact accounting of this effect would require
to model the gas chemistry with as many elements as possible; nevertheless, using
only few does not allow a proper modelling of the line emission and, on the other
hand, increasing too much the number of traced metals would be unpractical as for the
memory consumption. Hence, we decided to make use of the cooling curves modelled
by Sutherland & Dopita (1993). An alternative would be to use the code mekal to
calculate the emissivity due to 14 metals with real relative abundances, but we did not
yet implemented it.

They calculated, as a function of the temperature, the bolometric emission for an
enriched gas of solar composition, and indexed it with the Iron abundance. Then,
in order to calculate the cooling of an enriched Gas Particle, we linearly interpolate
the two curves referring to values of [F'e/H] that include the value for the particle so
that to obtain a fiducial value of its energy emissivity. The curves are shown in Fig.
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Figure 4.11: Figure from Sutherland & Dopita (1993). The emissivity curves of a low—density
ionized plasma as function of temperature for different gas metallicities. Values for [Fe] are indicated
by labels on curves.

(4.11). The cooling in presence of metals differs considerably from the cooling of a
pristine non—enriched gas. As it has been shown, this turns out to be fairly important
in removing low—entropy gas in the inner regions of clusters (see Chap. (2)).

One further important implication of using the metallicity-dependent cooling is that
the density threshold for the onset of star formation is strongly decreased if the gas
is metal-enriched, as a consequence of the higher efficiency with which the energy is
radiated. To model this effect, we store in an array the values of the density threshold
pu, for different metallicities of the gas, in the range [—4:0.5] as for [Fe]. Values are
calculated as in the standard effective—model. Then, during the simulation, each Gas
Particle will form stars accordingly to the threshold pertaining to its own metallicity.
The threshold is linearly interpolated using the array calculated ad the begin of run.
A detailed description is given in Sec. (5.5).
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4.8 THE IRA THRESHOLD

Having implemented what we have discussed in detail in Sec. (4.2), it would be straight-
forward to calculate exactly the evolution of each one of the Star Particles once all the
ingredient of stellar model are given. Nevertheless, as we described in Sec. (3.4), the
star—formation effective—model as implemented in GADGET requires an amount of
energy to be promptly thermalized in the hot gas phase in order to achieve the self—
regulation of this process. We note that something similar is likely to happen within
real galaxies; since the star formation process is not instantaneous, the energy ejected
by the first-born most massive stars will affect the ongoing process few million years
after the first star formation episode. Furthermore, our Star formation has a limited
time resolution (see Fig. (4.1)) then we do not describe the very early stages of stellar
evolution.

Finally we choosed to consider some fraction of the stellar population being formed
as istantaneously exploding. Namely the most massive, or short-living, stars are
treated as in IRA assumption. That is to say that we allow the energy of those stars,
as well as the metals they synthetized, to be promptly available in the Effective Model.

In more formal terms, let M]** be the threshold mass above which the stars are
considered short-living and 7/} = 7 (M/}**) the corresponding lifetime.

Depending on M/ a different amount of energy and metals are released at the
epoch at which a Star Particle is created.

This could make significative differences as for the locking of metals in stars (see Sec.
(5.4)).

The number of stars in the mass range [8 Mgy < M/} : Myp] is easily calculated

as

Myp
Ny, = / w(m)dm
MIRA

th

Therefore, under our assumption of constant energy eg, per supernova, the energy
released is

e = €esn X Ny,

If y;(m) is the yield for the element 4, the mass of that metal per solar mass of stars
formed is given by

o Myp
mf = [ () olm) dim

IRA
Mth

or, using Y;(m) = y;(m) x m, which are quantities tabulated in Tab. (4.2), by
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Figure 4.12: The vertical line indicates our choice for M/#* = 15Mg . [Panel a] We remind the
lifetimes (using the PM) we are referring to. [Panel b] The fraction of Oxygen and Iron produced by
stars up to a given mass. [Panel c] The number fraction of stars living in the mass range beyond a
given mass. [Panel d] The mass fraction living in the mass range beyond a given mass.

o Myp
my = / Yi(m) p(m) dm.
i
Therefore, we must ensure that a Star calculates its evolution starting from A}

downto 1 Mg , in order to avoid that short-lived stars are accounted twice. This is
done (1) by delaying the onset of its evolution by 7/ and (2) by providing each Star
with two different mass attributes. One, namely the initial mass iMass, stores the mass
with which that SSP was formed, and the second attribute, namely the mass, is the
actual mass the Star has at a given time. This actual mass keeps trace of the SSP
evolution, decreasing as stars die and eject material. Therefore, when a Star Particle
is created, its mass will be fy, x iMass if fy, is the mass fraction living beyond M}*.
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Figure 4.13: The energy released by the explosion of short-living stars as a function of M/**. The
vertical line indicates the value of 15 Mg we used in simulations.

The metal abundance of a Star is equal to the abundance of the GP from which
it has formed. Then, the metal content of the Star and the GP is proportional to the
respective masses. In other words, if ngi is the mass of element ¢ present in the gas
at the moment of Star creation, and m, is the mass of the same element produced by
the short-living stars, the Star will have a mass m% = mj x M,/Mys and the Gas
Particle will have a mass m% =mj x (1 — M,/My,s) +mz,.

In Fig. (4.12) we show the lifetime of a star as a function of its mass (upper left
panel), and, for all stars living in the mass range beyond a given mass, the produced
Oxygen and Iron (top right panel), the number fraction (bottom left panel) and the
mass fraction (bottom right panel). Fig. (4.13) plots the energy per solar mass of stars
formed which is promptly injected in the hot phase as M/} varies. These figures give
an immediate impression about the fraction of mass, metals and energy that we are
instantaneously recycling as a function of M/},

Vertical lines shows the values at M/** = 15Mg that we choose to run our sim-
ulations. This choice was simply a compromise among different needs. From the one
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hand, it is necessary to ensure a sufficient energy budget to the effective model in order
to ensure the self-regulation of the star formation. On the other hand, we are working
to avoid the IRA, so that we should push this value as higher as possible. The choice
of 15Mg keeps about half of the energy due to Snll in the instantaneous recycling
approximation.

The parameter M/** affect the definition of fundamental quantities of the effective
model through Eq. (3.71), Eq. (3.73) and Eq. (3.80) together with its equilibrium
solution Eq. (3.81) (see Sec. (3.4.5)).

The dependence in Eq. (3.71) holds formally in order to obtain the heating of hot—
gas heating by supernovae (see Eq. (3.72)). Nevertheless, when calculating the star
mass using Eq. (4.1), we drop the factor (1 — 3) as we do not need to model the mass
loss in such a way. This dropping propagate also to Eq. (4.7) and (4.8).

The (§ parameter coincide with the mass fraction plotted in the bottom right panel
of Fig. (4.12), and the ugy parameter is related to both # and the energy per solar
mass of stars formed, as shown in Fig. (4.13). Hence, the lower is the value of M/,
the lower are # and ugy. As discussed in Sec. (3.4.5), Eq. (3.80), which described
the evolution of the hot phase energy density, tends to an equilibrium solution, which
is reached within some decaying time—scale. This time-scale, which is given by Eq.
(3.82), tends to increase as [ decreases. The mass—fraction [ is now smaller, owing to
the higher IRA mass—threshold, but just by a factor ~ 2. Furthermore, this decrease
of ( is somehow compensated by a shorter time—scale of star—formation, ¢,, due to
the more efficient metal cooling. Therefore, we do not expect the decaying time for
reaching the equilibrium solution to be now significantly different from that of the
original effective model by Springel & Hernquist (2003a).

The two most crucial parameter which are affected by the choice for M} are the
value of density threshold py, for the onset of star formation and the value of winds’
velocity. Higher values of M/} gives a smaller energy budget. This leads to lower
values for py, thus causing star formation to start at higher redshift and to continue
until very late times. The dependence of the wind velocity on M};** is shown in Fig.
(4.14). This velocity is proportional to (esy)'/? (see Eq. (3.92)). As it is proportional
to the number fraction of short—living stars, plotted in the bottom left panel of Fig.
(4.12), the value of v, is rapidly declining as the the mass threshold grows from very
low (~ 8 Mg ) values to extremely high ones (< 100 Mg, ). For this reason, we used
instead a slightly different formula, calculating the winds’ velocity as

Bs

2
Uy, X ————UgN-
(1 —5s)
instead of
2
Vyp X 77— USN = €SN
(1-0)
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Figure 4.14: The different values our v,, will take as M/** range over m > 8 M, . Continuous line
refer to a Salpeter IMF and dashed lines to an Arimoto—Yoshii one.

In the above Eq. (4.8), (s is the value of § for M/}* = 8 My . Accordingly, vy
changes now in a much narrower interval. Indeed v, changes (for a Salpeter IMF)
by about 40% when the threshold value varies from 40 M, to 8 M . Hence, we can
increase IRA limiting mass while still having a reasonable winds’ velocity.

We postpone to section Sec. (4.8) a more detailed discussion about how the results
change varying M/

4.9 THE ENERGY FROM SUPERNOVAE

When the supernovae explode they eject a large amount of energy along with metals and
non—processed gas. Although several uncertainties in the modelization of supernovae
explosions, a general consensus has been reached about a fiducial value of the energy
esy ~ 10% erg due to a single supernova event. Since long time many different papers
have been published on how this energy interacts with the Inter—Stellar Medium and
deposits therein. However no firm conclusion has been reached so far (e.g. Thornton
et al. 1998). From a numerical point of view, several attempts have also been made
to model properly the feedback energy settlement into the gas. Basically, these models
consist of mixed flavours of two main routes; the first, more simple, is to let the energy
to be promptly thermalized, then suddenly raising the adiabat of the gas. The second
route makes a fraction « of energy to end in bulk kinetic energy or in kinetic pressure,
instead of thermal pressure, then calculating the thermodynamical quantities using
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only the remaining (1 — «) fraction. In this way, also “cold” gas may be sustaneid by
pressure against gravitational collapse. More sophisticated models try to describe the
multi-phase nature of the gas and have proven to give very interesting results as for
the self-regulation of the star formation without reverting to artificial tricks ().

Within the framework of the multi-phase model implemented in GADGET | we
modify the equations that define the model so as to include the extra—energy from the
delayed supernovae explosions as an external energy source.

We remind that the code is fully adaptive also in time-stepping, so that each
particle has its own timing as for the evolution and only few of them are evolving at
each time—step; then we denote as active those particles which are evolving in a given
time—step. When a Star evolves and spreads the produced metals and energy on the
surrounding gas, the involved GPs are not in general active at the same time of the
Star. Therefore, the thermodynamics of those GPs is not affected by this extra—energy
that has to be stored in a reservoir. Thus, we add such a reservoir of energy to each
gas particle, and we sum therein the contribution from all the interacting Stars until
the Particle become active. Let us label as e, this “external energy”.

When the code handles the thermodynamics of a Gas Particles, it has to decide
whether it is a multi—phase, star—forming particle or not. If conditions for the onset of
thermal instability and multi-phase are not fulfilled (see Sec. (3.4.5)), the code reverts
to a simple cooling routine. We choose to add the energy of the reservoir once the
cooling has been done. In this respect, we tried different schemes, by adding energy
before the cooling or half before and half after, and quite reassuringly, no differences
are found. Instead, if the conditions for the on-set of star formation are satisfied, the
code performs all the calculations described in Sec. (3.4.5). As we have to work with
units of specific energy, while the reservoir has units of ergs, in the following we label
the specific energy from the external source with €, = e./M, being M the mass of the
Gas Particle. This energy both heats the hot gas and evaporates cold clouds. Since we
ignore the internal structure of the multi-phase gas, the best hypothesis we can do is
that the specific energy amount pertaining to each phase is proportional to the mass
in that phase. Therefore, if M = M_jpuas + Mot 18 the total mass and x is the fraction
of mass in clouds, x €, is the fraction of energy that evaporates clouds and (1 — x)e, is
the energy that heats the gas. Simply following the same line of reasoning as in Sec.
(3.4.5), we must account for the external specific energy €. in the change of internal
energy uy of the hot phase. To this purpose, we rewrite Eq. (3.72) as

d d ps

a | = gy,

€e

ot

+ (1 —2)ps (4.55)

where 0t is the time interval during which the energy is deposited in the reservoir.We
can re—interpret the added energy as if it were produced by some additional amount

of supernovae. Then, the density of star formation rate which would be required is
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(1—=x)ec pn _ 0p5
€SN ot ot

Since p. = /(1 — x)py, the previous equation can be expressed in terms of d p./dt

(4.56)

as

dpf  (A—w)ec pp T xE pe
dit —  esy  dtl—ax  egy Ot

Therefore, the equation for the change of the energy density of the hot—gas is

(4.57)

d d ps

a(ﬂhuh) = €SN dt (4.58)
SN *
dp. dpf
= €gN (dtp + df ) (4.59)
Pe x €c 1y
_ Pel1 . Lz 4.60
ﬁ“SNt*(Jr(l—ﬁ) esn 5t) (4.60)

As for Eq. (3.73) that describes the evaporation of clouds, its r.h.s term has the
dimension of g cm™3 sec™!, because the evaporation rate is proportional to the density
rate of supernovae explosions. Then we re—write this equation by adding a term given
by the rate of supernovae density that would produce the energy density ze.p.. Keeping
the mass fraction of short-living stars equal to [, it is easy to show that this additional
term is

Tee  Pe
Ko, 4.62
ESN ot ( 0 )
Therefore, Eq. (3.73) reads now as
d/)c Pc €e ts Pe
=Ap— |1 = =Ap—T. 4.
dt |, 5@( T eon 6t) o (4.63)

Here I' > 1 accounts for the extra energy term from the supernovae explosions
originating by long-lived stars. The passages which lead to the energy equations (3.80)
are the same as in Sec. (3.4.5) but using gy instead of ugy and carrying on the factor
I' that we have introduced. Finally, the equation for the evolution of the energy of the
hot phase is

du e/~ c (U
Phd—th = ﬁf— (Usn + ue — up) — Aﬁf— <—h - uc) (4.64)
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The functional form is exactly the same as that of the original Eq. (3.80). Therefore,
also the formal solution is exactly the same, provided that the temperature to which
the solution tends is

usn

=15 AT AT + Ue. (4.65)

Un

Nevertheless, the equation (4.64) involves explicitly the cold mass fraction x owing
to our hypothesis on the sharing of the energy e, among the two phases. So that, the
only way to reach the equilibrium solution of the previous energy equation is to solve it
iteratively using the original “unperturbed” solution of Eq. (3.81) as the initial guess.

The net effect of this “perturbation” is to lower the cloud mass fraction = and
to raise the temperature of the hot phase. The importance of this effect is strongly
dependent on the local conditions. In order to have some hint, we perform here below
an order—of-magnitude estimate of all factors entering in Eq. (4.64).

(1) Taking 0t ~ 0.5 Myr as a mean value for the time-step the ratio t,/dt can vary
by about an order of magnitude, depending on whether we are considering region of
strong or mild star formation. Since t is equal to 1.5 Gyr, t,/dt will range in the
interval 10%-10° Myr. (2) The value of the cloud mass fraction x ranges obviously
in the interval [0:1]. A typical value for x in our simulations is 0.8, meaning that a
multi-phase Gas Particle has in general a fairly large cold phase. (3) The ratio between
the energy in the reservoir and egy depends strongly on the value of M/** and on the
time-step we choose for the stellar evolution. A top-heavier IMF and/or a smaller
M} will produce a smaller value for this ratio. We plot in Fig. (4.15) this ratio as
a function of time during the evolution of a SSP. At each epoch the energy ejected
is computed within a time interval At ~ 0.1¢. Most of the energy produced by Snll.
Therefore the fraction of energy that each Star ejects in a time interval At much shorter
than its lifetime, is small with respect to the energy released by all the short-living
stars. This is especially true in the Snla regime, while Snll would anyway contribute
significantly.

Finally, by assembling together all the order-of-magnitude estimates, we do not expect
major variations neither in the final energy of the hot phase nor in the cloud mass—
fraction x, appreciable changes being expected in strong star—formation regions.

Finally, the energy of the reservoir is also used to raise the velocity of winds of
star—forming particles. Taking Eq. (4.8) and adding to it the contribution from the
TeServoir energy e., gives

ook P -(1+u€e -(1_68)). (4.66)

SN Bs

Furthermore, we also introduce the stochastic wind model for non star—forming
particles, by selecting the particles which fulfill the two following conditions:
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2
° € > 0

€e
€SN

*p=>n

where vg is the wind velocity due to egy with no contribution of €.; m, = e./egy is
the mass of stars which would produce the energy e., so that the second condition is
just the application of the stochastic algorithm. It requires that a randomly drawn
number falls above the threshold n x m, /M, where M, is the mass of the Gas Particle.
Basically, the GP eligible to take part of the winds are only those receiving an amount
of energy which is comparable to that from short-living (IRA) stars. Therefore, non—
star—forming Gas Particles take part to winds, whose energy is given by

02 = 2%, (4.67)
0
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4.10 SUMMARY

In this Chapter we have presented our most advanced implementation for cosmological
numerical simulations with metal enrichment. Starting form the code GADGET by
Volker Springel (Springel et al. 2001, Springel & Hernquist 2002, Springel & Hernquist
2003a), outlined in Sec. (3.4), we implemented several original features:

[ 1] the full account for the evolution time-scale of stars;

[ 2] the full account for delayed metal and energy production from both Snll and
Snla;

[ 3] the full account for the extra—energy due to supernovae in the thermodynamical
equations of the code;

[ 4] the metallicity dependence of the cooling function.

In the next chapter we will present and discuss a number of simulation runs realized
with this code.
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CHAPTER 5

RESULTS

B Chapter Outline

Here we basically discuss the main results drawn
from first simulafions run with our “chemical”
code. We resume all the parameters and de-
scribe all the simulations run; then, we discuss
some numerical issues and the general proper-
fies of the simulated cluster. Finally, we compare
the obtained abundance patterns with those
observed.

Resume of Parameters and Runs ... §5.1
Some Numerical Issues ... §5.2-§5.4
Effects on General Properties ... §5.4-§5.9
The Metal Patterns ... §5.10

INTRODUCTION

In this chapter we present the results obtained from the analysis of the simulations
performed with the code described in Chap. (4). First, we review all the code param-
eters and give a synoptic table of their values for all runs. After this introduction, we
proceed with the discussion as follows. We are interested in studying both the numer-
ical and the physical effects of the parameters’ choice as numerical side—effect must
be under control in order to be “masked” when conclusions on the physics are drawn.
Therefore we distinguish two types of parameters upon which final results are sensitive:
parameters that only concern numerical issues and should not affect the physics and
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parameters that instead have a physical meanings.
The issues we include in the first group, which basically account for the “numerical
stability”, are :

[ 1] The spreading technique

l.a - using an SPH Kernel or a Top—Hat Kernel
1.6 - the number of neighbours over which s Star Particle distribute the produced
energy and metals.

[ 2 ] The mass segregation dependence on the number of stellar generations N

[ 3] The value of the time-step of stellar evolution.

Item 1 has been already discussed in Sec. (4.6). The TH Kernel proves to be
more stable than the SPH one, in the sense that both metal abundance profiles and
the mass-metallicity distribution are less sensitive to the value of N} when using it.
Furthermore, both are nearly identical to the ones obtained with eight-times—better
mass resolution. As we expect this dependence to be exactly related to the mass
resolution, we take this as a sign of a better stability. So far, we trust in stability
exhibited by high-resolution runs to draw conclusions on physics.

As for parameters that depend instead on the physics of star formation and evolu-
tion, the related issues are the following:

[ 1] The dependence of the effective-model on M/*.

[ 2 ] The dependence of the effective-model dependence on metallicity.
[ 3 ] Additional requirements for a Gas Particle becomes star—forming
[ 4 ] Changing the IMF,

4.a - results when having the Arimoto—Yoshii IMF and winds’ energy set to the
level of a Salpeter IMF;
4.b - results having the Arimoto—Yoshii IMF and auto—consistent winds;

4.c - results having the Larson IMF and winds’ energy set to the level of a Salpeter
IMF;

4.d - results having the Larson IMF and auto—consistent winds;
[ 5] Once an IMF has been set, what is the effect of
5.a - changing lifetimes

5.b - changing the fraction o Af binary system giving raise to Snla.
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Name ‘ meaning reference

IMF | the Initial Mass Function Sec. (4.4)
T the exponent of the IMF «

7(m) | the lifetime function stars

My | the upper mass for IMF normalization

M;,s | the minimum mass for IMF normalization

My, | the minimum mass for a star to give origin to a Snll

Mp,, | the minimum mass for a Snla binary system

Mpys | the maximum mass for a Snla binary system

A the fraction of stars living in binary Snla systems “

5 the characteristic time for Star Formation Sec. (3.4.5)
N¢& | the number of maximum Star generation for each GP Sec. (4.1)
N,, | the number of neighbours over which each Star distribute its ejecta Sec. (4.6)

M}F4 | the minimum mass for Snll to be considered short-living Sec. (4.8)
esy | the energy produced by a Sn explosion (the same for both Snla and Snll) Sec. (4.4)
N/ | the number of steps to calculate the entire evolution of Snla Sec. (5.3)
N/T | the number of steps to calculate the entire evolution of Snll Sec. (5.3)

n the efficiency of winds' mass selection Sec. (3.4.6)

X the fraction of energy from short—living stars used to raise winds «

Table 5.1: List of significant parameters.

From these issues we expect to arrive to some conclusions on the physics that
is actually acting in Clusters of Galaxies. Finally, we compare simulation results to
observations so as to highlight successes and shortcomings of our numerical modelling
of the thermodynamical properties of the ICM.

Throughout the Chapter, we focus mainly on chemical properties of the simulated
objects, whereas we discuss more briefly the analysis of the signature of chemical enrich-
ment on the thermodynamics of clusters. As for the graphview on abundance profiles,
we always rescale the z—axis in units of Rigy (see below for the definition) in order to
compare with observational data from De Grandi & Molendi (2001).

5.1 THE SIMULATION RUNS

In this Section we report on all the parameters that we have discussed and that influence
the code behaviour. For each parameter we give the reference of the Section where it
has been introduced or discussed. Then, we report the value of the parameter set for
all the simulation runs.

The simulations that we present in this Chapter have been run with the code
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described in Chap. (4), which is a far more advanced and refined version of the one
with which we run the simulations presented in Chap. (2). However, we used the same
initial conditions as for those simulations. In this way it is easier to realize how the
new physics is acting.

In summary, we re-simulate two lagrangian regions taken from a large cosmological
simulation. We choose the first one in order to have a single object with a virial
mass of about 4 x 104 M, , that we label as “Cluster”, and the second box so as to
encompass three smaller halos with mass in the range (2 — 6) x 10"¥* M, , that we
label as “Group” 1, 2 and 3. We have simulated these objects at two different mass
resolution, corresponding to mg.s ~ 2.5 x 10° Mg and 3.2 x 10 M, , respectively.
Nevertheless, in this Chapter we will discuss only the simulations of the cluster. In the
following we indicate with the pedex L and H the low— and high-resolution simulations,
respectively.

In order to discuss the elements enumerated in the previous Section, we run several
simulations, varying the values of crucial parameters. Low—resolution results are mostly
devoted to study numerical effects, whereas the high-resolution ones are more reliable
to study the physical effects of algorithms.

In the following tables we provide a synoptical view of all simulations presented here
and the values of all significant parameters for each of them. We also give to every run
a label with which it will be referred in the following. Basically, the pedex indicate
the resolution (H or L), while the apex gives more informations about the relevant
physics. The meanings of apexes are the followings:

e [numbers| the number refer to the value of N,;

e [TH| it means that the Sn ejecta are distributed using a Top Hat Kernel;

[IRA-number] the number report the value of M};

[w] it means that the wind’s velocity has been fixed to the same value as for Sy
simulations, i.e. the value it gets for a Salpeter IMF with M/}** = 15Mg ;

[T] simulations for which the dependence of the effective model on the gas metal-

licity and M/**, introduced in this work, has been switched off;

[Sn.t.] asimulation with different values as for the number of time-steps adopted
to follow the evolution of different Sn progenitor, N}/ and N/

[c.t.] a simulation with two additional requirements on physical conditions suit-
able for a Gas Particle to become multi—phase.

In Figures (5.1) trough (5.4) we show quantities which will be used throughout the
Chapter for all simulations in both low and high resolution. Fig. (5.1) and Fig. (5.2)
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show low-resolution results, whereas Fig. (5.3) and Fig. (5.4) show high—resolution
results. In Fig. (5.1) and Fig. (5.3) we plot the total gas mass and the baryonic
fraction within the virial radius in units of the same quantities obtained in the Sy
run (Top Left Panel), the star final fraction, defined as M, /(M, + M,,s) (Top Right
Panel), the mean temperature within the virial radius in keV (Bottom Left Panel) and
the cold gas fraction, defined as Meya/(Meoia + Mpot) (Bottom Right Panel). In Fig.
(5.2) and Fig. (5.4) we plot the mean metallicity for each element, both emission and
mass weighted (Bottom Left and Right Panel), the fraction of metals which is retained
by the gas (Bottom Left Panel) and the mass—weighted Fe abundance within virial
radius and in all volume (Bottom Right Panel).
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Figure 5.1: Thermodynamical properties (within R ) of all low-resolution simulations. [Upper
Left Panel] Gas masses (circles) and barynic fractions (triangles) in units of Sy, simulation. [Upper
Right Panel] Star fraction f, = M, /(Mgas + M,). [Bottom Left Panel] Temperature weighted
by mass (triangles) and by emissivity (circles). [Bottom Right Panel] The fraction of mass in cold
ClOlldS, fcold = Mcold/(Mhot + Mcold)~
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Low—Resolution Runs
Mass of a Gas Particle = 0.177 x 10'° M

| Label [ Obj | IMF [7(m) |A [ M [ x[n][K [N, ]|
St CL | Salpeter | PM | 0.07 | 15 1|2 |SPH |32
S128 | CL | Salpeter | PM [ 0.07 | 15 1]2]SPH ]| 128
St CL | Salpeter | PM | 0.07 | 15 1[2|SPH |4
S | CL | Salpeter | PM | 0.07 | 15 12| TH |32
S/ CL | Salpeter | PM | 0.07 | 15 12| TH |128
ST | CL | Salpeter | MM | 0.07 | 15 1 [2]SPH |32
SAT | CL | Salpeter [ MM | 0.1 |15 1|2 ]SPH |32
Sy#* | CL | Salpeter | MM | 0.07 | 40 1 [2]SPH |32
Sy® | CL | Salpeter | MM | 0.1 |8 1|2 |SPH | 32

High—Resolution Runs
Mass of a Gas Particle = 0.0221 x 1019 M,

[ Label | Obj | IMF

rm) [A [ My™[x [n]K [N ]

Sy CL | Salpeter PM | 0.07 | 15 1 2 | SPH | 32
S | CL | Salpeter PM |0.07 | 15 1 |2]|SPH]| 128
Sy | CL | Salpeter PM | 0.07 | 15 1 2 | TH |32
S [ CL | Salpeter PM [0.07 |15 1 [2|TH [128
S 1 CL | Salpeter MM | 0.07 | 40 1 |2 ]|SPH |32
S | CL | Salpeter MM |01 |8 1 |2 ]|SPH |32
AYy | CL | ArimotoYoshii | PM | 0.07 | 15 1 [2]|TH |32
AY S CL | Arimoto—Yoshii | PM 0.07 | 15 03 |2 |SPH |32
Vi CL | Larson PM 0.07 | 15 1 2 | SPH | 32
Vit CL | Larson PM 0.07 | 15 var | 2 | SPH | 32
Sy Gr | Salpeter PM | 0.07 | 15 1 2 | SPH | 32
AYF?T Gr | Arimoto—Yoshii | PM 0.07 | 15 1 2 | TH | 32
AYI_?T_w Gr | Arimoto—Yoshii | PM 0.07 | 15 0.3 |2 |SPH |32

Table 5.2:
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5.1. The Simulation Runs

Special Low— and High— Resolution Runs

| Label | description

Sz same as Sz, but with effective-model not dependent on both gas metallicity and M/
Spnt | same as Sp, but with NJ% =12 and N/T =4
Sgt | same as Sy, but with more requirements to be fullfilled in order to elect a GP into multi-phase regime

Values of parameters common to all simulations

Parameter Value reference
5 1.5Gyr Sec. (3.4.5)
My, s 0.1Mg  Sec. (4.4)
My 100Mg  Sec. (4.4)
My, 8Mp  Sec. (4.4)
Mpp, 3Mg  Sec. (4.4)
MBM 16M@ Sec. (4.4)
N} 125 Sec. (5.3)
N 40  Sec. (5.3)
NE 3 Sec. (3.4.5), Sec. (4.1)
esN 10t erg  Sec. (4.4)

Table 5.3:
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Figure 5.2: Metallicity-related properties (within Ryi) of all low-resolution simulations. [Up-

per Left Panel] Emission-weighted metallicity for all simulated elements. Symbol are as in Left
Panel.[Upper Right Panel] Mass—weighted metallicity for all simulated elements. [Bottom Left
Panel] Fraction of metals retained by gas. Symbols are as in Upper Left Panel. [Bottom Right
Panel] Mass—weighted Fe metallicity within Ry, (circles) and in all the simulated region (triangles).

B Technical Notes

We focus mainly on results about chemistry of galaxy clusters, so that we avoid de-
scribing pure technical issues about the analysis of simulations. We start our analysis
with the identification of the centre coordinates for the cluster. To this end, we first
apply a friends-of-friends halo finder to the distribution of DM particles, with a linking
length equal to 0.15 times their mean separation. For each group of linked particles
with more than 500 members, we identify the particle having the minimum value of the
gravitational potential. This particle is then used as a starting point to run a spherical
overdensity algorithm, which determines the radius (wvirial radius hereafter) around the
target particle that encompasses an average density equal to the virial density for the
adopted cosmological model, p,i-(2) = A.(2)pe(2), where p.(2) = [H(z) = HOPp.o is
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Figure 5.3: The same as Fig. (5.1) for all high-resolution results.

the critical density at redshift z, and the overdensity A.(z) for virialization under the
assumption of spherical model is computed as described in Eke, Cole & Frenk (1996).
Then, we always rescale the z—axis when plotting profiles in unit of the virial radius
(which is the radius encompassing the virial overdensity computed for the simulated
cosmology; e.g. Eke et al. 1998). The only exception is when we plot abundance
profiles. Since we refer to data on Iron abundance profiles by De Grandi & Molendi
(2001), we rescale the = coordinate in units of Rjgg, as the reference data are given
in such units. We define Ryg0 as the radius encompassing an average density equal to
180p.(z). Finally, all densities reported in graphviews are in units of fyu,pvir(2), where
frar 18 the cosmic baryon fraction. If not otherwise stated, we adopt solar abundances
by Grevesse & Sauval (1998).
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Figure 5.4: The same as Fig. (5.2) for all high-resolution results.

THE MASS SEGREGATION

The mass segregation is defined as particles of different masses settling on a phase—
space volume that depends on the masses themselves by purely numerical effects like,
e.g, the two-body heating. This artificial dynamical effect is highly undesirable as it
would alter the true dynamics. It is likely to arise mostly when the range of particle
mass is fairly large, resulting in heavier particles being settled towards the bottom of
the gravitational potential well and lighter ones being kicked towards the outskirts.
Due to the star—formation algorithm we use, Gas Particles (GP) reduces their mass
by mo/N{ each time a Star Particles is spawned. Furthermore, the mass of a GP
increases every time it receives ejecta from supernovae while a Star Particle consumes
its mass during the stellar evolution. Hence, we will have GP with masses in the range
[ S mo/NE : R mo) and Star Particles with masses scattering around mg/Ng. Since the
mass of our particles varies by a factor of ~ 3, it is worth to check if some segregation
effect is at work.
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5.2. The Mass Segregation

A rigorous study would require dynamical tracing of orbits; nevertheless, we ac-
complish the task in a much simpler way. We divide the mass range in a number of
bins, then counting the number of Particles which fall in each of them; then, in case
of severe mass segregation effect, we would expect that the way particles of each mass
distribute radially from the centre of the object will clearly show some trend. If it were
not, we are authorized to conclude that non significant mass segregation is present in
our simulations.
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Figure 5.5: The relative radial distribution of Gas (Left Panel) and Star (Right Panel) Particles.
Light—-Dotted black lines are the gas and star mass density profiles respectively. Dashed lines refer
to the bin within which fall most of the particles. Each pair (symbol, color) refers to a mass bin as
follows (masses are expressed in units of 101 Mg ). (Left Panel) squares: 0.053 j m j 0.081; triangles
down: 0.081 j m  0.086; triangles up: 0.086 j m j 0.17; circles: 0.17 j m j 0.33. (Right Panel) squares:
0.035 j m  0.052; circles: 0.07; m j 0.082; triangles down: 0.082 j m j 0.085; triangles up: 0.085 | m
0.123.

In fact, no signature of mass—dependent radial distribution appears in Fig. (5.5)
where we plot how particles with different masses are distributed. Instead, the lightest
particles are more concentrated in inner regions, at odds with what we expect in case
of two—body heating. This concentration is due to the recent intense star—formation
activity which in our simulations is on—going until late times in the cluster centre; so
that GP are spawning more than one Star and, having been much enriched, many of
them are right above the value 3/2m that is the threshold for the whole Gas Particle
to become a Star. Therefore, they are allowed to spawn up to N& Stars and to have
then a minimum mass m < mg/N¢.

B Summary

We define the mass segregation as particles of different mass systematically ending in
different regions, the same for particles of equal mass. To check whether this effect is
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present in our simulations, we have studied how particles of different mass distribute
radially from the centre and found no significative trends.

5.3 THE SUPERNOVA TIME-STEPPING

In Sec. (4.4.1) and Sec. (4.4.2) we have described the equations governing the su-
pernovae explosion both for Type II and Type la. In order to apply them to a Star
Particle, we calculate in advance a discrete subdivision of the lifetime for each type
requiring that the same amount of energy is ejected in each time interval. This amount
to require that the same number of supernovae events occurs per subdivision, as long as
we assume that eg,, = egnr1 = €sn1a. Therefore we have about NtI I —|—Nt1 @ steps for each
Star Particle to account for all Snll and Snla respectively (a tolerance of the 5% is used
when calculating the subdivision). This should be a purely numerical parameter. Still,
it controls the amount of energy that is spread over the neighbouring gas particles; as
this energy will enter in the effective—model and winds’ velocity calculations, it may
influence the way the feedback is released.

Thermodynamical calculations are performed once per each GP time—step, so that
as long as the supernovae time—step is short compared to the gas one this problem is
not present. In that case, in fact, the Sn energy is stacked in the reservoir, prompt to
be used in when the GP becomes active. Since the neighbouring GP tend to have very
similar time—steps, probably the best strategy would be to assign this same time—step
(or a multiple of it) to the Stars embedded in that gas. We did not yet implement such
an algorithm, having instead a fixed time subdivision per each Star, starting from its
formation time and delayed by 7,;%*.

One may suppose that the more suitable stepping for Stars is the one which makes
the stars evolving accordingly to the time-step of neighbouring GPs. If the time—step
of the GPs falls below ~ 1Myr the energy contribution from supernovae would be
negligible while the computational cost is greatly increased. Moreover, given that the
life-time of Snla is about 1 —10 Gyr, this would result in an extremely large number of
stellar time—steps. Therefore, in tracing the stellar evolution we choose a compromise
between the computational constraints and the accuracy. The values for N} and N/®
are given by the requirement that 2.5% and 0.8% of Snll and Snla respectively explode
in each time-step. To check how this affect the results, we run a Low—Resolution
simulation having N/! = 4 and N/® = 12, i.e. a ten times worse stellar—time resolution.
In the rest of this Section we refer to the simulation run with finer stepping as “FS”
(fine—stepping Simulation) and to the other as “CS” (coarse—stepping Simulation).

The comparison is shown in Fig. (5.6) and Fig. (5.7). The former figure shows the
comparison between quantities which concern the effective-model, while the second one
shows physical quantities. The two simulations differ in several details but no major
changes appear to be in place. As it is expected, the energy received by each GP from
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Figure 5.6: [Top Left] The mean ratio between the cold fraction before and after the reservoir
energy accounting. [Top Right] The mean ratio between the energy before and after the effective
model calculations. [Bottom Right] The mean ratio between the reservoir energy and the TRA
energy. [Bottom Left] The mean ratio between the hot—phase energy before and after the reservoir
energy had been accounted.

the interacting Stars is higher when more supernovae explode at a time; in the Bottom
Left Panel of Fig. (5.6) we show the ratio between that energy and the energy from
IRA stars, that in CS is higher than in F'S by about a factor of 2. Accordingly, the cold
fraction in CS (Top Left Panel of Fig. (5.6)) is slightly lower and the total energy (Top
Right Panel, same figure) of the gas larger. The energy of the hot phase is unaffected
from z = 4 on, as all the energy of supernova is employed to evaporate clouds in both
simulations. As for physical quantities, in the Top Left Panel of Fig. (5.7) we plot the
history of the Star Formation Rate for both simulations. Owing to the more efficient
evaporation of the cold clouds, the star formation activity at high redshift (z < 2) is
suppressed by 30 — 40% in CS with respect to FS. The amount of Iron and Oxygen
is larger by 10% in CS than in FS, owing to a less efficient locking of metals in Stars.
This is due to the larger amount of supernoave energy that lead to an higher pressure
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Figure 5.7: In all panels the red continuous lines and the green dashed ones refer respectively to our
standard choice and the more coarse—grained one. [Top Left] The Star Formation Rate as a function
of redshift. [Top Right] Oxygen (light lines) and Iron (bold lines) radial profiles. [Bottom right]
The radial profile for O/Fe ratio. [Bottom Left] The entropy radial profiles.

support. Still, differences are fairly small. Also, the differences in the star formation
history reflect the changes in dynamical history; for instance the little starburst at
z ~ 0.1 in CS has no correspondent in FS, and provides some more Iron at z ~ 0.

B Summary

We found several differences when changing the stellar evolution time-stepping. Even
so, all differences exhibit a trend that is reasonably expected and none of them is a
major variation witnessing severe dependence of final results on this choice for th Sn
time-stepping accuracy.
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5.4 THE IRA THRESHOLD

The value of M/is certainly a rather arbitrary parameter. As we discuss in Sec. (4.8),
this parameter sets the extent to which the energy of firstly formed stars in a given
star—forming region interferes at later times with the star formation in that same region.
Since the details of the star formation process are not understood with great precision
the common way to account for the Snll energy is to suppose that some fraction of it is
released instantly. What this fraction is, this remains a matter of opinion. Even more,
there’s nothing special in ~ 30 Myr, so that one may also conjecture that some fraction
of Snla could be also be treated in the IRA. In this work we limit the M/**parameter
to Snll.

We have run two simulations with M/**set to 40Ms and 8 Mg both in Low—
and High-Resolution, so as to check to what extent our results are sensitive to this
mass scale. The ways in which this parameter directly affects the code behaviour are
basically two. The first one is in determining the hot—phase equilibrium temperature in
the effective model (see (3.80) and (3.81)); this mostly affect the ICM thermodynamics.
The second one is in changing the fraction of metals that are immediately assigned to
the Gas Particle which is hosting the star formation, instead of being subsequently
spread by a Star Particle; this affects how the metals are distributed and how they are
shared among gas and stars. Furthermore, as the value of M/**changes, also the values
of py changes, owing to the variation of ugy: the larger is the energy amount Ugy
the larger is the density needed for the collapse to take place, as that energy provides
thermal pressure which counteracts the collapse. Fig. (5.17) shows the values of the
density threshold for different values of both M/ and the gas metallicity. The two
simulations with M} = 8 M, and 40 My (‘40 My * and ‘8 Mg ' hereafter) exhibit
the largest and the lowest values of py, respectively; in fact, the energy of IRA Snll is
respectively the largest (~ 3.7 x 10%erg/ My, ) and the lowest (~ 3.1 x 10*erg/ M, )
among the IRA energies of all simulations presented in this Chapter.

The difference in the amount of energy promptly available in the effective model
reflects clearly in the star formation rate history of each simulation, as shown in Fig.
(5.8). The simulations with the lowest value of M/ = 8 My has in turn the largest
amount of energy suddenly injected in the gas at the moment of star formation; so
that, it exhibits a greatly suppressed SF Rate at high redshift (Upper Panels, the Left
one reports the Low-Resolution results and the Right one the High—Resolution ones)
and an overall shift towards redshift z ~ 1 of the epoch of maximum SFR. This delay
is evident also in the Snla rate curve (Bottom Panels). At the opposite, the simulation
with M}F* = 40Mg has an enhanced star formation activity both at high and low
redshifts. Hence, one would expect the final amount of stars and Supernovae to be
much lower for smaller values of M. At odds with this expectation, the simulation
with M} = 8 Mg has fairly more (HR) or equal (LR) Snla explosions at late times
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Figure 5.8: In the Left and Right Column are plotted respectively the Low— and the High—
resolution results. The Upper Row shows the Star Formation Rate History. Continuous lines
indicate Sz, and Sp. Dot-Dashed lines indicate Si™*® and Si*®. Dotted line indicate S, The
Bottom Row shows the Snla Rate History. Lines are coded as for the upper row.

than our ‘standard’ choice simulation M/ = 15Mg, . This is due to the fact that the
pressure supplied by the IRA energy prevent the gas collapse but is not sufficient to
also inflate it significantly, so that the density continues to grow and more gas ends
in the cold phase. As the gas become more and more enriched, and thus the cooling
become more efficient and the threshold for star formation become lower, the IRA en-
ergy no longer succeed in preventing the collapse.

Figures 5.1 — 5.4 show that the simulation with M;}** = 40 Mg produces a far larger
amount of stellar mass, both in Low— and High— Resolution as well as the smallest
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Figure 5.9: The ratio between the fraction of metals in gas at z = 0 over the one at z = 1,

both for Iron and Oxygen (reported on z—axis) and Low— and High-resolution (circles and triangles
respectively).

fraction of metals into the gas. The 8 My case has not such a regular behaviour
when the resolution increases. The stellar fraction is significantly larger in the High—
Resolution run than in the Low—Resolution one. When the resolution increases, also
does the efficiency of cooling and, in fact, the star formation begin quite earlier (see
Fig. (5.8)); thus, the lower the resolution, the higher is the efficiency of heating. The
difference between Low— and High—Resolution results would have been much larger if
the star formation were been treated by a more traditional algorithm, not accounting
in any way for the multi-phase nature of the ICM. In the S;™*® run the gas is heated
so that the star formation at high redshift (z & 1) is suppressed by a factor of 2 with
respect to the Sy simulation. Nevertheless, the net effect is just to shift the star
formation peak down to redshift 1 and to flatten the rate curve. Therefore, the Star
Formation rate of S;*"* remains above the Sy rate for z < 1, so as to produce at z = 0
a comparable amount of stars. In fact, the amount of cold clouds, that are the reservoir
for star formation, in S;™*° is twice as large compared to Sy both, at z = 1 and at
z = 0. As a consequence, at z = 1, the mass of stars in S;™* is 76% of the mass
in Sy, while at z = 0 the same ratio is 0.95. The winds’ velocity in S;*** is larger
by a factor v/2, owing to the larger amount of energy available. Therefore, the winds
are more effective in removing hot gas from the innermost regions. This leads the

179



Zgas ()

RESULTS

0.06

0.05 ¢

0.04 ¢

0.03 |

0.02 ¢

0.01 r

0

0.001 0.01 0.1 1 10 0.001 0.01 0.1 1
redshift redshift

Figure 5.10: Mean Iron and Oxygen abundance of the gas as a function of redshift. [Left Panel]
shows the low-resolution results. Bold lines show the Oxygen data and thin lines the Iron ones. Con-
tinuous, dotted and dot—dashed lines plot respectively the Sr,, S¥440 and S8 simulations. [Right
Panel] contains the high-resolution results. Line codes are the same as for the Left Panel.

baryonic fraction in the virial region in S;** being about 90% of the same quantity
in Sy. Thus, the star mass fraction, i.e. the ratio between the star mass over the total
baryonic mass, is slightly higher in S;** than in Sy.

From observations (e.g. 2004) we know that the cluster galaxies are preferentially
old passive—evolving ellipticals and, hence, no sign of recent star formation has ever
been detected. Having an on-going star formation at low redshifts (2 < 1) is then at
odds with observations. This is a result that holds for all the simulations that we
present here, and it is also a common problem of numerical results; possibly this points
towards a lack of physical contents in the star formation models. Either some physics
in the interaction of feedback energy with the gas is missed, or even major astrophysical
processes, that we neglect here, play an important role in regulating the star formation.
We expect that such processes to prevent the collapse of gas in dense compact objects,
either raising the gas entropy or even wiping out the gas from overdense regions. We
note that our on—going star formation mostly takes place in the inner regions of the
cluster. Hence, we expect that the AGN activity from the central CD galaxy or past
cosmic heating from an earlier QSOs population can be crucial further ingredient in
the cauldron of cluster and galaxy evolution. Furthermore, as we know that black
holes are harbored at the centre of massive CDs in the innermost part of clusters, a
possible conjecture is to imagine that the gas collapse that we found could be a “mass
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Figure 5.11: The distribution of Iron and Oxygen abundance in the gas. Left and Right Column
show respectively the low— and high-resolution results, Upper and Bottom line show respectively
the distribution of Iron and Oxygen. Continuous line with filled-circles indicates the Sy, /iy simulations,

short-dashed filled-square line indicates the Sj'f;’ run and dot-dashed filled-triangles line indicates

the Sg;H runs.

deposition” to such an object; in fact, this is becoming the most accounted hypothesis
to explain the “cool core” structure of galaxy clusters.

Recently formed stars, besides ejecting heavy elements in the ICM, also lock the
metals that already were in the gas, as they basically form in enriched environments.
Thus, having a significant star formation for 2 < 1 greatly affects the final amount of
metals in a non trivial way. Bottom Right Panels of Fig. (5.2) and Fig. (5.4) show,
for each element, the mass fraction which ends in the hot phase at z = 0, whereas Fig.
(5.10) shows the value of mean Iron and Oxygen abundance of gas as a function of
redshift. Several interesting details can be drawn from these figures. We first note that
« elements and Iron—peak elements exhibit a different behaviour, owing to the different
timescales of their respective release (accordingly, elements like the Silicon, which are
produced significantly by both SnIl and Snla, behave in an intermediate way). It turns
out that the Iron is the more distributed in the hot gas, while Oxygen (that we take

181



RESULTS

1 T T T T : : I
01 ]
0.01 f | |
g Iy
‘9 i “ \'« \.\\
3 .
& 0.001 : f HR Iron ——— | -9 1
2 |/ LR Oxygen G-~ li i
: le-04 HR Iron —B— 1
E HR Oxygen rrrrr -
1e-05 | M RA =15 M, ]
i 1 o
1e_06 — ‘ ! L L 1 1 L
-6 -5 -4 -3 2 -1 0 1 )

[Xg]

Figure 5.12: We plot here the abundance of Iron and Oxygen in M/ = 15M simulation both
for Low— and High—Resolution. This is to make clearer the difference between the two elements and
between the two resolutions.

as a prototype of a elements) is more locked in stars. Oxygen is produced basically by
Snll and about 30% of it is synthetized by stars more massive than 40 M (see Sec.
(4.4.5)), while ~ 80% of the total amount is ejected by stars more massive than 15 M .
Then, the Oxygen is ejected over a timescale that is comparable to the timescale of
Star Particle creation, so that the gas dynamics or winds’ onset are likely to have no
time to displace the enriched gas from the region of strong star formation. Hence,
Oxygen is promptly locked in subsequent star formation events. All this does not hold
for the Iron; due to its delayed production, its deposition is more determined by gas
and stellar dynamics rather than by instantaneous environmental conditions.

Besides this general trend, which holds for all the simulations that are discussed in
the Chapter, important differences arise among different simulations.
Similarly to the SFR, Low—Resolution results are affected by the coarser sampling due
to the larger size of mass of the single particle. Thus, the sharing of metals between
stars and gas is more unfavourable to the gas than in High—Resolution results. This
is not due to the larger mass of stars but rather to the mass of gas particles. To
check this we run a Low-Resolution simulation, like the S;*"** one, but with 12 stellar
generation (i.e. N} = 12). If the trends that we described before was depends mostly
on this parameter we would expect some major changes in this second run. Instead,
the differences are quite negligible and the most relevant ones arise in the sharing of
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Figure 5.13: Radial profiles of Iron abundance. Left Column shows the Low—Resolution results,
whereas the Right Column shows the High-Resolution ones. The S, and Sy runs are plotted with
filled circles, while the simulations having M/** = 8 Mg and M/F* =40 Mgy are plotted with empty
squares and filled triangles respectively. In the Upper Row we plot the emission-weighted profiles
and in the Bottom Row we plot the mass-weighted ones.

Iron and Oxygen. We just mention, without reporting any viewgraph, that the Iron
fraction which remains in gas raises from ~ 0.096 up to ~ 0.11 (~ 13% variation),
whereas the Oxygen mass fraction in gas raise from ~ 0.037 up to ~ 0.044 (~ 24%).
Rather than witnessing an increasingly important role played by the Star Particle’s
mass, this underlines the different behaviour of these two elements as for their final
destination. Having a four times larger number of stellar generations makes higher the
probability of Star Particle creation for a given a star formation rate, so that also Gas
Particles which do not have the a strong star formation activity are involved. This
amounts to enhance the accuracy with which the Star formation process describes the
star formation activity in a given volume. Somehow, also the “time resolution” of
Star formation is enhanced: having a higher value of N{ leaves more time to a Gas
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Figure 5.14: Radial profiles of Oxygen abundance. Colors and symbols are the same than in Fig.
(5.13)

Particle to receipt the local thermodynamical conditions before letting a non—negligible
fraction of its mass to transfer into the stellar phase. Still, in this simulation differences
are not dramatic. From them we can draw the conclusions that: (1) the mass of gas
particle drives what we can call the “enrichment resolution”, (2) using N5 = 3 is fairly
adequate to the gas mass we have and (3) the rate at which the gas is locked in Star
Particles affects significantly the relative amounts of quickly produced elements, like
Oxygen, present in gas and stars.

We also note that raising the mass resolution largely increases the presence of metals
in the gas. While both the star mass and the Iron mass within the virial radius do not
change by more than 10%, the mass fractions of Iron and Oxygen which remains in
the gas grow by up to a factor of 5. Fig. (5.11) shows how much mass has a given Iron
and Oxygen abundance and how this distribution changes when the mass resolution
increases. We take the M}* = 15 M simulations as an example (the other two cases
exhibit the same behaviour). The fraction of mass which is not enriched (we include on
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Figure 5.15: Low— and high-resolution results are plotted respectively in Left and Right Column.
[Upper Row]| The Oxygen over Iron abundance ratio in log—solar units. Straight dotted line indicates
the solar value. Continuous line with filled circles stands for Sy ,z runs, dotted empty—squares line
stands for S¥¢4% and dot-dashed filled—triangles line indicates the SZ/“EI run. [Bottom Row]| The
mass fraction of Iron harbored in the ICM as a function of distance from centre. Lines are coded as
for the Upper Row.

the last bin in Fig. (5.11) all the gas particles having [X/H] < —5, where X indicates
for either F'e or O) shrinks by an order of magnitude in High—Resolution simulations,
and becomes less than 10%. Furthermore, the fraction of gas at moderate or high
metallicities ([X/H]R — 2) is larger by a factor of two or three. In Fig. (5.10) it
is evident how the mean metallicity of the gas in Low—Resolution runs shrinks after
the epoch of strong star formation (note how this effect is much more pronounced for
the Oxygen). High—Resolution simulations suffer for the same loss of Oxygen content
only mildly and not at all as for the Iron. Considering what we discussed before, we
interpret this fact as the signature of a higher accuracy in the resolution of the Star
formation in High—Resolution simulations.
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Figure 5.16: Thermodynamical properties in Sy, JH> Szr/ag and S TH simulations.
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Figures (5.13), (5.14) and (5.15) are helpful to obtain insights about the differences
among the three simulations that are discussed here. The bottom Panels of Figures
(5.13) and (5.14) show the abundance profiles of Iron and Oxygen respectively, while
the upper rows of the same Figures show the emission—weighted abundances. These
are defined for each element species as

ew __ Zi\il ]\szsz,z
Zi\il Aip}

where sums are over the interested volume. This quantity is more related to the
observed abundance as the regions whose emissivity is larger will be correspondingly
more weighted. In the following we consider the mass—weighted profiles as they directly
reflect the underlying radial distribution of elements. We also refer to High—Resolution
results if not explicit stated otherwise.

We observe that the Low—Resolution simulations exhibit a far too low Iron abun-
dance (see Fig. (5.13), filled circles with errorbars are obervations by (De Grandi
& Molendi 2001)) due to the large fraction of metals locked in stars. Anyway, also
the High—Resolution runs do not succeed in reproducing the correct amount of Iron,
though the M/ = 15Mg simulation is very close to the abundance level of non
cooling core clusters. It turns out that a value of about ~ 15 Mg as for the threshold
MR maximize the deposition of metals into the gas. The M/ = 40 Mg exhibits
the flatter profiles both for Iron and for Oxygen abundances, whereas steeply raising
in the innermost region.

As for the relative abundances of Iron and Oxygen (Fig. (5.15), Upper Panels), the
higher the value of M/, the higher is the [O/Fe] ratio. In the very centre of cluster
all simulations exhibit the same value [O/Fe] ~ 0.2, as the recent star formation that
take place in those regions makes the quickly formed Oxygen to dominate the metal
budget. What is interesting is that the S;**'® simulation reproduce the same relative
abundance of the sun apart very closely to the centre as we have just mentioned, while
lowering or raising the value of M/ **produce systematically values larger and smaller
by about ~ 0.2 dex. All Low—Resolution simulations have an undersolar value of [O/Fe]
within half of the virial radius whereas having a rather oversolar (up to 10 times) at
larger radii. Nevertheless, Low—Resolution profiles exhibit a large scatter, so that no
well-defined trend can be inferred from them. Both in Low— and High—Resolution
simulations, the ratio between the mass fractions of Iron and Oxygen present in the
gas is larger than unity (about 2-2.5 in the central region and 1.5 in the innermost
part) and approaches unity in the outskirts. Low—Resolution simulations have larger
values of this ratio, and both in Low— and High-Resolution runs the M} = 40 Mg
has the highest values and M/** = 8 My the lowest. Differences between simulations
with different values of M/*‘relate to the different star formation histories, while the
tendency to approach unity in the outermost regions is mainly due to the fact that

7 (5.1)
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here the star formation activity stopped at earlier times, so that a greater fraction of
Oxygen is still hosted by gas and has not been locked in stars. This is witnessed also
by the fraction of Iron mass (bottom panels of Fig. (5.15)) present in gas, approaching
the highest value for r/ry;, ~ 1
Since the relative abundance of elements in the gas is a key factor in order to decide
whether an IMF may reproduce or not the star formation in clusters, this reveals to
be an important effect to be taken under control. Alternatively, instead of a purely
numerical issue, it may be taken as a warning that changing the physical conditions
of star formation environment (namely how much energy is effectively recycled in the
process) has a large impact on final results.

Finally, we note from Fig. (5.16) that the choice for M} *also affects significantly
the thermodynamics of the ICM, though it is quite difficult to trace the complete
history of each change due to non trivial interplay among different physical effects.

B Summary

We have shown the effect of changing the threshold of M})**parameter for the three
different value 40 My , 15 M, and 8 My , which correspond to consider as promptly
available in the effective model ~ 8%, ~ 40% and 100% of the energy coming from
Snllrespectively. We stress that this parameter should not be considered as purely
numerical, as it roughly includes in our models the interaction between the energy of
exploding supernovae with the star forming gas. From our results we can draw the
following conclusions:

[ 1] The Mass resolution is one key ingredient in order to properly describe the star
formation process and the distribution of metals between the gas and the star
phase;

[ 2 ] The value of M} turns out to have an important impact on the final results,
above all on the relative abundances between « elements and Iron—peak elements;

[ 3] The first way in which the value of M} affects the results is influencing the star
formation history. Basically, the higher its value, the weaker the feedback on the
gas, thus, the higher is the star formation rate;

[ 4] An higher star formation rate does not lead to a higher enrichment level; rather,
it ends up in a larger fraction of metals to be locked in stars. This is mainly due
to the fact that the star formation will continue significantly also at low redshift;

[ 5] The value of M/ affects the amount of metals that are immediately assigned
to gas particles of being spread by a Star Particle. This is reflected on the
distribution of these elements in the gas;
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[ 6 ] The choice M/** ~ 15Mg tends to maximize the amount of Iron and Oxygen
in the gas.

As a word of caution, we stress that in the simulations presented in this Section
the velocity of winds, v,,, changes together with the value of M}#*. According to Eq.
(4.8), the value of v,, depends on both the value of 3, which is the mass fraction of
stars with mass m > M/, and ugy, which is proportional to the energy per gram
due to IRA Snll, namely egy. This means that here we are not disentangling the
effect of having stronger or weaker winds from that of having a larger or smaller energy
available in the effective model. Since winds can strongly affect the patterns of both
star formation and enrichment (see Sec. (5.9)), in order to better understand how the
value of M/F*influences the results it would be necessary to run the same simulations
discussed above but keeping v,, to the same value for all simulations. In Sec. (5.8), we
present simulations with different IMFs and the same value as for v,,. Changing the
IMF implies changing of egy as well as M/7*. Nevertheless, we show in that discussion
that the pattern of star formation is not affected by a larger value of gy as much as in
S Hence, we close this summary by outlining that what we have presented here
are the combined effects of a larger (smaller) egy and larger (smaller) wind’s velocity.

THE METAL-DEPENDENT EFFECTIVE MODEL

In Sec. (4.7) we have mentioned the importance of making the star formation process
sensitive to the metal content of the gas. Here we further discuss the same topic, giving
more details on our implementation; results will be shown from two Low—Resolution
simulations having this dependence set on and off.

Since we choose to use the Sutherland & Dopita (1993) cooling function, our cooling
is actually dependent on the Iron content of the gas through the value of [Fe/H];
throughout this Section, we refer to this value as the “metallicity” Z of the gas.

We have changed several details in the original effective model by Springel & Hern-
quist (2003a) in order to make it sensitive to the additional physics that we have
implemented. In the following we discuss all such changes:

[ 1] Following (McKee & Ostriker 1977) the evaporation efficiency A in Eq. (3.73) is

calculated as
—4/5
A=A, <ﬁ) . (5.2)
Pth

The value of Aq is fixed by requiring that at the onset of the star formation
(p = pu) the thermal instability is operating. This amounts to require that the
temperature at which the star formation sets on is exactly the temperature at
which the thermal instability also begins to operate. Such a temperature is the
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[F 6/ H ] Ty Inst.
-4.0 1049
-3.0 1049
-2.0 10495
-1.5 105-3°
-1.0 10°-3°
-0.5 10735

0 105.35
0.5 10535

Table 5.4: The temperature Ty mst. values for the onset of thermal instability for different values
of the Fe abundance.

[2]

one at which the derivative of the cooling function becomes negative. For the
standard cooling function due to a pristine gas made by 76% of H and 24% of
He, the thermal instability starts at Ty ins.. ~ 10° K. Therefore, we require

Tsn/Ag = 10°K

where ugy is interpreted as a “supernova temperature” Tsy = 2uusy/(3k) ~
10® K. This results in

Ay = 1000 (5.3)

that is the value set by Springel & Hernquist (2003a).
When we consider the metal-dependent cooling function, the point for the onset
of the thermal instability shifts towards higher temperatures, as can be seen in
Fig. (4.11). In Tab. (5.4) we report the values we choose. Note that we do not
use T' = 10° K any longer also for zero-metallicity gas.

As it is argued by Springel & Hernquist (2003a), the value for py, is given by
imposing the pressure to be a continuous function of the density at the edges of the
regime of the self-regulated star formation. The gas just below the threshold cools
down to 10*K, as long as we ignore further cooling due to molecules. Therefore,
requiring that wuesr(pw) = ug where u.gy is the effective energy density from Eq.
(3.83) and uy is the energy density corresponding to a temperature of 10* K, gives

_ Ty, Pusy — (1 —0)u.
P =1 " 2)? 15 MUsn/Ao)

(5.4)

where zy, ~ 1 — Aguy/ugy is the mass fraction in clouds at the threshold and
A(p,u) = Aner(p, u)/pz'
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[ 3 ] By the discussion at the point (1), Ay in the previous equation has already been
made dependent on the metallicity; 3 and ugy depend on the value of M}, and
A is an explicit function of [Fe/H].

Therefore, by computing the values for py, using Eq. (5.4), we obtain the density
threshold as a function of metallicity. Fig. (5.17) shows these values for different IMFs
and choices for M/,
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Figure 5.17: The density threshold for the onset of multi-phase model of star formation. Dotted Line
shows the value obtained without dependence on gas metallicity and having all the SnIl promptly
recycled in the star formation. Other lines indicate the threshold values as a function of the gas
metallicity, for different IMFs and choices of M}}**. Filled Circles, Empty and Filled Squares indicate
the Salpeter IMF with respectively M/f*= 15Mg , 40Mg , 8 Mg . Stars indicate the Arimoto—
Yoshii IMF whereas Empty and Filled Triangles show the Larson IMF at respectively z = 0 and
z = 5. For the Arimoto—Yoshii and Larson IMF the value of M;**is 15 Mg .

The dotted line shows the p;, value when all the described dependencies are switched
off. Instead, the filled-square line is obtained for M/ = 8 Mg , so as the ugy and
[ parameters have the same value as in the previous case. Therefore, the comparison
between the dotted and the filled—square lines gives the importance of the metal cooling
as for the onset of star formation, with no other factors playing any role. Note that the
value for Z = —4 of the filled-square line is only ~ 60% of the one in the original case
(dotted line); this is the effect of having fixed the thermal instability onset temperature
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for Z = —4 to 10*? instead of 10° as in the original formulation. The sudden increase
of py, at Z = —1.5 is due to the growth of Ty ine. from 109 to 10535,

4
*

[Fe/H]

-8 At A N R . R . R . L
10° 10* 10°
p (arbitrary units)

Figure 5.18: The distribution of the Iron content with the density of the gas for the Sy, (asteriscs) and
S (crosses) simulations. One point every 20 and one point every 5 has been plotted for respectively
the High-Resolution and the Low—Resolution run.

Apart from the presence of this barrier, the trend is that the density threshold
decreases as the metallicity, and thus the cooling efficiency, increases. For all plotted
curves, the variation of py, from the lower Z to the higher metallicity is of about one
order of magnitude or, meaning that the star formation would occur in regions with
lower and lower densities as they become more and more enriched. Nevertheless, the
high metallicities are reached mostly in very high density regions, as it is shown in Fig.
(5.18), so that no run—away process takes place.

The second important note is that the density threshold decreases or increases
as the energy amount from short-living stars respectively is reduced or increased, as

IRA

effect of both lowering or raising M/**and changing the IMF. This is the reason why

the curve corresponding to M/ = 40Mg with a Salpeter IMF (empty-square) has

the lowest values, whereas both the Arimoto-Yoshii (starred symbols) and the Larson

(empty and filled triangles) IMFs show the largest values among the simulations with
g4 =15Mg .

We run the Sz simulation having py, set at the level of dotted line in Fig. (5.17) to

192



5.5. The Metal-Dependent Effective Model

2500 \ \ \ 0.06

2000 |
—
w1500 |

2 1000

500 r

0.001 0.01 0.1 1 10 0.01 0.1 1

redshift .redshﬂk

Figure 5.19: [Left Panel] The history of star formation rate. Continuous line indicates the Sy, run.
[Rigth Panel] The mean Iron (heaviest lines) and Oxygen (lightest lines) abundance of gas in both
St (continuous line) and Sz (dotted line).

understand how results change when the dependency of py, both on M/ and on gas
metallicity is set off.

Figures (5.19), (5.1) and (5.2) anticipate how final results differ from S;. Hav-
ing a higher density threshold and a larger energy from supernovae suppress the star
formation at high redshift in the S} run (see Left Panel of Fig. (5.19)) so that the
star fraction is about 13% smaller than in S;. The locking of both Iron and Oxy-
gen in stars is then less efficient (Right Panel of Fig. (5.19)) and the mass fractions
of Ton and Oxygen in the hot gas are respectively ~ 50% and ~ 250% higher in S}
than in S7. In turn, overall mass—weighted metallicities of gas within the virial radius
are respectively ~ 30% and 100% higher. The graphviews in the Upper Row of Fig.
(5.21) show that changes in the mass—metallicity distribution involve only the very
high metallicity bins, whose population grows by a factor of 2 —3 in Sz with respect to
Sp. The Bottom Right Panel of the same figure shows that the fraction of Iron which
remains in the gas is generally larger in S f. Instead, the ratio [O/Fe| (Bottom Left
Panel, same figure) does not appreciably change. The radial abundance profiles shown
in Fig. (5.21) exactly reflect what we discussed so far. As we expected, all the relevant
thermodynamical properties do not change significantly (see Fig. (5.22)).

B Summary

We have compared the results form the S;, simulation with those of ST having the
value of py, which is independent of the gas metallicity and of M/}*. The higher
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Figure 5.20: ,
Fraction of Fe locked in the ICM with and without the Metallicity—Dependence of
the EM for SF] [Top Left Panel] The distribution of Iron-abundance. [Top Right Panel] The
distribution of Oxygen—abundance. [Bottom Left Panel] The radial profile of [O/Fe]. [Bottom
Right Panel] The fraction of Iron resident on the gas as a function of the radius.

value of the density threshold in S; leads to a suppression of star formation and to
an enhancement of the mass fraction of metals (Iron and Oxygen) resident in the hot—
phase. Accordingly, the radial abundance profiles reach slightly higher values than in
Sr.

5.6 CHANGING THE CRITERIA OF STAR FORMATION

In the original GADGET code the only condition for the onset of Star Formation is given
by the requirement that the density of the gas is larger than a physical threshold value.
This might appear as not adequate to capture the complexity of physical processes at
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Figure 5.21: [Top Left Panel] The radial profile of emission-weighted Iron abundance. [Top
Right Panel] The radial profile of mass-weighted Iron abundance. [Bottom Left Panel] The
radial profile of emission-weighted Oxygen abundance. [Bottom Right Panel] The radial profile of
mass—weighted Oxygen abundance.

work is considered. Thus, we have added two more constraints that must be fulfilled
in order to let a Gas Particle becoming a multi-phase, star—forming particle. These
conditions are the following:

[ 1] The gas cooling time is defined as ep/(An?), where € and p are the gas specific
energy and density respectively, A = A,,¢;/n? is the emissivity and n is the number
density of hydrogen atoms. This quantity measure essentially the time-scale over
which the entire energy of the gas would be radiated by a constant emissivity A.
Then, we require that this time—scale is shorter than the sound—crossing time,
that is defined as the time a pressure wave employs to cross the volume enclosing
the same gas.

This basically means that the pressure support due to the internal energy of the
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Figure 5.22: Thermodynamical properties of S; and Sz simulations. Filled circles and empty
squares indicate respectively the Sy, and Sz simulation. [Top Left Panel] Radial density profile. [Top
Right Panel] Emission—weighted (filled symbols) and mass-weighted (empty symbols) temperatures
for both Sy, (circles) and S}; (squares). [Bottom Left Panel] The radial entropy profile. [Bottom
Right Panel] The p-T phase space for the hot—phase.

gas does not have time to counteract the compressional effect due to the energy
loss. As the sound speed is equal to (yP/p)'/?, where P is the pressure and 7 is
the adiabatic index, this conditions reads as

1/3 p
tcool < (@) / v (55)
p p

We estimate the scale-length of the volume occupied by the Gas Particle by using
(m/p)"/%.
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e second condition requires that the free-fall time is shorter than the sound-

2] Th d diti ires that th It is shorter than th d
crossing time, i.e. the diem for gas collapse is shorter than the time that a
pressure wave take to supply the internal support of the gas. This reads as

< () W5

We have implemented this further two conditions in the code and let them to be either
enabled or disabled. We run only a low-resolution simulation with them, the one
labelled as Sf.

The effectiveness of such conditions depends strongly on the metallicity of the gas, as
the cooling rate will be much enhanced by the presence of heavy elements. In Fig.
(5.23), the Top Right panel shows which particles fulfill each request.

The Bottom Right panel shows the particles which fulfill both (dots) and the particles
having p > py, which do not (filled triangles). This latter panel, also shows (empty
squares) the values for the hot—phase density and temperature of all particles with
p > psh. The Bottom Left Panel shows what would have been the hot phase of th
particles plotted with filled triangles in the Right Panel.

Condition [2] turns out to be more restrictive than Condition [1]; all GPs fullfilling the
former also satisfy the condition on cooling time, whereas the opposite is not true, as
can be seen in the Top Right panel of Fig. (5.23).

Only 2.3% of GPs fullfill both conditions (1) and (2). Nevertheless, we are not

interested on all particles but just on those eligible to enter in the multi—phase star—
forming regime. Of such particles, 66.7% fullfill both (1) and (2) while 33.3% satisfy
(1) but not (2). These last particles are shown as filled triangles in the Bottom Right
Panel of figure Fig. (5.23). They are prevented to collapse from keeping a large
pressure support from the surrounding gas. The hot phase of gas taking part to the
Star Formation is plotted in the same Panel with empty squares. If particles with
p > pu, are considered as multi—phase particles, their hot phase will result as in the
Bottom Left Panel. Overall 29 particles, about 5%, which would all have & 0.9 are
excluded from star formation.
In Fig. (5.24) we plot the SFR of both the S;, and the Sf* simulations. The net effect
of including the constraints of Eq. (5.5) and Eq. (5.6) is to prevent gas having a strong
pressure supply to form stars at high redshifts, while storing it in a warm/hot very
dense phase that collapses at later time.

At z = 2 the cold fraction of the proto—cluster in th S;, run is ~ 20% higher than
in Sft) and the star fraction is ~ 45% higher as well. Nevertheless, at z = 0 the cold
fraction of the cluster is higher by ~ 45% in the Sf* simulation, whereas the star
fraction is still larger by ~ 15% in S;. Again this is due to the fact that Sf* produces,
at z = 0, slightly less star mass, while having a cold fraction twice as large as Sy,
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Figure 5.23: [Top Left Panel] The p — T plane for the simulation Sf* before the multi-phase
algorithm is applied to particles. [Top Right Panel] Particles in p — T plane which have a cooling—
time t.oo; shorter than their sound—crossing—time ts. are shown with dots, whereas particles which
have a free—fall time tg shorter than ¢4, are shown with empty squares. [Bottom Left Panel] Phase
diagram of particles having p > py, which do not satisty either tcoor < tsc o1 tg < tsc. [Bottom Right
Panel] Particles in p — T plane with p > py, having both teeer < tse and tg < t., before (little dots)
and after (empty squares) the multi-phase decomposition have been applied to them. Particles eligible
to be multi-phase which do not satisfy one of the two conditions are plotted with filled triangles. —
All data are taken from the snapshot at z = 0.Vertical dotted line shows the py, for [Fe/H] = 0.5,
which is the lowest py, below which the multi-phase model switch off.

do. This also results in a lower mass-weighted temperature inside the virial radius.
This can be inferred from Fig. (5.25) where we have plotted the hot and cold phases
of gas for both S, and Sf* at z = 2 and z = 0 respectively in the Left and Right
Panel. At high redshifts the “phase decomposition” of the two simulations is quite
indistinguishable , while at late times much more gas has been pushed towards very
high densities or high temperatures in the modified algorithm run.

In Fig. (5.26) we plot the radial profiles of some interesting thermodynamical
and chemistry-related quantities; Top Left and Right Panels, Middle Left and Right
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Figure 5.24: The Star Formation History of Sy, (continuous line) and of Sf* (dashed line).
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Figure 5.25: Hot and Cold Phase for multi-phase particles at z = 2 [Left Panel] and z = 0 [Right
Panel]. Hot and cold phases for Sp run are plotted respectively with crosses and points, whereas
those for Sf* run are plotted using respectively empty circles and triangles. The vertical dashed line
indicates the vale of py, for [Fe/H] = 0.5.
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Figure 5.26: In all Panels the z—axis report the distance from cluster’s centre in units of the virial
radius. Scale is indicated on z—axis of the bottom panels. In all Panels, squares and triangles indicate
respectively Sf* and Sp, data. [Top Left Panel] The density profiles. Density is in units of the
baryonic virial density. [Top Right Panel] The temperature (in keV) both mass (filled symbols)
and emission weighted (empty symbols). [Bottom Left Panel] The “entropy” profiles. [Bottom
Right Panel] The radial abundace profiles for Iron (empty symbols) and Oxygen (filled symbols).
Iron profiles have been magnified by a factor of ten for clarity. Units are solar abundances. indicates
Xo/Xpe = solar.

Panels, Bottom Left and Right Panels show respectively the hot gas density, the hot
gas temperature, the entropy (defined as T'/ n?® where n, is the free electron number),
the Iron and Oxygen abundances, the fraction of all metals locked in gas and the
ratio between Iron and Oxygen abundances. No major differences can be seen in the
graphviews. Density and entropy profiles of Sf' are, respectively, a bit lower and a
bit higher in the innermost region with respect to those of S;. This is expected, since
Sy has a lower fraction of cold, low entropy clouds. This also leaves an interesting
signature on the temperature profile: S5 exhibits a fairly decreasing temperature in
the centre.
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Figure 5.27: The z—axis report the distance from cluster’s centre in units of the virial radius.
Squares and triangles indicate respectively Sf* and Sy, data. [Left Panel] The fraction of all metals
locked in gas as a function of radial distance. [Right Panel] The radial profile of ratio [Xo/X .| in
units of the solar ratio. Straight dotted line indicates Xo/XF. = solar.

B Summary

Introducing futher requirements of Eq. (5.5) and Eq. (5.6) in order to allow a Gas
Particle to become multi—phase and star—forming one does not have a major quantita-
tive impact on final results, though from a qualitative viewpoint we obtain somewhat
interesting trends. What is probably missed is an effective way to provide the gas which
collapse with the energy supply coming from the star—forming neighbourhood. Thus it
is not effectively re-heated, and its collapse is only delayed to lower redshifts. Having
a high star formation rate at z < 1 in galaxy clusters is not a good result, as it has
not observational counterparts. This is a common problem in numerical simulation
of galaxy clusters, witnessing that some physics is missed either in the Sn—feedback
or in accounting for extra—energy surces. However, introducing the new requirements
that we discussed in this Section does not tend towards the right direction or, at least,
enhances this lack of physics. Moreover, besides the fact that we are only roughly
modelling the estimates of characteristic time—scales tg and ¢, ., we also do not really
resolve the inner structure of the gas phases. A more refined numerical description of
the pressure support against the collapse may be appropriate when the mass resolution
increases.

CHANGING THE LIFETIMES AND THE FRACTION
OF BINARY SYSTEMS

The Initial Mass Function (IMF, see Sec. (4.3.5)) is one of the key ingredients for a
chemical evolution model. During the lifetime of a galaxy or of a galaxy cluster, many
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subsequent stellar generations born and the masses of their stars distribute according
to the IMF. How the stars’ mass distributes over the mass range (usually [0.1-100] M,
is considered) characterizes the resulting stellar population, whose composition deter-
mines the global properties of chemical enrichment. Once an IMF has been chosen,
several other physical quantities remain to be fixed; the most important ones are the
stellar lifetimes as a function of the stars’ mass, the yields for the nucleosynthesis of
heavy elements and the details of stellar evolution. In this work, we choose to keep
constant both the yields and the stellar evolution model. Instead, we test how results
change when varying the IMF or the lifetime function of stars; moreover, we also change
only the fraction A of stars ending in binary systems which give raise to Snla.
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Figure 5.28: Radial profiles of Iron and Oxigen emission-weighted abundance. Left Column shows
the Low—Resolution results, whereas the Right Column shows the High-Resolution ones. The Sy,
and Sy runs are plotted with empty triangles, the simulations with MM lifetimes and increased A
fraction are plotted with empty and filled squares. In the Upper Row we plot the Iron profiles and
in the Bottom Row we plot the Oxygen ones. Simulation data in Top Left Panel are coded as in
the Bottom Left Panel.

In the following, we fix the IMF to be the Salpeter one and we vary the lifetime
function and the parameter A. In the following Section, we do the opposite, keeping
constant both the lifetime and all stellar parameters and varying the IMF.
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Figure 5.29: The total star mass within a given radius as a function of radius (in units of Ragg).

As an example of lifetimes different than our reference one (given by Padoani &
Matteucci (Padovani & Matteucci 1993), see Sec. (4.4)) we choose the function by
Maeder & Meynet (MM), which has already been described in Sec. (4.4). We run
a simulation, both in Low— and High— Resolution, labelled S ‘L“/TH using such lifetimes
and raising A from 0.07 to 0.1. Furthermore, we present a Low—Resolution simulation
having A = 0.07 and using MM lifetimes. This latter run is referred as S7. As the
parameter A enters in our adopted stellar model as a multiplicative constant, raising it
increases the number of Snla produced by a stellar population. Therefore, a simulation
using MM lifetimes and A = 0.07 is useful to check to what extent changes are due
to different lifetimes or instead to the larger number of Snla. We expect that such a
simulation lives somehow ‘in between’ the simulation using PM lifetimes and that one
with MM lifetimes and A = 0.1; to save computational time we choose to run such a
simulation only in Low—Resolution.

Fig. (5.28) shows the radial abundance profiles for these simulations. Looking
at High-Resolution results, S7" exhibits higher values as for the Iron contents which
bring the abundance profile up to the observed level in the inner regions (r < 0.3r90).
Changing the lifetimes roughly does not affect the overall production of metals, once
a given total stellar mass has formed; therefore, as for S3™ one would naively expect
a total amount of Iron ~ 40% higher than in Sy (i.e. ~ 0.1/0.07 — 1), since the total
stellar mass in the two simulations is nearly equal (~ 7% larger in Sy ). Nevertheless,
we can infer from the Star Formation History, shown in Fig. (5.30), that about 20% of
the stellar mass in S47 has formed after redshift z ~ 0.25, i.e. less than ~ 3 Gyr ago.
Looking at Fig. (4.2) we know that the MM lifetimes for Snla are ~ 80% of PM lifetimes
until about ~ 3 Gyr by the formation time of a given stellar population. Hence, we are
missing a substantial fraction of the total amount of Iron, since not all Snla had time
to explode. Taking all data into account, we would expect at maximum only < 20%
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Figure 5.30: In the Left and Right Column are plotted respectively the Low— and the High—
resolution results. The Upper Row shows the Star Formation Rate History. Continuous lines
indicate Sy, and Sp. Dot-Dashed lines indicate S77 and S7”. Dotted line indicate S7. The Bottom
Row shows the Snla Rate History. Lines are coded as for the upper row.

more Iron in S7" than in Sy if all Snla events were occurred. Actually, we obtain just
~ 9% more Iron within the virial radius in S77 than in Sg. The profiles plotted in the
Top Right Panel of Fig. (5.28) present two features that is worth explaining; the first is
the flattening in the innermost region and the second is the coincidence of abundance
out of R/Ryg0 R 0.5. Fig. (5.29) shows the total stellar mass within a given radius, as
a function of radius. An inspection of High—Resolution results (Right Panel) reveals
that in S47 there are much more stars in the second distance bin with respect to the
first one than in Sy. Moreover, there are more stars younger than 3 Gyr than in Sg.
This causes that flattening of abundance profile, as well as the the higher abundance of
Oxygen for Sy in the innermost bin, which is visible in the Bottom Right Panel. The
similarity of abundances beyond R/R1gy < 0.5 turns out to be a sort of conspiracy. In
these regions the stellar mass is the same for both simulations within ~ 1%, so that
we would expect a much higher Iron content in S#7. Nevertheless, in this latter run
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~ 35% more stars than in Sy run are younger than ~ 3 Gyr, so by the same reasoning
as before the total ejected Iron is less than naively expected. The fact this turns in the
same amount of Iron is just a coincidence.
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Figure 5.31: Mean Iron and Oxygen abundance of the gas as a function of redshift. [Left Panel]
shows the low-resolution results. Bold lines show the Oxygen data and thin lines the Iron ones.
Continuous, dotted and dot—dashed lines plot respectively the Sy, ST and S77 simulations. [Right
Panel] contains the high-resolution results. Line codes are the same as for the Left Panel.

The same interpretation applies to Low—Resolution results. The Iron profiles are as
we expected they to be, being S77 and Sy, respectively the highest and the lowest one
with S7 in the middle. Instead, once the Left Panel of Fig. (5.29) has been considered,
it appears that the Oxygen profiles disagree with the interpretation that we have drawn
right above. What is playing a role here is the different fraction of Oxygen locked in
stars. Looking at the Top Left Panel in Fig. (5.30) we infer that both in S] and
S47 more stars than in Sy have formed very recently. Most of them are located in the
cluster’s centre, so that the fraction of Oxygen which reside in the hot—phase is ~ 2.7%,
~ 1.9% and ~ 1.3% respectively for Sy, ST and S27. This is the reason why the Sy7
simulation exhibit the lowest Iron content in the centre though it has the largest stellar
mass.

The enrichment history plotted in Fig. (5.31) clearly shows that the mean gas Iron
abundace of both ST and S7™ grows slowly than in S, and, instead of declining at low
redshifts (z < 1) continues to grow due to the Iron produced by those Snla which are
not allowed to explode in Sp. The same reasoning holds as for the enrichment history
of High—Resolution simulations.

The ratios between the Oxygen and Iron metallicities (see Fig. (5.32)) exhibit
fairly different behaviours accordingly to abundance profiles of Fig. (5.28), so as S3"
has values of [0/ Fe] much lower than Sy and the same holds as for S™ and S, ST
and S7. Though in the central region the signature of different lifetimes is clear, in the
outer regions (R 0.3R,;) the profiles of all simulations aremuch more similar as for
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Figure 5.32: Low— and High-Resolution results are plotted respectively in Left and Right Column.
[Upper Row] The Oxygen over Iron abundance ratio in log—solar units. Straight dotted line indicates
the solar value. Continuous line with filled circles stands for Sy, runs, dotted empty—squares line
stands for S7 and dot-dashed filled-triangles line indicates the Sf/TH run. [Bottom Row| The mass
fraction of Iron harbored in the ICM as a function of distance from centre. Lines are coded as for the
Upper Row.

both the abundance ratios and the mass fraction of metals harbored in the gas (bottom
row in Fig. (5.32).

B Summary

We changed one of the key ingredients for the chemical enrichment, namely the lifetime
function for stars. Also, we vary the fraction of mass ending in binary systems from
which Snlaoriginate.

The Thermodynamical properties (Fig. (5.33)) are not significantly affected by
neither changing lifetimes nor changing the bynary system fraction A. Changing the
lifetimes affects mostly the intermediate and low—mass stars, so, as for the energy, it
amounts to vary the energy injection rate by Snla. Changing A turns in having more
(larger A) or less (smaller A) Snla events, and this again reflects on the total amount
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of energy available from this source. The stability of the thermodynamical properties
when varying both the lifetimes and A argues against a major role played by the Snla
energy.

As for the metal enrichment, changing both the lifetimes and A makes important
differences both in the Iron abundance profile and in the abundance ratio between v and
Iron—peak elements. Iron abundance becomes larger in the inner regions (RS 0.3Raq),
arriving at the observed enrichment level (De Grandi & Molendi 2001). The [O/Fe]
ratio is significantly undersolar (~ —0.2 dex) out to R ~ 0.3R,; while remaining
unaltered (slightly suprsolar) for R ~ 0.5R,;.. The Snla explosion rate is strongly
affected, and together with abundance ratios it can be a key test in order to obtain
constraints on the star formation history in galaxy clusters.

CHANGING THE INITIAL MASS FUNCTION

In the previous Section we kept fixed the IMF of stars while varying their lifetimes.
In the following we show the effect of assuming different IMFs, namely the Arimoto—
Yoshii IMF (Arimoto & Yoshii 1987) and the Larson IMF (Larson 1998), which is also
varying with time. We label these simulation as AY}}” and V}}’ respectively. We have
already introduced the Arimoto—Yoshii IMF and the Larson IMF in Sec. (4.5).

In Sec. (3.4.6) we described how the energy due to Snll is also employed to supply
kinetic energy to gas particles having a strong star formation activity. This is what we
call ‘winds’ as the net effect of this energy supplying is an outflow of gas from star—
forming regions. As we’ve already described, if m,, is the rate of gas ouflow from winds
and M, is the rate at which the gas convert into stars, the wind’s energy equation is
given by

1/21m,v2 = yesn M,

so that the wind’s velocity is given by the equation
Ui = 2165 N-

We remind that egy is the energy per gram per solar mass of stars formed due to the
Snll having mass larger than M/, and that both x and 7 are parameters of the code.
The first one defines the fraction of energy esy which give raise to winds and the second
controls how much efficiently a gas particle is selected to take part to the wind.

The IMF determines the number of both SnIl and Snla that a stellar population
provides during its lifetime. Hence, by changing the IMF we also change the total
amount of energy provided by Sn. In turn, this affects the value of the wind veloc-
ity, once x, n and M/}**have been fixed. This can have a significant impact on the
evolution of the cluster we are simulating. In this section we focus on the effect that
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Figure 5.33: Thermodynamical properties in Sy /p, S‘L“/TH and ST simulations. [Upper Row]
Density profiles. [Middle Row] Temperature profiles, both mass— and emisison— weighted. [Bottom
Row]| Entropy profiles.

varying the mass distribution of stars has on both the production of elements and the
thermodynamical history of gas; then, we set the winds’s velocity to the value it has
using a Salpeter IMF and M/ = 15Mg, , that is v,, ~ 500 km s~!. In the next Section
we let the wind’s velocity to change.
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Figure 5.34: [Left Panel] The relative weight of Arimoto-Yoshii and Larson IMFs relatively to
the Salpeter one. Open circles indicate the ratio between the Arimoto—Yoshii and the Salpeter IMFs,
the Triangles indicate the ratio between the Larson IMF at different redshift (see the legend) and the
Salpeter IMF. [Right Panel] The energy due to Snll having mass m > M/ = 15Mg for the IMF
we use. This energy is that one which is immediately incorporated in the star formation algorithm.

The Left Panel of Fig. (5.34), which reports the relative weights of the Arimoto-
Yoshii and the Larson IMFs with respect to the Salpeter IMF, gives us an insights on
how each IMF will drive the chemical enrichment (compared with the Salpeter IMF).
Firstly, the mass at which these IMFs are equal to the Salpeter one are in the range
of low—mass stars; even, the Larson IMF after z = 2 crosses the Salpeter IMF in the
region of stars that never die. Since above this mass all the IMF's are higher than the
Salpeter IMF, we expect that both the Arimoto—Yoshii and the Larson IMFs produce
an amount of heavy elements larger than the Salpeter IMF. Next, we remind that the
very low mass stars are the main responsibles for the locking of metals in the stellar
phase; then, as both Arimoto—Yoshii and Larson distribution functions have much less
stars of small mass than the Salpeter function, we expect the gas metallicity in AY,}
and V' to be enhanced also by a smaller enrichment of the stellar phase.

Surprisingly, the star formation rate is not strongly suppressed when a top—heavier
IMF is adopted. Fig. (5.35) shows the rates of star formation as a function of time: the
feature common to AY; and V}}’ is the shift of the SFR peak towards z ~ 1, whereas
the rate of Sy peaks Z ~ 2 — 3. From Fig. (5.34), we know that the energy provided
by IRA Snll in AY};Y and V,}* is quite similar (or even larger in V¥ for 2= 2) to the
energy in S/%. Therefore, considering Fig. (5.8), besides this shift of the maximum
of star formation, one would have also expected a significative suppression of the rate
itself. In the summary of Sec. (5.4), we stressed that in the results presented in that
Section we did not disentangled the effect of changing the wind’s velocity accordingly
to the value of M/**. Having fixed the value of v, for all the simulations, here we are
somehow separating these two effects since changing the IMF amounts also to change
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Figure 5.35: [ Upper Panel] The star formation rate history and the related Snla and Snll explosion
rates (respectively Bottom Left) and Bottom Right.

the value of egy.

The plot shown in Fig. (5.34) have a rather straightforward interpretation. The
Arimoto—Yoshii IMF produces slighlty more Oxygen and significatively less Iron than
the Larson—Variable IMF. In fact, Fig. (5.34) shows that in the high-mass range the
Arimoto—Yoshii function dominates over the Larson IMF at z < 10, whereas the
Larson IMF is always higher than Arimoto—Yoshii IMF for masses < 10 My . The
final amount of Iron within the virial radius in Sy is about one half the total quantity
in AY,) and ~ 40% of the amount in V}}’; the Oxygen mass within the virial radius
in Sy run is ~ 27% and ~ 29% of the Oxygen mass present in respectively AY," and
Vy’. This difference in the metal budget is also an increased population of the very
high metallicity tail, as shown in the bottom row of Fig. (5.38).

As for the abundance profiles (Fig. (5.37)), both the AY}}" and the V3" reach the
observed levels. Nevertheless, Iron profiles of both simulations exhibit a too steep shape
if compared with the observational data; they reach the abundance level of non—cooling
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Figure 5.38: [Upper Left Panel] The radial profiles of O/Fe gas abundances. [Upper Rigth
Panel] The radial variance of the fraction of Fe retained by gas. [Bottom Left Panel] [Bottom
Right Panel] The gas mass distribution vs Fe and O abundances, respectively.

core clusters only at R ~ 0.3Rsy, while steeply declining in outer regions. The very
steep raising of the Oxygen profiles in the innermost regions is due to the recent star
formation activity. This recent enrichment affects also the radial profile of [O/Fe] ratio
(Top Left Panel of Fig. (5.38)).

Thermodynamical properties are mildly affected by changing the IMF, as shown in
Fig. (5.39). The temperature of V% in the inner regions (R < 0.2R,;,) is ~ 15% higher
than in the other two simulations, which is indeed a poor result if we remind that the
total energy released by Sn in this simulation is about ~ 300% and ~ 28% larger than
that released respectively in Sy and AY}}.

B Summary

In this Section we described the effect of changing the IMF on the chemical properties
of our simulated cluster. We run simulations using three different IMF's: the Salpeter
IMF, the Arimoto—Yoshii IMF and the time-dependent Larson IMF. As result, we
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Figure 5.39: [Upper Panel] The density radial profile of hot gas. [Bottom Right Panel] The
hot gas entropy radial profile. [Bottom Left Panel] The temparature profiles for the hot gas are
shown both emission—weighted and mass-weighted.

find a large difference in the total amount of produced metals arise when an heavier
IMF is adopted. This difference reflects also in the radial abundance profiles, which
reach higher values in the central part (RS 0.3R,;) of the cluster. Nevertheless, our
profiles are somewhat steeper than the observed ones.

The main signature of using different IMF's is in the [O/Fe| profiles. All simulations
give a supersolar value in the innermost part of the cluster, owing to the very recent star
formation. For this reason we consider the third distance bin as an estimate of a more
representative value that we can expect once this bias has been taken into account.
The Salpeter IMF exhibits solar values down to the very inner regions (R S 0.05R,;, ),
where it become mildly supersolar. The Arimoto—Yoshii IMF produces instead a fairly
constant [O/Fe] ~ 0.2 profile, slightly higher towards the centre; finally, the results
from V’ are very similar to those from Sy down to R ~ 0.3R,;, then raising and
reaching in the centre values similar to those of AY ;.
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The minor changes in the profiles of the thermodynamical properties of the gas, as
in Sec. (5.7), against a major role of supernovae in determining the global properties
of galaxy clusters. This suggest that while Sn have a crucial role in determining the
pattern ic the ICM chemical enrichment, the details of dtar formation model hardly
reflect in the global thermal properties of the ICM.

CHANGING THE WIND’S VELOCITY

In Sec. (5.8) we discussed the link between the IMF and the wind’s velocity; changing
the IMF amounts to change how many stars form with m > M/} > 8 Mg . In our
star formation model these stars provide, as Snll, the energy available to achieve the
self-regulation of the star formation itself. This same energy is assigned as kinetic
energy to the gas particles tha form the winds (see Sec. (3.4.6)). The velocity which is
assigned to such particles is proportional to the square root of the energy provided by
short—living stars. Hence, changing the IMF turns in modifying the velocity assigned to
wind particles. In our implementation of stellar evolution, we let the energy deposited
on a Gas Particle by nearby supernovae to be involved in the computation of the winds’
velocity (see Eq. (4.8)). As a consequence, the velocity calculated using the energy
from short—living stars represents the minimum velocity of winds in that simulation.
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Figure 5.40: The mean (Left Panel) and maximum (Right Panel) wind’s velocity in different

runs. We remind that the apex w label those simulations having a fixed value of v,,. The spread is
due to the contribution from Sn not in IRA.

Since we are interested in disentangling the effect of a larger energy available in
the thermodynamics and of an higher wind velocity, in Sec. (5.8) we fix this value for
all simulations. Instead, here we present the results from the same simulations AY}}
and V3’ discussed above, compared with two simulations AYy and Vi which are equal
to the formers but for the wind’s velocity being calculated accordingly to the actual
energy provided by short-living stars.
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Figure 5.41: [Upper Panel] The star formation rate history for top-heavier IMFs with strong and
‘standard” winds. In the bottom row we show the the underlying Snla explosion rate [Bottom Left
Panel] and SnlI explosion rate [Bottom Right Panel].

Hence, both AY}¥ and V" have v,, ~ 500km sec™!, while v, in AY}y is about
~ 840Km sec™!. The Larson IMF is time-depdendent so that we have to recalculate
all related quantities at each time. Since the number of short-living stars formed
changes, also the value of v,, evolves in time.

Fig. (5.40) shows the mean and the maximum velocity of winds (respectively in the
Left and the Right Panel) as a function of redshift. On average, the energy that
nearby supernovae deposit on Gas Particles gives an average contribution to the wind’s
velocity of about 5 —10%; in some case (see the Right Panel), the contribution is more
substantial, reaching the ~ 40% level.

Anyway, the main results from this figure are that (1) the velocities change considerably
from one simulation to another and (2) the first star—forming regions at early times in
Vg suffer for the presence of a strong wind.

Fig. (5.41) and Fig. (5.42) explicitly show the effects of wind on the patterns of star
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Figure 5.42: The mean Oxygen (Right Panel) and Iron (Left Panel) content of gas as function
of redshift. AYy and AY}’ data are plotted with heavier lines. AY}}" is plotted with a continuous
line, AYy with a dot—dashed line, V;;* with a short—dashed line, Vx with a dotted line.xs

formation and metal enrichment. Bearing in mind that the Gas Particles which take
part to the wind are those having a strong star formation activity (and which are not
been turned in Star Particles), the Upper Panel of Fig. (5.41) clearly shows the effect of
giving to such particles enough energy to escape from the dense clouds in the potential
well where they are bounded. Both simulations with the most energetic winds exhibit
a strong suppression of the star formation rate once the number of star—forming Gas
Particles become high enough to make the winds effective in removing a considerable
gas mass (see Sec. (3.4.6) as for the algorithm used to model the winds). The Bottom
Panels of the same figure show the consequences on the supernovae explosion rates. It
is worth underlining two interesting features shown by the star formation rate and the
enrichment history (see Fig. (5.42)).

Firstly, though for z < 2 the difference between the value of v,, in V;} (AY,}’) and
in Vy is is comparable with the difference between the velocity in Vg and AYy, Vg
does not fall somehow in between AYy and Vi’ (AY,). Instead, its pattern of star-
formation rate is very similar to the one of AYy, some difference being appreciable by
z = 2 (since at 2 S 4 v, in Vp is smaller than in AYy, coeherently the rate of Vi is
slightly higher than that of AYy by this time). This means that the wind feedback
at high redshift (when v,, in V is quite extreme) determines the subsequent pattern
of star formation and that a larger effect appears when the wind velocity exceeds the
typical esape velocity of the galaxy—sized halos, where star formation takes place. This
may appear as a trivial point, as certainly the escape velocity is the threshold which
define wheter a wind is ‘strong’ or not. However, since we are not currently able to
model winds carefully and in a fully physical-grounded way, we can not neglect that
fixing the velocity wind above or below that threshold may changes results.

The second feature which is worth noting, is that removing the gas from the dense
star—forming regions prevents the severe locking of metals into stars. We know from
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Figure 5.43: Radial abundances profiles for the hot gas. Both Fe (Upper Row) and O (Bottom
Row) are shown. On the Left Hand Side we plot emission weighted abundances and on the Right
Hand Side we plot the mass-weighted abundances.

previous discussions that the Oxygen is the most affected by this process, since it is
mainly produced by massive stars which make it very quickly available in the surround-
ing, star—forming, gas. The Right Panel of Fig. (5.42) clearly shows this process acting
in AY,;# and V;’ simulations: as the star formation rate is suppressed, the Oxygen pro-
duction becomes smaller than its ‘capture’ by newly formed stars (basically for z < 1.5
for both AY} and V). Instead, neither Vi nor AYy exhibit such a decreasing of
the mean Oxygen content of the gas, instead having a continuous enriching. The final
effect on the metal sharing is shown, as for the Iron, in the Top Right Panel of Fig.
(5.44); in the central region, where the recent star formation is strong, the gain of Iron
mass fraction retained in the gas is substantial (up to a factor of ~ 2).

For the sake of clarity we report in Fig. (5.45) data which are plotted also in Fig.
(5.4); it is shown that AYy and Vi produce the lowest amount Iron and Oxygen, while
substantially higher mass fractions of heavy metals enrich the gas. Radial abundance
profiles, shown in Fig. (5.43), reflect the same effect. In that figure open symbols
stands for simulations having v,, a prior: determined. Triangles are used to plot simu-
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Figure 5.44: [Upper Left Panel] The radial profiles of O/Fe gas abundances. [Upper Rigth
Panel] The radial variance of the fraction of Fe retained by gas. [Bottom Left Panel] [Bottom
Right Panel] The gas mass distribution vs Fe and O abundances respectively.

lations with the Laron IMFand circles to plot simulations with Arimoto—Yoshii IMF.
Although AYy produces much less stars, and then metals, than AY,’, the higher
mass fraction of metals in the gas makes its abundance profiles to be larger than
those of AY}’. As for the Iron, this happens only in the central region of the cluster
(RS 0.2R300), whereas for the Oxygen the abundance profile of AYy lives above th one
of AY}} along all the cluster. In the outer regions, the Iron sharing between gas and
star phases is about the same in the two simulations, so that the smaller stellar density
in AYy makes the Fe profile to lie below the AY}}" one. Instead, the fraction of Oxygen
resident in the gas phase is still higher by 15 — 20% in AYy than in AY}}’, and, as we
mentioned, the two Oxygen profiles become similar. On the other hand, Vg provides a
too small star mass and although the fraction of Iron resident in the gas is much higher
than in V}}’, the Iron abundance profile stands significantly below the profile of V.
Instead, the Oxygen abundance profiles reach the same levels downto R ~ 0.1Rs,
where the larger rate of recent star formation in V’ determines the amount of Oxygen
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ejected in the gas.

A very interesting consequence of making v,, consistent with €5y, are the changes
in the radial profile of [O/Fe] ratio. Arimoto-Yoshii runs stand well above sola values,
AYpy being fairly constant and AY,}’ growing as we noted in Sec. (5.8). The runs with
the Larson IMF follow instead the opposite behaviour. Vy is declines from AYpy—like
values in the outskirts downto ~ 0.2 dex values in the centre; V' givea nearly solar
values downto R ~ 0.2Rsy and thereafter grows steeply up to ~ 0.6 dex in the centre.

The impact on the profiles of thermodynamical properties is quite more significant
than seen previous Sections. Besides having a much smaller star fraction, both AYy
and Vp simulations have a higher central density; they also appear to have very similar
entropy and temperature profiles. All emission—weighted temperature profiles exhibit a
mild decline in the innermost regions; however, this is still highly unsufficient in order
to recover the observed profiles (see Chap. (2)).

5.10 COMPARING METALLICITIES WITH OBSERVATIONS

In this Section we explicitly plot observational results superimposed to our findings
from simulations. As we do not have a large ensemble of objects, we can not discuss
interesting observational data such as the dependence of central sbundances on the
mass of the system or namely on its baryonic fraction. Instead, we concentrate on the
single—object properties.
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Figure 5.46: [Upper Left Panel] The density radial profile of hot gas. [Upper Right Panel]
The hot gas entropy radial profile. [Bottom Left Panel] The emission-weighted temparature profile
for the hot gas [Bottom Right Panel]

The mass—weighted temparature profile for the hot gas.

We focus our attention on a subset of our high-resolution simulations, chosen so
as to account for the physics that we have so far introduced in the code. Besides the
‘standard’ simulation Sy and its variant S;7, the most interesting cases may be the
simulations performed with top—heavier IMFs. Since the winds velocity has proven to
be a fundamental factor, we include simulations AY;¥ and V,¥, which have v, = v3#,

as well as AYy and Vg, whose value of v,, is instead calculated accordinlgy with the
actual value of Snll energy available in the IRA regime.

As first we compare with the result from BeppoSAX observations by De Grandi &
Molendi (2001). Data and simulated profiles are given in Fig. (5.47). As we noted
in previous sections, our simulations fairly reproduce in the central region both the
abundance and the shape of data (we remind that plotted points are the stacking
result of several objects). Since reliable observations of abundances in the outskirts of
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galaxy clusters are yet missed, we do not have clues on the shape of Fe abundance in
the outermost regions. Although observed profiles exhibit different behaviours, from
a very steep decline to a shallower shapes, the general inference is that Snla products
are very centrally concentrated. Hence, the steepness of our profiles starting at about
R ~ 0.4R13y may not witness some serious problem, given that we are dealing with a
single object.

Accordingly with a priori order—-of-magnitude reasonings, top—heavier IMFs reach
the highest abundances and, above all, are in fair agreement with data out to larger
radii than other IMF. Also, we infer that strong winds may play a crucial role in
depleting the central Iron abundance. It is remarkably that also the Salpeter IMF
is able to produce high abundance levels if lifetime of Maeder & Meynet (1989) are
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Figure 5.47: We plot radial profiles for abundances and abundance ratios for all the discussed
simulations. Zp. is in solar value (Grevesse & Sauval 1998). Circles are data from De Grandi &
Molendi (2001); empty circles refer to Cooling—Core clusters whereas filled ones refer to non Cooling-
Core objects. [Upper Left Panel] Fe abundance profiles. [Upper Right Panel] O/Fe profile.
[Bottom Left Panel] O/Si [Bottom Right Panel] Si/Fe profile.
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assumed. To what extent using such lifetimes has been an exercise is unclear as we
do not have measures of Snla rates in galaxy clusters. Nevertheless, Chiappini (2004,
private communication) find that shorter timescales for Snla arising from low-mass
binary systems may be a key ingredient in solving the G—dwarf problem in the Milky
Way. Moreover, deferring to late times the ejection of a sizeable fraction of Fe would
enhance the fraction of this element which is retained in the gas (S7™ obtain the second
higher fraction of Iron in the ICM). Since it is commonly thought that this fraction
must be quite large (> 50%, see Renzini 2004), this would be a a way out for saving also
the Salpeter IMF that seems not to be best suited to account for chemical enrichment
in galaxy clusters (e.g. Larson 1998, Moretti et al. 2003). We also note that the S#7
simulation is the only one achieving negative central values as for the [O/Fe] ratio.

Observations of M87 in the centre of the Virgo cluster (e.g. Gastaldello & Molendi
2002, Matsushita et al. 2003) found undersolar O/Fe and slightly oversolar values for
Si/Fe. Also, the raising of both Iron—peak elements and a—elements in interpreted
as the signature of recent star formation. Although we have a star—forming central
region, no one of our simulation can reproduce such a pattern; either both O and Si
are undersolar with respect to Fe (the case of S7{7) or both increases towards the centre,
even if solar or slight undersolar value are reached at larger radii (Sy and V;}’). Hence,
either a complete different star formation history has take place in our cluster and in
MBS, or possibly different nucleosynthetic channels are acting in the two. This also can
be invoked to explain opposite trend which are shown by S and Si in some clusters.

Finoguenov, David & Ponman (2000b) find in clusters a strong evidence of an
increasing role of Snll when moving towards the external regions. We also find a
noticeable dependence on the radius for the Si/Fe ratio, which is fairly traced by O/Fe
ratio. Finoguenov et al. found solar value in the very centre of systems and supersolar
value ([Si/Fe] ~ 0.6) in the outskirts. We find very different behaviours, as shown in
the bottom right panel of Fig. (5.47). Nevertheless, our results are biased by a strong
recent production of « elements which pushes to high values the Fe/a ratios; it is not
unlikely that top—heavier IMFs would produce Si/Fe profiles once the star formation
at low redshift is inhibited.

Very recently, Tamura et al. (2004) have anlyzed a sample of 19 nearby clusters
observed with XMM-Newton . We plot their binned profile in Fig. (5.48). Observations
concern only the inner ~ 500kpc. Although we should normalize the profiles on a
characteristic scale (e.g. the virial radius; not provided by the authors) to highlight
the peculiar properties of the objects, such a rough comparison is sufficient to confirm
us that the general trend of our results is basically correct; this is mostly evident when
comparing the Fe profile or the Si/Fe profile, whilst the O/Fe seems to be not in a good
agreement. Nevertheless, the obtained error bars (which we do not show for clarity)
are quite large and no strict conclusions can be drawn.

Fig. (5.49) shows data on Si/Fe from the ASCA database as reported by Baumgart-
ner et al. (2003). The empty circles represent the point which is closer to our cluster
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Figure 5.48: We plot our result making a comparsion with recent observations of Tamura et al.
(2004). Note that only innermost regions are reported. A really meaningfull comparison should be
made among profiles normalized to the virial radius, or a given fraction of it; nervertheless, we find
quite interesting to compare with data in central regions, exactly where we have major biases from
recent star formation. [Upper Panel] The Fe abundance in the central region. Abundance ratios
for O/Fe and Si/Fe are plotted in [Bottom Left Panel] and [Bottom Right Panel| respectively.
Data are expressed in units of abundances by Anders & Grevesee 1989.

as for the temperature. Hence, All our simulations, except V/’, seems to produce a
relative amount of Silicon which agrees with observations. Since a fair correlation be-
tween Fe abundance and ICM temperature is now well established, we would expect
that taking the filled point as a reference, our simulations produce a similar amount of
Iron. Instead, we find that our runs produce less Fe than observed.

We do not show here the redshift evolution of the metallicity for our cluster as
the modelled physics changes; however, it can be straightforwardly estimated from
the evolution of the mean ICM metallicity that we have plot for all simulations. In
all cases there is no significant evolution out to redshift z ~ 1, in rough agreement
with observation. The only exception is the case for S7;™ whose increasing rate of
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Figure 5.49: We report the correlation between the Si/Fe ratio and the Fe/H abundance. Empty
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solar abundance by Grevesse & Sauval 1998.

Snlamakes Z7." also increasing with time down to z ~ 0.1, which is at odds with
observations. Nevertheless, this is in turn caused by the non-negligible recent star
formation activity.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This Section is devoted to draw the conclusions of the work presented in the previous
Chapters. We discuss them in the following Section, whereas in the last one we outline
future prospects and developments.

DISCUSSION AND CONCLUSIONS

Galaxy Clusters play a key role in modern Cosmology in many respects; since they
are the most massive virialized objects in the universe, they witness the history of
baryons on large scales and, in general, they are very useful probes for the large scale
structure and for the structure formation theories. In the last decades, more and more
accurate and deep observations have revealed that Galaxy Clusters have a very intense
life both within their virial radius and in the outskirts; most of them are far from being
relaxed and quiescent systems, as analytical modelling has so far assumed. Instead,
the last generations of X-ray satellites (ROSAT |, Chandra , ASCA , BeppoSAX ,
XMM-Newton ) have shown very complex features in maps of density, temperature,
and metallicity.

Therefore, we know that complex physical processes are acting and play a major role
in determining the overall properties of the ICM; nevertheless, not only their highly
complex interplay is far to be completely understood, but also the influence of each
single physical process is not yet firmly clarified.

In this thesis we resorted to advanced numerical methods to achieve some more
understanding on a number of these physical processes and on the way they interact
with each other. We used the code GADGET ! that has been kindly provided us in its
most advanced version by its author, Volker Springel. We introduced several important

Lwww.mpa-garching.mpg.de/galform/gadget /index.shtml
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changes in this code, as discussed in Chap. (2) and Chap. (4).

B Cooling and heating the ICM

In the first part (Chap. (2)) of this work we have studied how radiative cooling and
non—gravitational heating influence the relations between fundamental properties of the
ICM, namely the link between the X-ray luminosity and the temperature (Lx — T')
and the relation between the mass and temperature (M — T'). The results presented
here have been published in Tornatore et al. (2003) and Finoguenov et al. (2003a). We
remind that the code used to perform the simulations presented in Chap. (2) did not
include neither self-consistent supernovae explosions nor the effective star—formation
model.

In Chap. (2), we presented high-resolution simulations (up to 3.9 x 10" My, as for
gas particles) of a Virgo-like clusters (M, ~ 4 x 10 My ) and three poor groups
of galaxies (M, from 2 to 6 x10¥ M ), aimed to follow in detail the pattern of
gas cooling and its effect on X-ray properties of the ICM. In detail, we study the
effect of different energy injection prescriptions coupled with radiative cooling and
star formation. On the one hand we model the supernovae explosions by a Semi—
Analytical Model (Menci & Cavaliere 2000). Energy from supernovae is distributed
on gas particles having density larger than given thresholds, such as to mimic the fact
that stars form in dense environment. On the other hand, we simply impose either an
energy floor or an entropy floor to gas particles at different redshifts, such as to mimic
different energy sources.

The key results from Chap. (2) can be summarized as follows:

[ 1] Our star fraction f, ranges in the interval 0.25—0.35, reproducing the well-known
‘overcooling’ problem (Balogh et al. 2001). Observations (e.g. Lin et al. 2003)
set this fraction at about ~ 0.1 for massive clusters, with a possible slight in-
crease for groups; we know that a more advanced treatment of thermodynamics
and star formation succed in lowering the fraction of the star component; Bor-
gani et al. (2004) obtain a fraction of about 20% which, being too high yet, is
not likely to increase with resolution, as demonstrated by Springel & Hernquist
(2003b). Introducing the extra—heating reduces f, by an amount which depends
on feedback energy, on the epoch of injection and on the overdensity of targeted
gas. Impulsive injection at high-redshift is very effective in bringing the value
of f, below 10% for the cluster with a strong suppression of the star formation
rate until very late times, a result which is higly discrepant with observations
(Kodama & Bower 2001). A similar result is achieved by a supernovae energy
input for an IMF heavier than that by Salpeter (1955).
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[2]

[3]

[4]

[5]

The entropy profiles of simulations are in general agreement with the profiles very
recently reported by Piffaretti et al. (2004) for nearby cooling flow clusters. Our
profile show the expected icreasing in the central regions; nevertheless, we have
not yet performed a quantitative comparison with available data (Ponman et al.
2003, Arnaud et al. 2004).

Heating at z = 3 with £ ~ 0.75keV/part is shown to produce scaling of X—
ray luminosity, mass and entropy vs. temperature which agree in general with
observations. This hold independently of wheter an entropy floor is created or
an equal amount of energy is assigned to each particle. A similar agreement is
also found using a Semi-Analitycal Modelling for supernovae which assumed a
Salpeter—like IMF.

Many attempts to recover the observed scaling relations for X—Ray luminosity and
mass vs. temperature have been presented in literature (see references above).
Besides the details of each model, all works agree in finding that cooling and
star formation, removing the low—entropy gas, succed in raising temperature
in central regions (Voit & Bryan 2001). This tends to reconcile the simulated
M —T relation with the observed one, but steepens irremediably the temperature
profiles. We find this same result, as we obtain temperature profiles which do
not have any evidence of declining at small cluster—centric distances. Although
the ‘adiabatic’ simulation exhibits a temperature drop in the centre, this starts
in the very inner region RS 0.1R,;, whereas the declining trend is expect starting
from about ~ 0.3R.;;. Thermal conduction has been also invoked in the past as
a possible solution for this puzzling question (e.g. Zakamska & Narayan 2003,
Ruszkowski & Begelman 2002). Since both small-scale temperature variations
(Markevitch et al. 2003) and the magnetic fields (Brighenti & Mathews 2003)
can suppress the thermal conduction, wheter or not the effective conductivity can
reach a sizeable fraction of the spitzer conductivity is highly uncertain. Dolag et
al. (2004) find that, using a conductivity x = kg,/3, thermal conduction is able
to reproduce an isothermal core in massive clusters, whereas in poor groups it
fails due to the temperature dependence of the conductivity; hence, it does not
lead to the self—similar temperature profiles which are suggested by observations.

Combining heating and cooling in such a way that overcooling is avoided while
simultaneously providing a good fit to the X ray scaling relations, is not an ob-
vious task. Our simplified models for pre-heating are probably not realistic; in
literature one may find several model wich implement ad—hoc schemes in order
to reproduce single observations. Although all these attempts are aimed at ob-
taining hints about the actual physical processes, it is certainly preferrable that
the solution arises quite naturally from the simulations. From the simulations
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presented in Chap. (2), we infer that a careful self-consistent treatment of su-
pernovae evolution is needed. As of today, it is still not clear wheter or not
the supernovae can provide enough energy to account for the thermodynamical
history of the ICM (e.g. Renzini 1997, Finoguenov et al. 2001a, Pipino et al.
2002). Several feedback sources have been proposed, the most natural being
AGN and PoplII stars. The latter are unlike to have contributed significantly
given the constraints on the pristine enrichment of gas that they would have
caused; nevertheless, large uncertainties on their IMF and on the energetics of
very supermassive stars make this topic still rather unclear (Loewenstein 2001).
As for AGN (Valageas & Silk 1999b, Wu et al. 2000, Cavaliere et al. 2002), their
energy budget is surely large enough, although the energy deposition mechanism,
and hence its efficiency, is yet to be clarified.

B The Chemical Enrichement of Galaxy Clusters

In Chap. (4) and Chap. (5) we report results on what is probably the most accurate
numerical description of chemical enrichment of galaxy clusters presented so far. Our
code allows us to follow in a self-consistent way the evolution of stellar populations
which form during the simulation, also accounting for the finite lifetime of stars of
different masses. Then, both energy and metals are deposited in gas surrounding stars.
We account for the metal dependence of the cooling function and for the extra—energy
in the effective model for star—formation.
Early results have been published in Tornatore et al. (2004). We stress that the
challenging task of implementing the stellar evolution and chemical enrichment in nu-
merical simulations is an ongoing project, whose technical aspects are given in Chap.
(4). Currently we have extensively tested our code and established its robustness. First
results from these tests are then discussed in Chap. (5).
Our chemical code (Chap. (4)), besides involving the entropy—based equations and the
effective star formation model (Sec. (3.3.6) and Sec. (3.4.5)) by Springel & Hernquist
(2002, 2003a), features full-consistent Snll and Snla energy treatment as well as the
effect of metallicity on the cooling function; simulations of this kind have not yet been
performed extensively by any other group, and it would be of extreme interest to check
what is the effect on the mentioned scaling relations. At the time of writing we did not
yet run simulations for a statistical ensemble of galaxy clusters spanning a large range
of masses with this advanced version of GADGET .

In order to test our code, we run an extended suite of simulations aimed to check
possible numerical effects on the results. Also, we run and discuss several simulations
aimed to explore ...

Our key results are summarized as follows:
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[1]

[2]
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In simulations performed with this advanced version of GADGET we obtain values
for f, which live in the range ~ 0.1— ~ 0.3, with a mean value of ~ 0.17. Sim-
ulations AYy and Vg involve two top—heavier IMFs and have an energy budget
similar to simulations of Chap. (2) run with the highest values of energy feed-
back from Sn. The net result in both AYy and Vy is to lower f, down to ~ 0.11
while not suppressing the star—formation rate as dramaticly as in the discussed
case and, moreover, without shifting the maximum of rate below redhift ~ 2.
Besides the self-consistency of supernovae accounting, a key aspect that makes
the difference in AYy and Vy with respect to the mentioned simulations of Chap.
(2) is the onset of winds, that are instead absent in simulations of Chap. (2).
We also stress that simulations AY, and V,’ are not so effective in reducing f,,
the only difference from AYy and Vg being the value of the velocity of galactic
winds; v, is much larger in AYy and Vi than in AY} and V)’ (we remind that
in these latter simulations it is fixed to ~ 500 Km sec™!, whereas in the former
ones it depends on the actual energy available from Snll above M = 15Mg ).
Therefore, to reduce f, without an exceeding suppression of the star formation,
we need (1) an heat source which acts starting from an high enough redshift and
which provide enough energy per gram; and (2) an effective removal of gas from
dense star—forming regions which is possibly triggered by the same energy source.

As discussed above, simulations involving IMF's top—heavier than that by Salpeter
(dn/dlogm o m~13%) and with winds’ velocity according to the SnII available
energy, better succed in reproducing the observed f,; at the same time, they
have neither an exceedingly suppressed star formation nor a maximum of star
formation rate shifted towards too low redshifts. Nevertheless, all simulations
producing f, ~ 0.15 — 0.20 are not ruled out. In fact, the accepted estimate of
fx ~ 0.1 is just a lower limit (see Borganiet al. (2004) for a discussion), as, for
instance, the stars which do not lie in galaxies may amout to 20% of the total
star mass (e.g. Arnaboldi 2003, Murante et al. 2004).

While providing emission—weighted Iron abundances within the virial radius that
are in fair agreement with the observed level ~ 0.3X 2, (e.g. Renzini 2004, Baum-
gartner et al. 2003), the Salpeter IMF can hardly account for the observed
abundance profiles (e.g. De Grandi & Molendi 2002). This discrepancy comes
from the fact that the emission—weighted estimates are dominated by the in-
nermost region, where the abundance reaches the observed level. As argued by
(Portinari et al. 2004), the total amount of Fe produced by the Salpeter IMF
would be sufficient to enrich gas to the required level provided that all the Iron
ever produced and not locked in stars is expelled in the ICM. In this case, sig-
nificantly undersolar values for [/ F'e] ratios are obtained, which is at odds with
observations (e.g. Tamura et al. 2004; see also Pipino et al. 2002).

229



CONCLUSIONS AND FUTURE WORK

[4]

[5]

[6]

A fundamental bias that affects our results is that the star formation rate of the
simulated clusters remains very high (2 102 My per year) down to redshift zero,
in contraddiction with observations (e.g. Balogh et al. 1997, Balogh et al. 1998).
This points toward a lack of physics in modelling either the feedback processes
or the star formation below redshift ~ 1. The net effect of such star formation
is twofold; on the one hand, it locks a significant amount of metals in stars. On
the other hand, newborn stellar populations produce Snll which explode quite
rapidly, then enhancing the a element abundance of the ICM. Which one of these
two aspects is dominating depends on the IMF: the top—heavier it is, the more
« elements are ejected with respect to those locked in stars. At the same time,
stars born until z ~ 0.1 also produce a significant amount of Iron, as the Snla
of such stellar populations have enough time to explode. What is the resulting
balance is difficult to be predicted a priori.

Although observations of element abundances in the ICM are now available for ex-
tended ensembles of clusters(e.g. Loewenstein 2004), only a general trend can be
drawn from them, and a satisfaying theoretical model is far to be achieved. Gener-
ally, @ elements distribute quite uniformly along the radial direction (e.g. Tamura
et al. 2001, Finoguenov et al. 2000b, Gastaldello & Molendi 2002, Peterson et al.
2003) while Iron—peak products exhibit a clear steep declining in the outer re-
gions. No combination of standard Snla and Snll can accounts for the observed
pattern (Finoguenov et al. 2000b, Finoguenov et al. 2003c, Baumgartner et al.
2003, Loewenstein 2004). Our Simulations produce ratios of overall Si/Fe and
O/Fevs. Fe/H which are roughly in the ranges taken from respectively Baumgart-
ner et al. (2003) and Peterson et al. (2003). Nevertheless, our radial abundance
ratios are hardly in agreement with observations. Finoguenov et al. (2000b) re-
port for a radial profile of [Si/Fe| which strongly increase with radius, starting
from solar values in the centre. The raise is so steep that at about ~ 0.2R.;,
the Si/Fe ratio is 4 times the solar values. No one of our [Si/Fe] can fit such a
behaviour, although our values of overall [Si/Fe] vs [Fe/H| match those found
by Finoguenov et al. However, our radial profiles of relative abundance are likely
to be strongly affected by the ongoing star formation that we mentioned in the
previous point; in fact, the bulk of newly formed stars are harbored in the in-
nermost region; hence, the net effect is to increase the a—elements abundance
within R < 0.1R,;,. This is clearly visible in the Sy simulations, which involve a
standard Salpeter IMF. At the opposite, the S#™ run exhibit an opposite trend,
owing to the large number of SN that are exploding at redshift z < 0.1 as a con-
sequence of having assumed the shorter stellar lifetimes by Maeder & Meynet
(1989).

One of the key signature that an IMF leaves is the pattern of relative abundance
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[7]

ratios (Larson 1998, Larson 2003, Portinari et al. 2004). Wheter the Salpeter
IMF is able to reproduce the observed metal pattern in clusters (e.g. Renzini 1997,
Renzini 2004, Wyse 1997, Ishimaru & Arimoto 1997) or not (e.g. Portinari et al.
2004, Finoguenov et al. 2000b, Loewenstein 2001, Baumgartner et al. 2003,
Finoguenov et al. 2003c) is an highly debated issue. Larson (1998) suggests
his IMF arguing that at high redshift an IMF top—heavier than at present time
is likely to be more realistic. It also argues that it would account for several
observed properties of galaxy clusters. Looking at the radial profiles of relative
abundances, as well as at the radial Fe profile, is seems that, in fact, his IMF is
that which better behaves, once the biasing of the recent star formation has been
taken into account.

Our star formation is also likely to affect the so—called chemical asimmetry, as
the Iron is incorporated into stars as much as « elements. This effect proves to
be less severe in AY," and V¥, since the strong winds which develop in these two
simulations are effective in bringing enriched material out of the densest regions.
In any case, we are still far from reaching the metal sharing between stars and
gas suggested by Renzini (1997, 2004). He infers that Iron in ICM must be about
twice that in stars, while our typical prediction is that between 30% and 50% of
Iron lives in the gas.

6.2 FUTURE PERSPECTIVES

[1]

[2]

[3]

As the scaling relations discussed above are one of the key test for the study-
ing of galaxy clusters, our first aim is to run a complete suite of single-object
simulations, spanning mass the range from groups to very rich galaxy clusters.

The problem of an ongoing star formation at low redshifts is almost certainly
related to an insufficient modelling of both the ICM and star formation process.
However, it appears reasonable to conjecture that its solution lies in missing
physical effects. One important lack in our simulations are the energy inputs from
AGN (e.g. Wu et al. 2000, McNamara et al. 2000, Cavaliere et al. 2002). Owing
to the large quantity of ejected energy, they can act so as to ‘estinguish’ residual
star formation at low redshift, mainly by sweeping away the dense clouds from the
neighbourhood of central ¢D which harbour them. One of the key perspectives
is exactly that of developing and implementing a model for AGN in cosmological
simulations.

We plan to compute luminosities in different optical bands from the stellar pop-
ulations found in simulations by means of photometric evolutionary codes.
This estimates are important in several respects. (1) The M, /Lp ratio is a key
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quantities which determines measures and estimates of the metal sharing between
gas and stars (see Portinari et al. (2004) for a discussion). (2) The Mass—to—
Light ratio is an unvaluable test to quantify the metal-retainment capacity of the
ICM. Having estimates of this quantity from numerical simulations, where IMF
and star formation histories are well-determined, may provide useful hints about
the interpretation of observational results. (3) Knowing the emission in different
bands makes straightforwad to study the photometric evolution and color rela-
tions of cluster galaxies, which are both useful quantities in order to understand
how the galaxy clusters formed.
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