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Presentazione

Una delle sfide più importanti per la cosmologia moderna è la comprensione dei
processi fisici che portano alla formazione di una galassia. Negli ultimi anni è
stato possibile vincolare in modo sufficientemente preciso (si faccia riferimento a
Springel et al. (2006) per una recente review) i valori dei principali parametri cos-
mologici, grazie soprattutto al numero sempre maggiore di osservazioni indipendenti
dell’universo a grande scala. Ciò ha permesso di determinare in modo preciso le
condizioni iniziali a partire dalle quali ha avuto luogo il processo di formazione
delle strutture. Di conseguenza, comprendere i complessi processi astrofisici, legati
all’evoluzione della componente barionica dell’universo, rappresenta oggi il tassello
mancante per una descrizione soddisfaccente della formazione ed evoluzione delle
galassie.

Fin’ora, per fare delle predizioni quantitative circa le proprietà osservative delle
popolazioni galattiche e circa la loro evoluzione nel tempo, si sono seguiti due ap-
procci, alternativi tra loro. Il primo è basato sui cos̀ı detti Modelli Semi-Analitici.
In questo approccio, il background cosmologico predice in modo univoco la for-
mazione gerarchica degli aloni di materia oscura, all’interno dei quali il gas collassa
e successivamente si raffredda (cooling), in seguito a perdite radiative di energia,
dando origine alla formazione delle galassie. L’interazione reciproca tra il raffred-
damento del gas, la formazione stellare, l’arricchimento chimico e il rilascio di ener-
gia da parte delle supernovae o degli AGN (Active Galactic Nuclei) viene descritto
tramite modellini molto semplici, spesso puramente fenomenologici, che contengono
al loro interno una serie di parametri liberi da fissarsi tipicamente a partire dalle
osservazioni. Il vantaggio maggiore di questo approccio è il suo basso costo com-
putazionale che permette di esplorare in modo sufficientemente flessibile lo spazio
dei parametri del modello.

Il secondo approccio è basato invece sulle simulazioni idrodinamiche, che in-
cludono al loro interno la fisica del raffreddamento radiativo del gas e appropiate
ricette per la descrizione della formazione stellare e dei meccanismi di feedback. Il
vantaggio ovvio di questo metodo, rispetto ai Modelli Semi-Analitici, è che il pro-
cesso di formazione galattica può essere descritto seguendo nel dettaglio l’evoluzione
della componente barionica durante la formazione delle strutture cosmiche su grande
scala. Tuttavia la grossa limitazione sta nell’alto costo computazionale, che rende
impossibile esplorare nel dettaglio lo spazio dei parametri che descrivono il processo
di formazione ed evoluzione galattica.

Appare quindi ovvio che i Modelli Semi-Analitici e le simulazioni numeriche
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forniscono approcci complementari nello studio della formazione delle galassie. In
particolare, la capacità delle simulazioni idrodinamiche di seguire in modo accurato
la dinamica del gas suggerisce di effettuare un confronto con i Modelli Semi-Analitici
per testare le assunzioni su cui essi si basano.

Lo scopo di questa Tesi è quello di mostrare in che modo tale confronto sia
possibile per lo studio del raffreddamento radiativo del gas.

Il modo migliore per studiare nel dettaglio il comportamento del gas e per testare
le assunzioni alla base dei modelli di cooling implementati all’interno dei Modelli
Semi-Analitici, è quello di affrontare il problema in una sorta di “laboratorio nu-
merico” dove (eclusa l’idrodinamica) l’unico processo rilevante per la componente
barionica è il raffreddamento radiativo e tutte le complicazioni associate al merging
gerarchico degli aloni vengono eliminate.

In particolare, abbiamo simulato, mediante un codice SPH (Smooth Particles
Hydrodynamics), GADGET-2, degli aloni isolati di materia oscura (con un profilo di
densità del tipo Navarro et al. (1997)) all’interno dei quali il gas è stato posto in
modo tale da essere inizialmente in equilibrio idrostatico. Una volta accertata la
stabilità del sistema, è stato accesso il cooling nella simlazione.

Come prima cosa abbiamo accertato la convergenza delle simulazioni, sia rispetto
alla scelta del numero di particelle che del softening gravitazionale. Successivamente
abbiamo confrontato i risultati delle simulazioni con le predizioni del modello di
White & Frenk (1991) (modello classico) e con quelle dei modelli di cooling proposti
all’interno del codice morgana per la formazione delle galassie (Monaco et al.
2007).

Abbiamo trovato che il raffreddamento radiativo del gas nelle simulazioni idro-
dinamiche non viene riprodotto nel dettaglio da nessuno dei modelli considerati.

Ci siamo quindi concentrati sulle predizioni dei diversi modelli circa l’evoluzione
nel tempo della frazione di gas freddo, che costituisce la materia prima per la suc-
cessiva formazione stellare ed in generale per il processo di formazione galattica.
Abbiamo trovato che il modello classico sottostima in modo significativo tale quan-
tità. Crediamo che tale differenza sia dovuta nei primi istanti dell’evoluzione allo
scatter in densità e temperatura (e quindi nel tempo di cooling) delle particelle
SPH, e successivamente all’aumento di pressione nelle vicinanze della regione nella
quale avviene il cooling. Il modello morgana, basato su un insieme diverso di
assunzioni, dà invece un fit migliore della frazione di massa raffreddata.

Dal momento che i modelli morgana non tengono conto in modo esplicito
del comportamento del gas durante il suo raffreddamento radiativo, essi sono da
considerarsi come modelli efficaci che possono essere utilizzati per ottenere delle
predizioni realistiche ad esempio circa l’evoluzione della frazione di massa fredda.

Il primo passo successivo rispetto a questo lavoro di Tesi potrebbe essere lo
sviluppo di un nuovo modello per il cooling che tenga conto esplicitamente dello
scatter osservato nelle simulazioni e dell’aumento della pressione del gas.

Successivamente, una volta sotto controllo il raffreddamento radiativo del gas,
l’approccio di questa Tesi potrebbe essere esteso allo studio del merging tra aloni di
materia oscura per studiare le loro conseguenze sul riscaldamento del gas, oppure
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allo studio dei processi di feedback che avvengono all’interno delle galassie.
L’obiettivo finale, che si vuole raggiungere con questi studi, è la diminuzione

dei parametri liberi all’interno dei modelli e al contempo una descrizione quanto
più realistica (e semplice) possibile della fisica del gas, che permetta in futuro di
aumentare il potere preditivo dei modelli di formazione galattica.
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Introduction

According to the standard cosmological model, our universe is composed by Dark
Energy(73%), Dark Matter (DM hereafter) (23%) and baryonic matter (4%). Once
the cosmological parameters are fixed, is it possible to explain the formation of
structure in the universe starting from the anisotropy seen in the Cosmic Microwave
Background (CMB thereafter). All potential and density fluctuations started out
small; from CMB temperature fluctuation spectrum we know that the potential
fluctuations were of order 10−5. Present-day density contrast within central parts
of galaxies are ≃ 105, and about 103 in clusters, so we have to account for many order
of magnitudes of growth in fractional over-density. We can divide the evolution of
perturbations in two regimes: the liner regime (δρ/ρ ≪ 1) described analytically
by the Jeans theory, and the non linear regime that today is described quite well
thanks to numerical simulations.

The growth of the structure is driven (almost) entirely by gravity. Galaxies
form when gas cools and condenses in the potential wells of dark matter (DM)
halos. Then, as suggested by White & Rees (1978), the formation process must
be in two stages: the collisionless collapse of DM halos and the condensation of
baryon inside the DM potential wells. The rather stringent constraints on cosmo-
logical parameters now allow us to precisely set the initial conditions from which
the formation of cosmic structures has started. As a consequence, understanding
the complex astrophysical processes related to the evolution of the baryonic com-
ponent represents now the missing link towards a successful description of galaxy
formation and evolution. Two alternative approaches have been pursued to make
quantitative predictions of the observational properties of galaxy populations and
their evolution in the cosmological context. The first one is based on the so–called
semi–analytical models (SAM hereafter). In this approach, the background cosmo-
logical model uniquely predicts the hierarchical build–up of the DM halos, where
gas flows in, cools and gives rise to the formation of galaxies; the complex inter-
play between gas cooling, star formation, chemical enrichment and release of energy
from supernova explosions and Active Galactic Nuclei (AGN) is modeled in a para-
metric way. A posteriori, the values of the relevant parameters should then be
constrained by comparing SAM predictions to observational data. The second ap-
proach is based on resorting to full hydrodynamical simulations, which include the
processes of gas cooling and suitable sub–resolution recipes for star formation and
feedback. The obvious advantage of this methods, with respect to SAMs, is that
the process of galaxy formation is described by following in details the evolution of
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the cosmic baryons during the shaping of the large–scale cosmic structures. How-
ever, its limitations lie in its high computational cost, which makes it impossible
to explore in details the space of the parameters describing the process of galaxy
formation and evolution. This discussion demonstrates that SAMs and hydrody-
namical simulations provide complementary approaches to the cosmological study
of galaxy formation. The capability of hydrodynamical simulations in accurately
following gas dynamics calls for the need of a close comparison between these two
approaches, in order to test the basic assumption of the SAMs. The best regime to
perform this comparison is when one excludes the effect of all those processes, like
feedback in energy and metals, whose different modeling in SAMs and simulations
codes would make the comparison scarcely telling. Since the gas cooling is the most
basic ingredient in any model of galaxy formation, an interesting comparison would
be performed when cooling is the only process turned on.

The purpose of this Thesis is that of presenting a detailed comparison between
the predictions of cooling models, as implemented in SAMs, and results of hydro-
dynamical simulations in which gas is allowed to cool inside isolated halo.

The plan of the Thesis is as follows: in chapter 1 we will discuss the galaxy
formation process, pointing out the different role that DM and gas have in such
process. Moreover we will concentrate on the possibility to combine SAMs and
numerical simulations in order to improve the ability in the explanation of galaxy
formation.

Chapter 2 will be devoted to the description of the structure of DM halo,
that is one of the fundamental things that must be understood in order to follow
properly the formation of a galaxy. We will also show how it is possible, under
suitable assumptions, to derive an analytical expression for the gas density profile
when the gas is assumed to be embedded in a DM halo.

Since the core of this Thesis is gas cooling, we describe in chapter 3 the most
important atomic processes that take place in an optically thin plasma (which is
a good approximation for the gas in DM halos) and that are responsible for the
gas radiative cooling. Moreover we will show how it is possible to collect together
all the information coming from atomic processes to calculate a so–called “cooling
function” for the plasma.

In chapter 4 we will present and critically discuss (mainly theoretically) two
different recipes for gas cooling, implemented in SAMs. The first one, that we call
“Classical cooling model” was proposed for the first time by White & Frenk (1991)
and is implemented in most of SAMs, while the second one, referred as “morgana

cooling model”, was proposed more recently by Monaco et al. (2007).
Chapter 5 will be dedicated to numerical simulations. We will discuss in

details hydrodynamical simulations, presenting the different equations integrated
by the Smoothed–Particles–Hydrodynamics (SPH) codes. In particular we will
concentrate on the GADGET-2 code (Springel et al. (2001),Springel et al. (2005)),
which is the ones used to perform the simulations used in this Thesis.

In chapter 6 we will present the details of the simulations that we have per-
formed. In particular we will show how the initial conditions for the isolated halos
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have been generated, and we will make a qualitative analysis of radiative simulations
(i.e. the simulations in which cooling is turned on).

In the last chapter (chapter 7) we will discuss the cooling models, described
in chapter four, in the light of numerical simulations. The goal of this chapter is
to point out which of the cooling recipes described in chapter four gives the most
reliable description of the radiative cooling in numerical simulations.

In Appendix A we will present briefly the main result of the general rela-
tivity theory and the Friedmann cosmological models that is the framework for
the description of the evolution of perturbations. The perturbation theory will be
therefore present in Appendix B.

The results of this Thesis are contained in a paper (Viola et al., 2007) which
will be submitted for pubblication to MNRAS (Monthly Notices of the Royal As-
tronomical Society).



Chapter 1

Galaxy formation in cosmological

models

Understanding galaxy formation is one of the most challenging and difficult topics in
modern cosmology. The idea that cosmic structures grow up through the mechanism
of gravitational instability is the oldest part of the paradigm. The application of
perturbation theory (see appendix B) and numerical simulations (see chapter 5) to
understand this process started in the early 1970s (Peebles, 1980). Gunn & Gott
(1972) looked at the growth of galaxy clusters through the infall of material, using
the spherical top–hat model (see appendix B.2) to track the evolution of the cluster
over-density. Press & Schechter (1974) used the top–hat model to compute the
abundance of structures of different masses that form by gravitational collapse in a
density field with a Gaussian distribution of fluctuations. The first calculation of the
pattern of density fluctuations expected at early time in a cold dark matter (CDM
hereafter) universe was made by Peebles (1982). The first numerical simulations
of the hierarchical growth of structures in a CDM universe were carried out by
Davis et al. (1985). Two of the core ideas at the basis of today’s paradigm of
galaxy formation can be traced back more than fifty years ago to Fred Hoyle. Hoyle
(1949) was the first to propose that the rotation of galaxies could be generated
by the tidal torques which operate during their collapse. This idea was expanded
upon by Peebles (1969) and White (1984), and tested with N–body simulations by
Efstathiou & Jones (1979). Hoyle also argued that the observed range of galaxy
masses could be explained by considering the time taken for gas to cool and condense
into galaxies (Hoyle, 1953). At the end of 1970s, White & Rees (1978) presented
a synthesis of the theory of Press & Schechter, which describes the hierarchy of
gravitational bound structures, and the gas cooling arguments used to motivate
the observed size of galaxies, to produce a model of galaxy formation that set the
foundations for today’s models. They proposed that galaxy formation was a two
stage process, with DM halos forming in a dissipationless, gravitational collapse,
with galaxies forming inside these structures, following the radiative cooling of the
baryons. The additional condensation of gas through dissipative cooling stabilized
galaxies against the disruption caused by the merging of the DM halos. White &
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Rees (1978) also argued that an additional process, feedback, was needed to make
small galaxies more diffuse so that they would be less successful at surviving the
merging process. As we have already mentioned in the introduction, two alternative
approaches have been pursued to make quantitative predictions on the observational
properties of the galaxy population and their evolution in cosmological context. The
first one is based on the so–called semi–analytical models, briefly described in this
chapter, while the second approach is based on resorting to full hydrodynamical
simulations, which include the processes of gas cooling and suitable sub–resolution
recipes for star formation and feedback. The obvious advantage of this methods,
with respect to SAMs, is that the galaxy formation can be described by following
in details the evolution of the cosmic baryons during the shaping of the large–scale
cosmic structures. However, its limitations lies in its high computational cost, which
makes it impossible to explore in details the space of the parameters describing the
process of galaxy formation and evolution.

1.1 Dissipationless universe

In this section we will review the “first stage” of the galaxy formation, i.e. the
growth and the dissipationless collapse of DM perturbations. Our starting point
is to specify the cosmological background. The current “standard model” is a
CDM universe with a cosmological constant (see Appendix A). In the cold dark
matter model the process of perturbation growth is dissipationless. This means
that the total kinetic and potential energy of a system of DM is conserved, although
energy can be converted from potential to kinetic. Once the values of the basic
cosmological parameters have been set, such as the density parameter of matter
(ΩM ), the cosmological constant (ΩΛ), the density parameters of baryons (Ωb) and
the current amplitude of the density fluctuations on some reference scale, the pattern
of primordial density fluctuation is well determined and the timetable for their
collapse into gravitationally bound structures is set. DM halos are the cradles of
galaxy formation and the hierarchical galaxy formation models require three basic
pieces of information about DM halos:

1. The abundance of halos of different masses;

2. The formation history of each halo, commonly called the merger tree;

3. The internal structure of the halo.

In the following subsections we will discuss this three points.

1.1.1 The abundance of DM halos

The first attempt to calculate the abundance of gravitationally bound structures
was made by Press & Schechter (1974). They assumed a Gaussian density field,
δ(ȳ), for the primordial perturbations. They smoothed this field on a length–scale
R (or equivalent on a mass–scale M ∝ 〈ρ̄〉R3) :
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δ(x̄) =
∫

δ(ȳ)WR(|x̄− ȳ|)dȳ (1.1)

where WR(|x̄|) is a “window function” that suppresses perturbations mode at a
length–scale less than R. The original idea was to identify all the observable struc-
tures of mass M with the over-dense regions, exceeding a critical value δc, in the
primordial density field . When the critical value is attained (in a EdS universe
it is δc = 1.686, as it shown in B.2) the over-dense region rapidly collapses. The
structure formation takes place then hierarchically. Fixing now the smoothing scale
R, the probability for a Gaussian field δ(x̄,M) to exceed the critical value δc is;

P (δc,M) =
1√

2πσM

∫ ∞

δc

exp

(

− δ

2σ2
M

)

dδ (1.2)

where

σ2
M =

〈δM2〉
〈M〉2 (1.3)

From the above expression, we recognize a serious drawback of the Press &
Schechter approach. Infact, taking dP (δc,M) = −(∂P (δc,M)/∂M)dM to be the
fraction of the total mass in structures with mass between M and M + dM , its
integral over the whole mass spectrum is

∫∞
0 dP (δc,M) = 1

2
and it fails to account

for half the mass in the Universe. The origin of this problem lies in the fact that
equation 1.1.1 does not actually provide the fraction of mass in structures greater
thanM . For this to be the case, the mass in region where δ < δc sholud be assaigned
to structures of a greater mass, when smoothing the field on a larger scale.

Press & Schechter (1974) adopted a pragmatic approach to solve this problem
and multiplied their expression for the halo mass function by a factor of two. Taking
into account that artifact the number density of halos with mass in the interval
[M,M + dM ] is:

n(M)dM = − 2

VR

∂P (δc,M)

∂M
dM (1.4)

where VR is the volume corresponding to a windows with dimension R.
With some computations it is possible to get the following expression for the

“mass–function”:

dn

dM
=

√

2

π

ρ̄

M2

δc(z)

σM

∣

∣

∣

∣

∣

d log σM

d logM

∣

∣

∣

∣

∣

exp

(

− δ2
c (z)

2σ2
M

)

(1.5)

More convincing arguments have been put forward for the missing factor of 2, which
led to the development of “extended Press–Schechter” theory (Peacock & Heavens
(1990), Bond et al. (1991), Bower (1991)...). The mass function predicted by this
simple calculation agrees surprisingly well with the results obtained from N–body
simulations (e.g. Efstathiou et al. (1988), Lacey & Cole (1994), Gross et al. (1998)).
The accuracy with which the mass function of halos can now be predicted using
N–body simulations has led to refinements in the Press–Schechter ansatz. Sheth



1.1 Dissipationless universe 10

et al. (2001) presented a model in which the collapse of a fluctuation is allowed to
proceed more quickly along one axis, replacing the spherical collapse model with an
ellipsoidal collapse. Jenkins et al. (2001) established the mass function of halos over
four decades in mass using a suite of N–body simulations and proposed a fitting
formula that encapsulates the numerical results. An extension of this work to five
orders of magnitude in mass was carried out by Springel (2005) and Warren et al.
(2006).

Monaco et al. (2002) proposed a new approach for obtaining the information
on the assembly history of DM halos, based on the Lagrangian Perturbation The-
ory (see (Moutarde et al., 1991),(Buchert & Ehlers, 1993),(Catelan, 1995) and on
the Zel’dovich (1970) approximation. This algorithm, called Pinocchio (PINpoint-
ing Orbit-Crossing Collapsed HIerarchical Objects) can accurately reproduce many
properties of the DM halos when compared with a N–body simulation that started
from the same initial density field.

1.1.2 The assembly of DM halos

Once the first halos are formed through the collapse of primordial perturbations,
they start merging together due to gravitational attraction. One of the crucial
points in the description of the formation of galaxies is the reconstruction of the
merging history of the DM halos present today in our universe (see figure 1.1 for
a schematic merger tree of a DM halo). The merger history of DM halos can be
extracted from N–body simulations which have sufficiently frequent output. This
requires typically around 50 outputs over a redshift interval of approximately z = 20
to z = 0. Halos are identified in a given output using a percolation algorithm, such
as friends–of–friends (Davis et al. (1985)). The idea is to define a “linking length”
as a part of the mean inter-particle separation (White (2002)) and then to link
together all the particles that are within the linking length of one another. In this
way it is possible to identify the halos. Then the indices of the particles that belong
to a particular halo can be tracked in the halo list generated from the preceding
output.

Merger trees can also be generated using a Monte–Carlo approach by sam-
pling the distribution of progenitor masses predicted using extended Press-Schechter
theory (Lacey & Cole (1994), Somerville & Primack (1999), Cole et al. (2000a)).
Monte–Carlo approach gives in general a less faithful representation of the merger
tree than those extracted from N–body simulations. This happens especially if the
difference in expansion factor increases between the parent halo and the progenitor
branches (e.g. Somerville et al. (2001)). A fundamental assumption that underpins
the Monte–Carlo approach to growing merger tree is that the formation history
of the halo does not depend upon its environment. Early simulation results ap-
peared to validate that assumption (Lemson & Kauffmann (1999), Percival et al.
(2003)). However some of these results have recently been reanalyzed and found to
show evidence in favor of an environmental dependence of halo properties (Sheth &
Tormen (2004)). This effect was confirmed by recent analyses of the properties of
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Figure 1.1: A schematic merger tree for a DM halo. The horizontal lines represent
snapshots in the evolution of the history of the halo, corresponding to time-steps in
an N–body simulation or Monte–Carlo realization of the merger tree (t1 < t2). The
size of the circle indicates the mass of the halo. The halos grow through merger
events between halos and by accretion of objects below the halo mass resolution
(e.g. as depicted between steps t3 and t4). The final halo is shown at t5. (Baugh
(2006))
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DM halos in a large volume, high resolution simulations (Gao et al. (2005), Harker
et al. (2006), Wechsler et al. (2006), Reed et al. (2007), Zhu et al. (2006)). Both
approaches, extracting the trees directly from an N–body simulation and growing
Monte–Carlo trees, have their pros and contra. The N–body trees allow one to con-
nect galaxies directly between outputs in the simulations and give predictions for
galaxy positions within the halos. Overall, they are more accurate and incorporate
the environmental effects. However, the N–body trees are not without problems.
Objects, that a group finder has identified as one structure in a given output, may
actually fly apart in a later output; spatial proximity doesn’t guarantee that par-
ticles belong to a bound, self–gravitating structure. Furthermore, when objects
do merge together, the mass of the remnant may not always be equal the mass of
the progenitor. These two effects imply that the mass of a halo in a merger tree
extracted from an N–body simulation may not always increase monotonically with
time. The smallest halo that can be reliably identified as self–gravitating structure,
does not, by definition, have a merger history that can be extracted from the sim-
ulation. The main drawback of N–body merger trees is their finite resolution (see
Helly et al. (2003)). Monte–Carlo trees, on the other hand, can, in principle have
arbitrarily high resolution, because all the computer memory can be devoted to one
tree at a time, rather than to all the halos within some cosmological volume.

1.1.3 The structure of DM halos

As it will be clear in the following, the internal structure of DM halos is important for
determining the rate at which gas can cool and the size and dynamics of galaxies.
The first studies about the density profiles of DM halo have been done at the
beginning of the 1970s. Gunn & Gott (1972) established, with their “secondary
infall model”, that gravitational collapse could lead to the formation of virialized
system with almost isothermal density profile. This analytical work was extended by
Hoffman & Shaham (1985) and Hoffman (1988), who pointed out that the structure
of halos should also depend on the value of the density parameter ΩM and the
power spectrum of initial density fluctuation. It has become customary, until ten
years ago, to model virialized halos by isothermal spheres characterized by two
parameters: a velocity dispersion and a core radius. However numerical simulations
of the formation of galactic halos and galaxy clusters provide no firm evidence for
the existence of a core (Dubinski & Carlberg (1991), Warren et al. (1992),Navarro
et al. (1996), Moore et al. (1998), Power et al. (2003), Navarro et al. (2004)...).
These studies indicate that DM halos are not well approximated by isothermal
spheres. The density profile of the DM halo varies with radius within the halo.
Navarro et al. (1997) reported a density profile that is significantly shallower than
ρ ∝ r−2 near the center but which tends to r−3 as the virial radius is approached.
However over much of the radius, an isothermal halo density profile, ρ ∝ r−2, is a
reasonable description. A complete treatment of the NFW profile will be done in
the section 2.1.
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1.2 Physics of the gas

In this section we outline the more complicated elements of hierarchical galaxy for-
mation regarding the physics of the gas. These processes are often dissipative and
non–linear and the physics behind these phenomena are in general poorly under-
stood. Therefore it is very difficult to describe them properly and most of the time
recipes or prescriptions which contain parameters are employed. The value of the
parameters are set by requiring that the model reproduces a subset of the available
observations, typically low redshift data. The form of the rule adopted to describe
a process is motivated by a result from a more detailed numerical simulation or
from observations.

1.2.1 Shock heating

When a non–linear perturbation decouples from the uniform expansion of the uni-
verse, it starts collapsing as a separate closed universe. It is reasonable to assume
that virial equilibrium is reached at the end of the collapse:

2EK + EΦ = 0 (1.6)

where EK is the kinetic energy and EΦ is the potential energy. During the collapsing
phase the gas is assumed to be heated through violent relaxation processes and shock
waves up to an equilibrium temperature called virial temperature:

Tvir =
µmpσ

2

3kB

(1.7)

where µ is the molecular weight of the gas, mp the proton mass, σ the velocity
dispersion and kB the Boltzmann constant.

1.2.2 Gas cooling

The cooling of the gas is central to the process of galaxy formation, as it sets the
rate at which the raw material for star formation becomes available (Blumenthal
et al. (1984)). The cooling models are the core of this Thesis and therefore they
will be treated in details in chapter 4. Here we just describe the schematic picture
of the standard cooling model used in SAMs (see figure 1.2).

The gas initially has the same spatial distribution as the DM (t1). As fluctua-
tions in the DM separate from the Hubble expansion, turn around and collapse, the
gas is assumed to be heated by shocks as it falls into the gravitational potential well
of the DM halo, producing a hot gas halo that is supported against further collapse
by the pressure of the gas (step t2). The gas attains the virial temperature of the
halo and start cooling radiatively through the mechanisms outlined in chapter 3.
As the gas cools, the pressure of the gas drops and the removal of pressure support
means that the gas sinks to the center of the halo (step t3). The gas at the center of
the halo advance outwards towards the virial radius of the halo and the cold disc,
formed in step t3, grows in size. The different cooling recipes implemented in SAMs
will be described in detail in chapter 4.
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Figure 1.2: A schematic of the basic cooling model used in SAMs. In the first step
t1, baryons fall into the gravitational potential well of the DM halo. This gas is
assumed to be heated by shocks as it falls into the potential well, attaining the
virial temperature associated with the halo (t2). In the third step (t3), the inner
parts of the hot gas halo cool, forming a rotationally supported disc. At later stage
t4, the radius within which gas had time to cool advances outwards towards the
virial radius of the halo and the cold gas disc grows in size. (Baugh (2006))
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1.2.3 Star Formation

Star formation takes place in the cooled gas cloud if their self–gravity is sufficient
to overcome thermal pressure. For a uniform cold gas cloud of radius R, mass M ,
temperature T , density ρ and mean molecular weight µ this means:

M > MJ =

(

3kBT

2Gµmp

)3/2(
4πρ

3

)−1/2

(1.8)

MJ is the so–called Jeans Mass. There are a wide range of theories of star formation
from gas clouds which attempt to explain the slope of the Initial Mass Function
(IMF) and the rate of star formation in galaxies. Semi–analytical modelers use to
estimate the global rate of star formation on dimensional ground:

Ṁ⋆ ∝
Mcold

τ
(1.9)

where the star formation rate, Ṁ⋆, depends upon the amount of cold gas available,
Mcold, and a characteristic time-scale τ . The time-scale could be chosen to be
proportional to the dynamical time within the galaxy, τdyn = rgal/vgal, or to be
some fixed value. Typically, some additional dependence on the circular velocity
is incorportaed into the definition of τ , which is important when attempting to
reproduce the observed gas fractions in spirals as a function of luminosity. The
effective star formation timescale is in practice a modified version of tau, due to
feedback processes, which deplete the reservoir of cold gas, and the replenishment
of the cold gas supply by material that is recycled by stars.

1.2.4 Feedback processes

The need for physical mechanisms that are able to modulate the efficiency of galaxy
formation as a function of halo mass, over and above the variation in the cooling
time of the hot gas with halo mass, was recognized from the first calculations of
the galaxy luminosity function in hierarchical clustering cosmology. In particular
White & Rees (1978) found that their prediction for the faint end of the luminosity
function was steeper than the observational estimates available at that time. All
the different processes evocated to solve this problem are simply called feedback

processes. Broadly speaking, two forms of feedback are considered in galaxy forma-
tion models: in the first, cold gas is heated and removed from a galactic disk and
in the second, the rate at which gas cools from the hot halo is suppressed. Both
modes of feedback diminish the reservoir of cold gas available to be turned into
stars. The most common form of feedback used is the ejection of cold gas from
a galactic disk by a supernova driven wind (Larson (1974), Dekel & Silk (1986)).
The re-heated cold gas cloud be blown out to the hot gas halo, from which it may
subsequently re-cools. There are now convincing observational evidence for the ex-
istence of supernova driven winds in dwarf galaxies (Martin (1997), Martin (1998),
Martin (1999), Ott et al. (2005)).
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Other forms of feedback act to modify the rate at which gas cools, either by
altering the density profile or entropy of the hot gas (following the injection of
energy into the hot gas halo) or by reducing the fraction of baryons that fall into DM
halos and changing the cooling rate (i.e. photoionization suppression of cooling in
low mass halos) or by stifling the cooling flow by injecting energy (Wu et al. (2000),
Bower et al. (2001), Benson et al. (2003), Granato et al. (2004), Bower et al. (2006)).
In recent years, the focus has shifted to reproduce the exponential cut off at the
bright end of the luminosity function. Various fixes have been proposed to this
problem. Kauffmann et al. (1993) suppressed the number of bright galaxies simply
turning off star formation by hand in the cooling flows present in high circular
velocity halos. Cole et al. (2000b) proposed that the hot gas follows a different
density profile from that exhibited by the DM. An additional feedback mechanism
is required that is effective in more massive halos, acting either to prevent gas
from cooling in the first place or to eject gas before it forms stars. The standard
supernova driven winds, while helping to reduce the number of faint galaxies to
match observations, were found to have a little effect at the bright end. Benson
et al. (2003) considered two more promising mechanism: thermal conduction in the
hot halo and “super-winds” (the ejection mode of supernova feedback).

Another feedback mechanism implemented in SAMs in the last years is the so–
called Active Galactic Nuclei (AGN) feedback. Croton et al. (2006) and Bower
et al. (2006) use it in order to suppress gas cooling only in those halos in which
a quasi–static hot halo has formed, i.e. where the cooling time of the gas exceeds
the free–fall time. The new models reproduce the observed break in the present
day luminosity and the bimodality of the color distribution of local galaxies (as
measured by Kauffmann et al. (2003), Baldry et al. (2004), Balogh et al. (2004)).
Bower et al. examined the predictions of their model with AGN feedback at high
redshift. They find remarkably good agreement with observational estimates of the
stellar mass function to z ∼ 5. Other groups have also developed SAMs in which
AGN act to suppress cooling, such as Cattaneo et al. (2006), Fontanot et al. (2006),
Menci et al. (2006), Monaco et al. (2007).

1.2.5 Disc Formation

We have already described how the baryonic gas in DM halos cools down forming
self–gravitating cold clouds where star formation and feedback processes take place.
Catelan & Theuns (1996) have shown how, due to tidal torques by the large scale
structure, the DM halos gain angular momentum J . It is possible to assume that the
baryonic matter acquires the same specific J . For an isolated system the mass M ,
energy E, and angular momentum J are all conserved under gravitational evolution.
The spin of the halo can be quantified in a dimensionless number λ:

λ =
|J ||E|1/2

GM5/2
(1.10)

If the conservation of angular momentum during the dissipative collapse of the gas
is assumed, then the factor by which the radius of the gas is reduced is ∼ 0.5λH
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(Fall & Efstathiou (1980)). N–body simulations indicate λ ∼ 0.04 (Efstathiou &
Jones (1979), Frenk et al. (1988), Bullock et al. (2001)), which means that the gas
collapses to a rotationally supported disk with a radius over an order of magnitude
smaller than the virial radius of the dark halo. This simple argument has been used
to predict disc properties (Mo et al. (1998)) and to estimate the sizes of galaxies in
many SAMs (Lacey & Cole (1993), Kauffmann & Charlot (1994), Poli et al. (1999),
Somerville & Primack (1999), Firmani & Avila-Reese (2000)...)

1.2.6 Bulge formation

It is easy to prove that not all the possible disc configuration reached with the
mechanism described in the previous section are stable. In fact, when the self–
gravity becomes dominant, the disc is dynamically unstable to the formation of a
bar. Disc instability results in the stellar disc evolving into a bar and then into a
spheroidal buldge. Bulge formation is also due to the interaction of the galaxy with
the environment and with other objects, both through process of disc instability
and merging.

1.2.7 Galaxy merger

During hierarchical clustering DM halos merge continuously, increasing their masses.
Satellite galaxies loose their angular momentum due to dynamical friction and
merge with the central galaxy, but they can also merge with others satellites in case
of binary encounters. The product of the merging event depends on the masses of
the progenitor.

The impact of a galaxy merger is usually quantified by the ratio of the mass of
the accreted satellite galaxy to the mass of the central galaxy. In a violent merger,
the disk of the central galaxy is assumed to be destroyed and all of the stars involved
in the merger event form a spheroidal remnant. In many models, a major merger
can also trigger a burst of star formation, in addition to changing the morphology
of the star distribution (Baugh et al. (1996), Somerville et al. (2001), Baugh et al.
(2005)). The properties of the resulting objects depend on the ratio between masses
and orbital parameters, If a disk galaxy accretes an object of mass greater than 20–
30 percent of its own mass, both theoretical arguments and numerical experiments
suggest that the stellar disk will be disturbed and may no longer resemble a “typical”
spiral disk. Detailed N–body simulations show that the result of such an event has
the kinematical properties of an elliptical galaxy.

1.3 Semi–analytical models & direct simulations

In this section we will discuss how it is possible to combine SAMs and numerical
simulations in order to improve our ability in the explanation of galaxy formation.
It is not the aim of this Thesis performing this comparison for all the different
processes presented in the previous section. Therefore we will concentrate only
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on the construction of the merger tree and on gas cooling, that is the physical
mechanism studied in detail in this Thesis. For a general review about the other
process we refer to Baugh (2006).

1.3.1 Merger tree

The merger tree, as we have already discussed, is the foundation of any SAM. Two
approaches can be used to build it: Monte–Carlo, based on the extended Press–
Schechter theory, and N–body simulations. We can summarize as following the
pros and cons of the two methods: Monte–Carlo trees tend to become progressively
more inaccurate as they are followed over a long interval in time, but has not any
resolution problems. On the contrary the main problem of N–body merger trees
is limited mass resolution. Today one of the best available N–body simulation in
terms of providing high resolution merger trees over a wide range of masses within a
single computational box is the so–called “Millennium simulation” (Springel et al.
(2005)). However it is still only able to yield trees whose mass resolution is a
factor of three poorer than the standard Monte–Carlo trees used, for example, in
the Cole et al. model. Helly et al. (2003) carried out a systematic study of the
impact of using N–body merger trees on the predictions of the SAMs. They found
that, using N–body merger trees instead of Monte–Carlo ones, the prediction for
the luminosity function for objects brighter than around one tenth of L⋆ (typical
luminosity of a bright galaxy, L⋆ ∼ 4 · 1010L⊙) is similar. Also the predicted
star formation–rate per unit volume are similar over the bulk of the history of the
universe, diverging only at z > 1, beyond which the N–body trees underestimate the
amount of star formation. They also found that the results obtained with N–body
trees can be reproduced if two adjustments were made to the Monte–Carlo trees.
Firstly, they set the resolution of the Monte–Carlo trees to match the minimum halo
mass available in the N–body trees. Secondly, they applied an empirical correction
to the distribution of progenitor masses expected in extend Press–Schechter model,
in order to boost the number of massive halo progenitors.

1.3.2 Gas cooling

As we have stressed before, gas cooling is the heart of SAMs of galaxy formation.
We will see in detail in the following chapters how the recipes for gas cooling are
generally very simple and make very strong and restrictive assumptions. It is there-
fore essential to test the accuracy of the cooling model against the result of gas
dynamics simulations, which treats the problem under less restrictive conditions.
Particularly, semi–analytic cooling models can be tested by designing a numerical
simulation in which the less understood phenomena, namely star formation and
feedback, are simply omitted. Once numerical simulators, using different codes and
algorithm, seem to agree upon the radiative cooling of the gas, it is wise calibrating
in this way the simple cooling recipes implemented in SAMs. In this spirit, Benson
et al. (2001) compared the cold mass functions in a SPH simulation with radiative
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cooling and a “stripped–down” SAMs using Monte–Carlo merger trees, finding sim-
ilar properties of the corresponding galaxy populations. Similar conclusions were
also reached by Helly et al. (2003) and Cattaneo et al. (2006), who used hydro-
dynamical simulations within cosmological boxed at improved resolution. Yoshida
et al. (2002) also performed a similar comparison, but for a simulation of a single
galaxy cluster. Also in this case, their claim is that, once the SAM codes are “down-
stripped” to treat only the effect gas cooling, the two methods provide comparable
galaxy populations, at least within the model uncertainties. The level of agree-
ment found by these studies is reassuring. Despite the encouraging results, there
has been much debate in the literature regarding the validity of the cooling recipes
used in SAMs. While the general agreement between the two methods represent
a quite good step, still all the above analyses generally concentrate on comparing
the statistical properties of the galaxy populations. Furthermore, if one wants to
test the reliability of the cooling model implemented in the SAMs, the cleanest ap-
proach would be that of turning–off the complications associated to the hierarchical
merging of halos, thereby allowing gas to cool in isolated halos. The purpose of this
Thesis is exactly that of presenting a detailed comparison between the predictions
of cooling models, as implemented in SAMs, and results of hydrodynamical simu-
lations in which gas is allowed to cool inside isolated halos. In chapter 6 we will
describe how such comparison has been done.



Chapter 2

DM halos: gas and DM profiles

We have already discussed in Chapter 1 that the formation of structure in the
universe can be divided into two stages: the collisionless collapse of DM halos and
the condensation of baryon inside the DM potential wells. Furthermore we have
discussed how, in order to follow properly the formation of a galaxy, one of the
fundamental things that must be known is the structure of the DM halo. In this
chapter we will study this point, and particularly we will try to address to following
questions: What is the shape of DM halos ? How does the gas sit in the DM halos
after their formation ?

2.1 Dark matter density profile

Gunn & Gott (1972), Fillmore & Goldreich (1984) tried to answer the question
about the shape of DM halos from a theoretical point of view. They investigated
self–similar collapse solutions assuming a defined symmetry for the system (planar,
cylindrical, spherical) and finally derived analytical models for spherical collapse
of cold, collisionless matter in a perturbed EdS universe. Building of this work,
Hoffman & Shaham (1985) extended the analysis by considering open universe
and by modeling as scale–free spherical perturbations the objects that form by
hierarchical clustering from power–law initial density spectra P (k) ∝ kn. They
proposed that virialized DM halos should have a power–low radial profile ρ(r) ∝
r−α, where α is related to the logarithmic slope n of the power spectrum on the
scale of interest. For n < −1, the slope relevant on galaxy scale, the prediction is
α = 2, corresponding to flat rotational curves such as those observed for the baryonic
component of galaxies. For n > −1 the profiles steepen to α = (9 + 3n)/(4 + n),
corresponding to falling rotation curves. This prediction have been supported by
many N–Body simulations(e.g.Quinn et al. (1986), Zurek et al. (1988), Warren
et al. (1992), Crone et al. (1994), Zaroubi et al. (1996)). However, high resolution
simulations (e.g. Frenk et al. (1988)) showed a steepening of the density profile
with radius. Navarro et al. (1995) and Navarro et al. (1996) found that a good fit
for the DM density profile is given by:
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ρ(r) = ρcrit
δc

(r/rs)(1 + r/rs)2
(2.1)

where rs is a scale radius, δc is a characteristic (dimensionless) density, and ρcrit =
3H2/8πG is the critical density for closure. This profile is commonly called Navarro–

Frenk–White profile (NFW hereafter). This profile is singular (although the poten-
tial and mass converge near the center) and has a well–defined scale in which the
profile changes shape, the scale radius rs. In figure 2.1 we plot the profile described
in equation 2.1 varying the so called “concentration parameter” (dimensionless)
defined as:

c =
r200
rs

(2.2)

where r200 is the radius that encompasses an over-density 200 times the critical
cosmic density.
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Figure 2.1: NFW dark matter density profile for an halo of M = 1013M⊙ varying
the concentration parameter c.

The most surprising result was that this profiles is universal for all hierarchi-
cal clustering models, regardless of the halo mass, the initial power spectrum, or
cosmological parameters.
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2.2 Gas density profile

In this section we will show how it is possible, under some assumption, to derive an
analytic expression for the gas density profile when it is assumed to be embedded
in a DM halo described by eq. 2.1. Before starting, we write the NFW profile in a
more compact manner that will be useful in the following calculations:

ρDM(r) = ρsyDM(r/rs) (2.3)

where ρs is a normalization factor with units of mass density, while yDM(x) is a
dimensionless function representing the profile:

yDM(x) =
1

x(1 + x)2
(2.4)

where x = r/rs.
From equation 2.3 we can obtain an expression for the mass inside a certain

radius r :

M(≤ r) = 4πρsr
3
sm(r/rs) (2.5)

where m(x) is a dimensionless mass profile given by

m(x) =
∫ x

0
duu2yDM(u) (2.6)

Note that yDM(u) must be shallower than u−3 in the central region for the mass to
converge. This is the case of NFW profile.

We define the total DM mass, M200, as the mass within r200, i.e, M200 = M(≤ c),
where c is the concentration parameter defined in equation 2.1.

By evaluating equation 2.5 at r200, we fix the normalization factor as:

ρs = c3
M200

4πr3
200m(c)

(2.7)

We calculate the virial radius with the spherical collapse model (Peebles (1980))

rvir =

(

Mvir

(4π/3)∆c(z)ρc(z)

)

(2.8)

Here ∆c(z) is a spherical over-density of the virialized halo within r200 at redshift
z, in units of the critical density of the universe ρc(z). Lacey & Cole (1993) and
Nakamura & Suto (1997) provide the expression of ∆c(z) for arbitrary cosmological
models.

Using equation 2.4 it easy to give an explicit expression for the mass :

m(x) =
∫ x

0
duu2yDM(u) = ln(1 + x) − x

1 + x
(2.9)
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As it is suggested by Komatsu & Seljak (2001), since the DM density is assumed
to be self similar, a gas density profile ρgas(r), would also be self–similar, if no
additional scale is introduced. Hence we have:

ρgas(r) = ρgas(0)ygas(r/rs) (2.10)

The different parameterization in eq. 2.3 and 2.10 is due to the fact that, in contrast
to DM density profile, a flat gas core near the center of the halo is well observed,
and is expected if the gas temperature is not a strong function of radius.

Our goal is to find an analytical expression for ygas(r/rs) that satisfies the self–
similarity requirement. Makino et al. (1998) and Suto et al. (1998) showed that this
is possible assuming hydrostatic equilibrium between the gas pressure and the self–
similar DM potential. In the original paper of Makino et al. this computation was
done assuming that the gas distribution was isothermal. However, X-ray observa-
tions of clusters (Markevitch et al. (1998), De Grandi & Molendi (2002), Vikhlinin
et al. (2005)) show that the temperature profiles of clusters are not isothermal and
can be approximately described by a polytrope at least outside the regions of the
cool core.

To take into account phenomenologically the effect of the gas temperature gra-
dient which is found both in observations and in hydrodynamical simulations, Suto
et al. (1998) parameterized the gas pressure in a polytropic form Pgas ∝ ρgasTgas ∝
ργ

gas. γ is the so called “effective polytropic index” of the gas. Please note that this
is not the polytropic index of the gas, that in our case in 5/3, as for an ideal gas.
This parameterization gives a self-similar temperature profile,

Tgas(r/rs) = Tgas(0)yγ−1
gas (r/rs) (2.11)

Then the hydrostatic equilibrium equation,

ρ−1
gas

dPgas

dr
= −GM(≤ r)

r2
(2.12)

gives the differential equation for the gas profile ygas(x),

dy−1
gas(r/rs)

dr
= −

(

γ − 1

γ

)

GµmpM200

kBTgas(0)r2

(

m(r/rs)

m(c)

)

(2.13)

Here µ is the mean molecular weigh, mp is the proton mass, kB is the Boltzmann
constant, and m(x) is the dimensionless mass profile given by equation 2.6.

Since ygas(0) = 1 (see equation 2.10) equation 2.13 is formally solved as (Suto
et al. (1998)):

yγ−1
gas = 1 − 3η−1(0)

(

γ − 1

γ

)(

c

m(c)

)

∫ x

0
du
m(u)

u2
(2.14)

where

η−1(x) =
Tvir

Tgas(x)
=

GµmpM200

3r200kBTgas(x)
(2.15)
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Figure 2.2: The gas density profile (left) and the gas temperature profile (right) for
different effective polytropic indexes γ. In particular red line is for γ = 1.25, green
line for γ = 1.18 and blue line for γ = 1.10. The analytical expressions for the two
profiles are the one reported respectively in eq. 2.17 and 2.19.

is the normalization factor which relates Tgas to Mvir.
Now, the integral in equation 2.14 is easily evaluated using for m(u) the expres-

sion given in equation 2.9 :

∫ x

0
du
m(u)

u2
= 1 − ln(1 + x)

x
(2.16)

We are ready to give now an explicit expression for the gas temperature, density
and pressure profile as calculated from hydrostatic equilibrium:

ρg(r) = ρg0

(

1 − a

(

1 − ln(1 + cx)

cx

))1/(γ−1)

(2.17)

Pg(r) = Pg0

(

1 − a

(

1 − ln(1 + cx)

cx

))γ/(γ−1)

(2.18)

Tg(r) = Tg0

(

1 − a

(

1 − ln(1 + cx)

cx

))

(2.19)

where:

a =
γ − 1

γ

3

η0

c(1 + c)

(1 + c) ln(1 + c) − c
(2.20)

and η0 is the extrapolation of η(r) at r = 0. The gas profiles we have obtained have
basically two free parameters: the effective polytropic index γ and the normalization
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factor η(0). In figure 2.2 we plot the density and temperature profile of the gas, as
defined in equations 2.17 and 2.19, for different effective polytropic index. In the
next section we will show under which hypothesis it is possible to determine these
two parameters.

2.3 Gas and DM outside the core

In this section we will show how it is possible to link the gas and the DM density
profile in order to fix the free parameters γ and η(0). Many hydrodynamical simula-
tions have observed the gas density profile tracing the DM profile outside the core,
r ≥ r200/2 (Navarro et al. (1995), Bryan & Norman (1998), Eke et al. (1998)...).
From an analytical point of view we can require the gas density profile, ygas(x), to
match the DM density profile, yDM(x), at a certain matching point xm. This means
requiring the slopes of the two profiles to be the same at xm:

sm =
d ln ydm(x)

d lnx

∣

∣

∣

∣

∣

x=xm

=
d ln ygas(x)

d lnx

∣

∣

∣

∣

∣

x=xm

(2.21)

where sm is an effective slope of the DM density profile at xm. Using equation 2.3
we have:

sm = − 1

1 + xm
(1 + 3xm) (2.22)

Using the expression derived for ygas (equation 2.14) in eq. 2.21 we obtain a solution
for the mass–temperature normalization factor at the center η(0):

d ln ygas(x)

d lnx

∣

∣

∣

∣

∣

x=xm

= sm (2.23)

xm

γ − 1

[

1 − 3

η(0)

γ − 1

γ

c

m(c)

∫ xm

0
du
m(u)

u2

]−1[ −3

η(0)

γ − 1

γ

c

m(c)

m(xm)

x2
m

]

= sm (2.24)

η(0) =
1

γ

[(

−3

sm

)

c ·m(xm)

xm ·m(c)
+ 3(γ − 1)

c

m(c)

∫ xm

0
du
m(u)

u2

]

(2.25)

We have obtained this expression requiring the DM and gas density profiles to have
the same slope at rm. According to the simulation the two slopes should agree not
only at x = xm but also everywhere in the outer region of halos, so within a factor
2 above and below r200 (c/2 < x < 2c). This requirement will not be satisfied in
general; however we still have one free parameter left, the effective polytropic index
γ. We fix it by requiring that the solution for η(0) does not depend on xm. The idea
is to calculate the gas temperature at an arbitrary radial point using the solution
for η(0) given above and look for the values of γ that satisfy the requirement that
η(0) is independent of xm (see for details Komatsu & Seljak (2001)). The range
found is γ = 1.1 − 1.2. Our model then no longer contains any free parameters.



Chapter 3

Cooling in DM halos: physics

In the previous chapters we have mentioned gas cooling as the process causing “loss
of energy due to radiative emission” without any further considerations. In this
chapter we want to discuss more in detail this statement. From a physical point
of view the gas in the DM halos can be considered as an optically thin plasma.
The composition of this plasma is in general very complex: in fact in real case the
gas is metal enriched and therefore the plasma is composed not only by electrons
and protons (as in the case of hydrogen plasma) but also by a number of different
ions. In principle, if we are interested in the computation of radiative losses of this
plasma, we have to take into account all the different atomic processes that can
take place within it. In order to do that, we have to know the exact composition of
the plasma (for example what is the ionization fraction for each species), which is a
function of the temperature (at high temperature the gas will be fully ionized while
at lower temperature it will be present some ions). Giving a detailed treatment of
all the possible atomic processes that take place in a plasma, is quite complex and
out of the scope of this thesis. We will concentrate on the most important processes
using also several approximations to simplify the discussion. We will show in the
last sections of this chapter how it is possible to collect together all the information
coming from atomic processes to calculate a so–called “cooling function” for the
plasma. The most general expression for the cooling function is:

Λ(T,A) = Λlines + Λcont ± Λrec − Λphoto + Λcoll ± ΛCompton (3.1)

where T is the plasma temperature, A is the plasma composition, Λlines is the col-
lisional line radiation term, Λcont takes into account the free-free and two photons
continuum, Λrec is the contribution due to recombination processes, Λphoto is the
contribution from photoionization heating, Λcoll arises from the collisional ionization
and ΛCompton takes into account Compton heating/cooling. In order to simplify the
situation we can assume Collisional Ionization Equilibrium (CIE thereafter). This
means that the system is optically thin, low–density, dust–free and in steady state
or quasi–steady state. Under these conditions the effects of any radiation field can
be ignored, density effects are insignificant, three-body collisions are unimportant,
and the ionization balance of the gas is time-independent. Moreover electron col-
lisional ionization processes are balanced precisely by recombination processes (we
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will discuss later this statemet). In this approximation there are three important
conditions that specify the thermodynamic state of the free electrons, ions and
photons in the plasma:

1. Photons are assumed to be free and do not interact with either electrons or the
ions after they are emitted. Consequently photo–ionization processes (ionizing
atoms by photons) and photo–excitation processes (raising an electron bound
to atom to an excited level) are far less frequent than electron collisional
ionization and excitation processes;

2. The atoms can be treated as if their electrons are all in their ground state
rather than having a Boltzmann distribution as is common in local thermo-
dynamic equilibrium gases;

3. The plasma is locally relaxed to a Maxwellian distribution around a common
electron temperature, T; the free electrons and ions are assumed to have a
common temperature.

In this case the only significant processes that must be taken into account are line
radiation (bound–bound transition), recombination heating (bound–free transition)
and continuum radiation (free-free transition). The cooling function calculated in
CIE approximation is the one used in all the calculation we have done during this
Thesis work. In the following sections we will give a short description of these
processes.

3.1 Bound-Bound transitions

One of the most common process that take place in a plasma is the emission or
the absorption of a photon due to transition of an electron from a bound state to
another bound state. The outcome of this phenomenon are the spectral lines that
allow to have important informations about the physical properties of the medium.
Moreover, if the continuum is not very strong, emission lines can dominate the
radiative transfer (e.g. T ≤ 0.5keV ). The emission due to a transition for a bound
state m to a bound state n (where in CIE approximation m is the ground state) can
be described by the Einstein coefficient Amn. The emitted power per unit volume
is:

dW

dV
= NmhνmnAmn (3.2)

where Nm is the number density of atoms at level m. In order to demonstrate
how it is possible to evaluate Amn without complicated calculations, we will use in
the following a semi–classical approach instead of the correct quantistic approach.
During the transition we can assume that the electron behaves as an harmonic
oscillator with frequency νmn.

In the semi–classical approximation, for an harmonic oscillator, the electron
dipole moment reads as:

d(t) = ex(t) = ex0 cos(2πνmnt) (3.3)
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The emitted power can be calculated with the Larmor formula:

W =
2q2〈|d̈(t)|2〉

3c3
(3.4)

where q denotes a generic charge and 〈〉 a time–average. We can now calculate the
power emission for each oscillator:

Wosc =
64π4ν4

mn

3c3

(

ex0

2

)2

(3.5)

Moreover it is:
dW

dV
= Wosc ·Nm (3.6)

Then from equations 3.2 and 3.6 we get:

Amn =
64π4ν3

mn

3hc3

(

ex0

2

)2

(3.7)

where x0 is the classical radius of the electron in the ground state.
The quantistic calculation gives an analogous expression:

Amn =
64π4ν3

mn

3hc3

(

ex0

2

)2

|µmn|2 (3.8)

where µmn is the so–called “electric dipole matrix”:

µ2
mn = e2 < ψn|r|ψm > (3.9)

and ψn,m are the wave functions of the two atomic states.
The emission changes the kinetic energy of the harmonic oscillator:

E(t) =
meẋ

2

2
= 2π2meν

2
mnx

2
0 cos2(2πνmnt) (3.10)

Since :

d̈(t) =
8π2νmne

2

me
E2(t) (3.11)

using the Larmor formula:

dE

dt
= −Wosc = −8π2e2ν2

mn

3mec3
E(t) (3.12)

we have, by definition :

Amn = −8π2e2ν2
mn

3mec3
(3.13)

The quantistic calculations gives:

Amn = −8π2e2ν2
mn

mec3
fmn (3.14)
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where fmn is the so–called “oscillator strength” and takes into account the effective
number of electrons per atom. It is possible to calculate this value using quantum
mechanics. In order to calculate now the number density of atoms at level m, Nm,
we can use the statistical equilibrium equation:

∑

l<m

NeNlClm +
∑

i>m

AimNi = Nm

∑

l<m

Aml (3.15)

where Ne is the electron density and Clm is the collisional excitation coefficient
of the transition l → m. Under the CIE approximation (low density limit) the
population of an excited level is very small compared with that of the ground level,
so that the second term is negligible and allow us to write:

Wmn = NgNeCgmBmnhν (3.16)

where Cgm is the collisional excitation coefficient from the ground state to the upper
level m,

Bmn =
Amn

∑

l<mAml

(3.17)

is the radiative branching ratio, and Ng is the ground state density of the ion species
Z. The collisional excitation coefficient are obtained by integrating the cross section
over a Maxwellian distribution (see Kato (1976)). With some calculations one can
derive the following expression:

Wmn = 8.63 · 10−6NgNehν
exp(hν/kT )

T 1/2

8π√
3
fmng (3.18)

where g is the so–called “Gaunt factor” that corrects for quantum mechanical effects
and for the effect of distant collisions.

3.2 Bound-Free transition

We define “bound-free” or “free-bound” transitions all the transitions in which a
bound state is formed (recombination) from a free configuration, or when a free
state is formed (ionization) from a bound situation. For a schematic picture of the
possible phenomena see fig. 3.1.

In the absence of strong UV fluxes that give radiative ionization, impact ion-
ization is the dominant mechanism for plasma production. We will discuss now
in a quantitative way collisional recombination and photoionization for Hydrogen
atom. In this case recombination is basically electron–proton collision and can be
expressed as:

e+H+ → H0 + hν (3.19)

Once we have assumed CIE, we are able to ignore photo–ionization, due to the
assumption that the photons do not interact with electrons after they are created
and three–body recombination, due to the assumption that the plasma is low–
density.
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Figure 3.1: Main ionization and recombination processes (from lecture of prof.
A.Fasoli, EPFL, 2006/2007)).

3.2.1 Collisional ionization equilibrium

As we have already said, in the absence of any significant radiation field the ion-
ization balance can be calculated using only the recombination and collisional ion-
ization. We will now discuss in a quantitative way collisional recombination and
photoionization for an Hydrogen atom. The argument can be generalized for a
plasma in which there are other elements.

The probability per time unit that an H+ is involved in 3.19 is:

P21 = neσr(v)v (3.20)

where v is the electron’s velocity. When we integrate over a thermal distribution,
we get:

P21 = neα (3.21)

where α is the recombination coefficient, which is a function of temperature. The
reverse reaction of reaction 3.19 is the photoionization of the atom. In local thermo-
dynamical equilibrium (LTE hereafter), the rates of two processes must be equal by
the principle of detailed balance. This means that one can derive the recombination
rate α if the photoionization cross section is known. The details of this derivation
are in Rybicki & Lightman (1986). The derivation involves the following important
points: first of all we set up the equation of statistical equilibrium between the two
states (neutral and ionized). According to detailed balance, the total recombination
rate equals the total ionization rate, where these total rates include spontaneous
transitions and induced transition:

R(v → v + dv) = (1 − e−hν/kBT )I(ν → ν + dν) (3.22)

where (R, I) are the recombination and photoionization rates, respectively. In terms
of collisional cross section, photoionization cross section, and photon number density



3.2 Bound-Free transition 31

expressed in terms of the black–body spectrum Bν(T ) we have:

nenH0σr(v)vf(v)dv = (1 − e−hν/kBT )nH+

(

4πBν(T )

hν

)

σph(ν)dν (3.23)

where σph is the photoionization cross section. In recombination, energy conserva-
tion means that the kinetic energy of the incoming electron is equal to the sum of
the ionization energy and the energy (hνie) of the emitted photons:

mev
2

2
= hνie + hν (3.24)

Next, assuming a Maxwellian distribution for the electrons, we write the equation
of thermodynamical equilibrium between the two states (neutral and ionized). This
is the Saha equation:

nenH+

nH0

=
2g+

g0

(

2πmekBT

h2

)3/2

e−hνie/kBT (3.25)

where (g+, g0) are the statistical weights of the ionized and neutral state; recall that
g0 = 2n2 (sum of l–levels in a given n, times two for the spin) and g+ = 1(it’s a bare
proton). Equations 3.23 and 3.25 involve the same quantities, so we can derive the
desired relationship between the recombination and photoionization cross sections:

σr(v) = 2n2

(

hν

mecv

)2

σph(ν) =
hνie

me2
hνie

mev2/2

νie

ν

σph

n3
(3.26)

where σph is the photoionization cross–section at the ionization threshold.
As we have performed this computation for hydrogen it is possible to compute

collisional ionization equilibrium balance for the other elements of the plasma (see
as example Sutherland & Dopita (1993)).

3.2.2 Recombination heating

Radiative recombination is the process by which an ion in a state i binds an electron
from the electron sea to produce state i−1 with the subsequent radiation of photons.
This process may be a heating or cooling effect, depending on the electron energy
distribution that the recombining electrons are being removed from. As we saw in
the previous section, the recombination cross sections are a strong function of energy
and moreover they are largest near the threshold. If the energy distribution peak
is higher than the threshold, then it is possible to demonstrate that cold electron
will be preferentially removed from the electron sea. In this way the kinetic energy
per remaining electron increases and the result is a net heating.
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3.3 Free-free transition

When a high speed electron encounters the Coulomb field of another charge, it emits
bremsstrahlung radiation, also known as free–free emission. The word bremsstrahlung
means braking radiation because the electron rapidly decelerates when the other
charge is a massive ion. As we have done for the bound–bound transition we will
present the fundamental equations that permit to derive the bremsstrahlung emis-
sion. The derivation can be done classically using the dipole approximation for
non–relativistic particle, with quantum correction added as “Gaunt factors” to the
classical formulas.

Let’s consider an electron moving with velocity v̄ past an ion of charge Ze with
impact parameter b. We will assume small–angle scattering so there is negligible
deviation in the electron’s trajectory from a straight line. The dipole moment is
d̄ = −eR̄, and its second derivative is:

¨̄d = −e ˙̄v (3.27)

Taking the Fourier transform of this equation, we have the result:

−ω2d̄(ω) = − e

2π

∫ +∞

−∞

˙̄veiωtdt (3.28)

By defining a collision–time as τ = b/v we can easily obtain:

d̄(ω)

{

e
2πω2 ∆v̄ if ωτ << 1
0 if ωτ >> 1

where ∆v̄ is the change of velocity during the collision. Since the path is almost lin-
ear, the change in velocity is predominantly normal to the path. Thus we integrate
that component of the acceleration normal to the path:

∆v =
Ze2

m

∫ +∞

−∞

bdt

(b2 + v2t2)3/2
=

2Ze2

mbv
(3.29)

In the dipole approximation the emission is:

dW

dω
=

8πω4

3c3
|d̄(ω)|2 (3.30)

Thus the emission for a single collision is:

dW (b)

dω
=

{

8Z2e6

3πc3m2v2b2
if b≪ v/ω

0 if b≫ v/ω

This is the spectrum for small–angle scattering by a single electron off a single ion.
Next we want to generalize this to the case of a realistic plasma in which we have
many electrons interacting with many ions. Let the ion and electron number density
in the plasma be ni and ne. Then the flux of electrons incident on an ion is nev for
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a fixed electron speed v. The element of area about an ion over which an electron
encounter occurs is 2πbdb. So the emission per unit time, per unit volume, per unit
frequency range is:

dW

dωdV dt
= neni2πv

∫ bmax

bmin

dW (b)

dω
bdb (3.31)

where bmin is a minimum impact parameter to be chosen and bmax ∼ v/ω is some
value beyond which the b << v/ω limit no longer applies and the contribution to
the integral becomes negligible. It is:

dW

dωdV dt
=

16e6neniZ
2

3c3m2
ev

ln

(

bmax

bmin

)

(3.32)

The exact expression for the radiation spectrum can be obtained with a full quantum
treatment. For convenience, a quantum correction is added to the classical formula.
This correction term is known as the Gaunt factor :

gff(v, ω) =

√
3

π
ln

(

bmax

bmin

)

(3.33)

giving:

dW

dωdV dt
=

16πe6neniZ
2

33/2c3m2
ev

gff (3.34)

This is now the bremsstrahlung radiation emitted per unit time per unit volume
per unit frequency by single–speed electrons interacting with many ions. Next we
compute the volume emissivity for a thermal distribution of electron speeds.

In a thermal plasma, the velocity distribution of the electrons (and ions) is
Maxwellian. This distribution is isotropic and therefore the number of thermal
particles with velocity v̄ in the range d3v is:

f(v̄)d3v = f(v)4πv2dv ∝ exp

(

− mv2

2kBT

)

v2dv (3.35)

We need to average our single–speed radiation spectrum over this distribution func-
tion for all electron speeds satisfying 1

2
mev

2 ≥ hω/2π. i.e.

dW (T, ω)

dωdV dt
=

∫∞
vmin

dW (v,ω)
dωdV dt

v2 exp(− mv2

2kBT
)

∫∞
0 v2 exp(− mv2

2kBT
)

(3.36)

Using dω = 2πdν, the final result is the expression for the free-free volume emissiv-
ity:

jff
ν =

dW

dV dtdν
=

32πe6

3m
3/2
e c3

(

2π

3kBT

)1/2

Z2neni exp

(

− hν

kBT

)

¯gff (3.37)

where ¯gff is the velocity averaged Gaunt factor. Its value is typically of order unity.



3.4 Sutherland & Dopita Cooling function 34

3.4 Sutherland & Dopita Cooling function

We are now ready to discuss how it is possible to calculate the so–called “cooling
function” using the informations we got from the previous section. We will follow
Sutherland & Dopita (1993). They calculated cooling function for a plasma under
equilibrium and non equilibrium conditions, over a range of 104 − 108.5K and for a
range of abundances. So far the so–called “Sutherland & Dopita cooling function”
is the most used in literature, due to the large amount of atomic processes imple-
mented and due to large range covered in temperature and abundances. Of course
it is not possible to do analytically the computation of the amount of energy lost
by the plasma due to the different processes. They used a code, called MAPPING

II, in which they take in account the behavior of 16 atoms (H, He, C, N, O, Ne, Na,
Mg, Al, Si, S, Cl, Ar, Ca, Fe, Ni) and all stages of ionization. The main point is the
calculation of ionization balance of the plasma which in general is determined by its
temperature, ionization history and the atomic processes operating in the plasma
(that we have described in the previous sections). Of course the computation must
be done for all the 16 atoms. The computational details are reported in the paper of
Sutherland & Dopita (1993). In figure 3.2 the contribution to the cooling function
due to different atomic processes is shown in details.

Then, for each temperature, it is possible to calculate the contribution to the
global cooling function due to the different processes (see eq. 3.1). In figure 3.3 it
is shown the cooling function calculated for a primordial–composition gas. At high
temperature the dominant mechanism is the free-free bremsstrahlung (log(T ) >
6.5), while at lower temperature the dominant process is the emission due to He-
lium and Hydrogen. The same behavior is shown for non–zero metallicity cooling
function. We denote the cooling function calculated in this way as Λnet. It is useful
to define sometimes a “normalized cooling rate” as:

ΛN =
Λnet

nine
(3.38)

3.5 Cooling time scale

In this last section of the chapter we will see how it is possible to define a “cooling
time scale” for the gas that will be a crucial quantity in following of the thesis.

For an ideal gas, the pressure is:

P =
NkBT

V
(3.39)

and the internal thermal energy

U =
3

2
NkBT (3.40)

where T is the gas temperature, V is the total volume, N is the total number
of particles in the system and kB is the Boltzmann constant. Now, if we make
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Figure 3.2: Cooling function contribution. The upper panels show the contribution
to the cooling function by the different atomic processes in the case of Collisional
Ionitation Equilibrium (CIE) and in the case of Non Equilibrium (NEQ). The lower
panels show, for the same two cases, the emission by species, selecting only the
dominant species for clarity. (Sutherland & Dopita, 1993)
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Figure 3.3: Primordial cooling function (zero metallicity) for CIE and NEQ cases.
In both models the free-free cooling dominates down to below log(T) = 6.5. The
upper curve (I) is the CIE model, the lower (II) represents the NEQ case. The two
peaks are due to the Hydrogen and Helium emission (Sutherland & Dopita (1993).

the hypothesis that the gas pressure is constant, according to the first principle of
thermodynamic the amount of heat lost by the thermal electrons is:

dQ = dU + PdV =
3

2
(NkBdT + kBTdN) (3.41)

For pure radiative cooling, with no heating, we have:

dQ = −nenHΛN(T, xi, Z)V dt (3.42)

where ΛN(T, xi, Z) is the normalized cooling rate which depends on the gas temper-
ature, the ionization state, and the total abundances of the heavy elements specified
by the metallicity Z.

We can define the time scale of the cooling as :

tcool :=

∣

∣

∣

∣

∣

d lnTgas

dt

∣

∣

∣

∣

∣

−1

(3.43)

From equations 3.41 and 3.42 we get:

tcool :=

∣

∣

∣

∣

∣

1

T

1

NkB

[

− 2

3
nenHΛNV − kBT

dN

dt

]∣

∣

∣

∣

∣

−1

(3.44)

The term dN/dt reflects the relative change in the total number of particles in
the system. At temperature higher than 104 where hydrogen and helium remain
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ionized, the number of particles remains approximately constant and this term can
be neglected. Thus:

tcool =
3kBTn

2nenHΛN

(3.45)

where we have defined n = N/V = ne +nH, the total particle number density. Since
ne ∼ nH, ne · nH ∼ n2

H and ne + nH ∼ 2nH we have:

tcool =
3kBT

2n

4

ΛN
(3.46)

Now, being n = ρ/µhotmp, the gas density and defining :

Λcool = ΛN/4 (3.47)

we can finally re-write equation 3.44 as:

tcool :=
3kBTµhotmp

2ρΛcool
(3.48)

where µhot is the mean molecular weight and all the quantities are referred to the
hot gas. In the following for our computations we will use the cooling function ΛN

tabulated by Sutherland and Dopita (2003). Then we will have Λcool through eq.
3.47.



Chapter 4

Modeling cooling in SAMs

As we have already stressed in the first chapter, the central process of galaxy forma-
tion is cooling, because it sets the rate at which the raw material becomes available
to star formation (Blumenthal et al. (1984)). Therefore one of the crucial points in
SAMs is its description. In the following we will present two different recipes for
cooling implemented in the SAMs currently present in literature. The first one, that
we called “Classical cooling model”, was proposed for the first time by White &
Frenk (1991) and is implemented in most of SAMs, while the second one, referred
to as “morgana cooling model”, was proposed more recently by Monaco et al.
(2007).

4.1 The classical cooling model

The “Classical cooling model” (CM thereafter) for the gas cooling inside DM halos
was set out in details by White & Frenk (1991). They based their framework on the
arguments about gas cooling set in Rees & Ostriker (1977). The gas initially has
the same spatial distribution as the DM. As fluctuations in the DM separate from
the Hubble expansion, turn around and collapse, the gas is assumed to be heated
by shocks as it falls into the gravitational potential well of the DM halo, producing
a hot gas halo that is supported against further collapse by the pressure of the gas.
The gas attains the virial temperature of the halo, which depends upon the mass
of the halo:

Tvir =
µmp

3kB
V 2

c (4.1)

where Vc is the circular velocity of the halo:

Vc =

√

GMvir

rvir

(4.2)

The crucial point is now to define a “cooling rate”, i.e. how fast the gas cools
down. Of course the cooling rate depends on the cooling time that, as we saw in
the last chapter, depends on the inverse of the gas density, and to a less extent
on the gas temperature. In particular the dependence on the temperature is given
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by the cooling function. If the gas is very hot (log(T ) > 6.5) the cooling function
is dominated by bremsstrahlung emission (that scales as T 1/2) and therefore the
cooling time depends on T 1/2. For the sake of completeness let us write again the
expression for cooling time:

tcool(r) :=

∣

∣

∣

∣

∣

d lnTgas(r)

dt

∣

∣

∣

∣

∣

−1

=
3kBT (r)µmp

2ρ(r)Λcool(T (r))
(4.3)

where T (r) is the temperature profile of the gas, kB is the Boltzmann constant,
ρ(r) is the gas density profile, µ is the mean molecular weight of the hot phase,
mp is the proton mass and Λcool is the cooling function as defined in equation
3.47. It is important to remember that this expression for cooling time is valid in
the hypothesis of isobaric cooling. The crucial relevance of this hypothesis will be
discuss later in more details. Now, starting from this definition of cooling time we
can define a cooling radius as follow:

rcool,C(t⋆) := {r|tcool = t⋆} (4.4)

In words: the cooling radius at a certain time t⋆ is the radius at which the cooling
time is equal t⋆. In cosmological context t⋆ could be identified as the time for
which the halo has been cooling quasi-statically, i.e. t⋆ = Rvir/Vvir (Yoshida et al.
(2002)), as the time passed from the halo’s formation (Benson et al. (2001)), as the
Hubble time (White & Frenk (1991)), as the time interval since last major merger
(Somerville & Primack (1999)). We call the cooling radius calculated in this way
as rcool,C where C denotes the fact that this is the cooling radius in the CM. To
simplify the notation we will refer in the following to this radius simply as rC.

The gas density and temperature profiles are well defined, once the hypothesis
of hydrostatic equilibrium has been made and the pressure of gas has been parame-
terized in a polytropic form (see equations 2.17, 2.19). Assuming that these profiles
do not change with time, it is possible to calculate the cooling radius (as defined
in eq. 4.4) just inverting the function tcool(r). In figure 4.1 we plot the cooling
time and the cooling radius for three halos with M200 respectively M = 1012M⊙

(red line), M = 1013M⊙ (green line) and M = 1014M⊙ (blue line) and effective
polytropic index γ = 1.18.

The last step is the definition of a cooling mass :

Mcool(t) := {M(≤ rC(t)} (4.5)

In words: the cooled mass at a certain time t⋆ is the mass inside the cooling radius
evaluated at t⋆. This means:

Mcool(t⋆) := 4π
∫ rC(t⋆)

0
ρ(r)r2dr (4.6)

We are now ready to define for the classical cooling model a cooling rate:

Ṁcool := 4π
drC
dt

d

drC

∫ rC

0
ρ(r)r2dr = 4πρ(rC)r2

C

drC
dt

(4.7)
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Figure 4.1: Left : Variation of cooling time with radius for three different masses:
M = 1012M⊙ (red), M = 1013M⊙ (green) and M = 1014M⊙ (blue). The computa-
tion is done on initial temperature and density profile up to r200. Right : Variation
of cooling radius with time for the same masses. The curves are obtained inverting
the ones plotted in the left pannel.

4.2 The Unclosed morgana cooling model

Let us describe another model. This model has been implemented in the paper by
Monaco et al. (2007) and we will referred to it as the “Unclosed morgana cooling
model” (MM thereafter). The starting point is the same: the definition of the
cooling time (see equation 4.3). Then, instead of starting from the definition of a
cooling radius, we define a “cooling rate of a shell” of gas of width ∆r at a radius
r in this way:

∆Ṁcool =
4πρ(r)r2∆r

tcool(r)
(4.8)

where the numerator represents the shell mass (of hot gas) and the denominator
the cooling time. Assuming a NFW profile for DM component and hydrostatic
equilibrium, we can calculate the cooling rate for all the gas mass by integrating
equation 4.8. As before, the cooling time depends on density and temperature,
but the density dependence is by far stronger, both intrinsically and because the
temperature profile is much shallower than the density profile. For this reason, it
is a good approximation to perform the integral in dr by assuming T (r) ≃ T (rcool).
We have:

Ṁcool =
∫ rH

rcool,M

dr
4πρ(r)r2

tcool(r)
(4.9)

The lower limit for the integral rcool,M is the cooling radius in the Unclosed mor-

gana model (we will show here below how it is possible to calculate it). It is
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important to note that the time dependence of the integral is through rcool,M. In
the following we will refer to it simply as rM. As in the CM, the hot gas is assumed
to lie in the region comprised between the cooling radius and r200. Now, using the
expression for ρ(r) obtained before (see equation 2.17), equation 4.9 can be re-cast
in the form:

Ṁcool =
4πr3

s

tcool(0)
ρ(0)

∫ cNF W

rM/rs

duu2

[

1 − a

(

1 − ln(1 + u)

u

)]
2

γ−1

(4.10)

In this equation the cooling time at the center, tcool(0), is computed using the central
density ρ(0) and T (rM) for the temperature, as explained above. As in the CM we
assume that the density profile does not change with time. Equation 4.10 is valid
starting from the cooling time at r = 0, because nothing cools before that time.
The rate of thermal energy loss by cooling is then computed as:

Ėcool =
3kT (rM)

2µmp

4πr3
sρ(0)

tcool(0)

∫ cNF W

rM/rs

duu2

[

1 − a

(

1 − ln(1 + u)

u

)]
2

γ−1

(4.11)

We need then an equation that describes the evolution of the cooling radius. We
can estimate it by assuming that the cold mass in a time interval dt is equal to the
mass contained in a shell dr such that:

drM
dt

=
dMcool

dt

1

4πρ(rM)r2
M

(4.12)

The evolution of the system is then followed by iterative numerical integration of
equations 4.10, 4.11 and 4.12, starting after a time equal to the cooling time at
r = 0. The integration is performed with a simple Runge–Kutta integrator (see
Monaco et al. (2007) for all details) and the profile of the hot gas is re–computed
at each time step. Clearly, as long as the mass and the thermal energy of each cold
shell is removed from the profile, the rest of the gas is left unperturbed, so its profile
does not change in time (as in CM). The situation is clarified in figure 4.2. Here we
plot the initial density profile (black line) and the region (colored in red) where cold
gas is present. In the following we will refer to this region as the “cooling hole”.
We would like to stress that the density profile of the hot gas outside the cooling
hole is left unperturbed with respect to the initial one.

Now, step by step, we first evaluate equation 4.9 and then equation 4.10 in an
iterative way. At each integration time, we have in this way two predictions, one
about the amount of cooled mass and one about the cooling radius.

Summing up, the two main assumptions at the base of the Unclosed morgana

model are: (i) cooling proceeds through an equation (4.8) of the kind Ṁcool =
Mhot/tcool, (ii) there is a sharp transition from the hot to the cold phase which
guarantees a sharp border of the hot gas. While the validity of assumption (ii) is
supported bu the results of the simulations (see chapter 7), assumption (i) requires
some discussion. While being deterministic, equation 4.8 takes the form of a typical
decaying law, where the phase transition from hot to cold is assigned a probabilistic
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Figure 4.2: Theoretical gas density profile at t = 0 (red line), and at t = 2tdyn

as truncated by the morgana model. The region before the truncation is the
so–called “cooling hole”.

time-scale tcool. This may be seen at odds with the fact that cooling is described
here as a deterministic process. Besides, particles in the simulated gas show values
of their thermodynamical variables which scatter around their mean values (see
chapter 6). We are convinced that this feature is one of the keys of success of this
model; this point will be considered later.

4.3 Comparing the two models: a critical discus-

sion

The aim of this section is to focus on the differences between the two cooling models,
trying to underline the assumptions on which they are based. The main difference
between the two models is the following: while CM attempts to provide a direct
prediction of the cooling radius, which amounts to assuming that each shell cools
exactly after one cooling time, MM computes the rate of mass and of energy loss
by integrating the contribution of all mass shells. In doing so, it assumes that a
sharp boundary between cold and hot gas phases is anyhow preserved and uses this
to compute the evolution of the cooling radius.

Clearly, we expect that the predictions of the two models are different. Both
models assumes that for t < tcool(0) it is Mcool = 0.

Let us consider the first integration time–step at time t = tcool(0). According
to CM the cooling radius at this time is zero and consequently the cooled mass is
zero. On the contrary, MM calculates the cooled mass by evaluating the integral in
equation 4.9 from 0 to the r200. In equation 4.9 each shell is weighted by its own
cooling time. This means that the closer is the shell cooling time to the time at
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Figure 4.3: Evolution with time of the cooled mass fraction as predicted by the
classical model and by the morgana model.

which the cooling radius (the lower limit of the integral) is calculated, the larger is
the contribution from that shell to the cooled mass. Since the cooling time depends
basically on the inverse of the density and due to the fact the density profile is
almost flat for small radii, MM will predict more cool mass at the beginning (see
figure 4.3). This fact implies, according to equation 4.12, that MM predicts a more
rapid evolution of the cooling radius at the beginning (see figure 4.4). Consequently,
in MM the cooling radius reaches quite soon the value at which the density profile
becomes steeper and then after the initial fast increase of the cooled mass, Mcool

will increase more gently, converging towards the value predicted by the CM at
large times.

4.3.1 Interpretation of the cooling time

We have already shown in section 3.5 that the cooling time is obtained as tcool =
|d lnT/dt|−1, where the dT is computed for an isobaric transformation. So the
validity of the cooling time refers to the case of cooling at fixed pressure. In fact,
the evolution of a parcel of gas undergoing cooling is more complicated than this,
because density and temperature clearly evolve with time. We have verified, by
numerically integrating the thermodynamical equations of a parcel of hot gas, that
the time needed to cool from a relatively high temperature (T ∼ 106 − 108 K)
to 104 K is within a few per cent equal to the cooling time computed using the
initial temperature and density, and this is true only in the simplest case in which
pressure is constant. We can then say that the classical cooling model, which
predicts that a shell of gas will be cooled after one cooling time (computed on the
initial configuration), can give a good approximation as long as gas pressure remains
roughly constant during the evolution.
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Figure 4.4: Evolution with time of the cooling radius as it is predicted by classical
model and by morgana model.

4.4 The Closed morgana cooling model

In the previous sections we presented two different models in which cooling can be
described and we focused on the hypothesis on which the two models are based
on. In this section we will present a variation of the morgana model. Both the
classical model and the morgana model assume that pressure is balanced at the
cooling radius. The question is: Is this hypothesis realistic ? The answer in general
is negative (we will come back on this point in chapter 7). In particular, as long as
the time derivative of the cooling radius is much larger than the gas sound speed,
the boundary of the cooled region propagates so quickly that any gas motion can
be neglected. This holds only at very low rM. The late evolution of cooling is better
represented by letting the “cooling hole” to close at the sound of speed. We then
define a further cooling radius rM,ch, corresponding to a model where its evolution
is given by the equations:

drM,ch

dt
=
drM
dt

− cs (4.13)

where :

cs =

(

∂p

∂ρ

)1/2

(4.14)

is the sound speed evaluated at the cooling radius. This simple change makes
the predictions of the cooling model remarkably different, as the behavior of the
cooling radius turns out to be remarkably different, so the mass is distributed over
a different volume. We will refer to this Model as the “Closed morgana Model”
(CMM thereafter). The implicit assumption here is that the gas has time to settle
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into a new hydrostatic equilibrium configuration. Moving the cooling radius towards
the center (see eq. 4.13) has the effect of tilting the density profiles that becomes
steeper (higher in the inner regions and lower in the outer regions) as it is shown
in figure 4.5. Obviously the hot mass is conserved (see figure 4.6). Increasing the
density profile in the inner regions has the net effect of shortening the cooling time
of the inner shells and consequently to increase the cooling mass. Eventually this
leads to a catastrophic cooling of all the gas. A very simple and effective way to
obtain an acceptable behavior is to suppress the sound speed term in equation 4.13
when the specific thermal energy of the hot gas becomes smaller than the specific
virial energy (−0.5UH/MH , where UH is the binding energy of DM halo).
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Figure 4.5: Blue line: Initial density profile of the gas. Black line: Cooling radius
(eq.4.12), predicted by MM, at a time t⋆. The cooled mass is calculated at t⋆
performing the integration of the initial density profile from this radius to the r200.
Red line: Density profile calculated by CMM. The radius at which the profile is
truncated is calculated using equation 4.13. In CMM at t⋆ the cooled mass is
calculated performing the integration of this profile.

The closure of the cooling hole is easily implemented in the model, but corre-
sponds to a rather drastic change in the interpretation of the cooling radius: while
both the CM and MM try to predict, starting from the initial conditions, which
part of the gas is going to cool, so that their predicted cooling radius should be
interpreted as a Lagrangian quantity, the CMM attempts to follow the physical
evolution of the system in a more detailed way. Its cooling radius rM,ch should then
be interpreted as an Eulerian quantity.
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Chapter 5

Numerical simulations

At the end of the XIX century the French mathematician Henri Poincaré demon-
strated that it is not possible to predict (analytically) the evolution of a system
composed by a number N of collisionless point masses that move under the influ-
ence of their mutual gravitational forces, if N is greater than 2. This means for
example that it is not possible to calculate analytically the evolution of the system
Earth-Moon-Sun and even more so it is not possible to solve a lot of physicals prob-
lems without extra-hypothesis such as high symmetry or an approximated treatment
of inherently non linear problems. The rapid growth of computer performance and
the implementation of more sophisticated algorithms allow, since the seventies, to
face N-Body problems from a numerical point of view without the need to do ap-
proximations. The first “numerical simulations” (Holmberg (1941), Peebles (1970),
Press & Schechter (1974); White (1976)...) largely employed the direct summation
method for the gravitational N-Body problem (i.e. estimate the force acting on
each particles summing the contributions of all the other particles), which remains
useful in collisional stellar dynamical system, but it is inefficient for large N due
to the rapid increase of its computational cost with N. In this chapter we will see
how this problem has been solved by new methods and new algorithms developed
in the last forty years. Moreover during the last ten years, collisionless dynamics
has also been coupled to gas dynamics, allowing a more direct link to observable
quantities. New algorithms for collisionless systems and the implementation of the
gas dynamics into the simulation codes allow immense progress in the studies of
the non-linear gravitational clustering of dark matter, the formation of galaxies and
clusters of galaxies, the interactions of isolated galaxies, the evolution of the inter-
galactic gas, etc. The obvious advantage of this method, with respect to SAMs, is
that galaxy formation can be described by following in detail the evolution of the
cosmic baryons during the shaping of large–scale cosmic structure. However, its
limitation lies in its high computational cost, which makes it impossible to explore
in detail the space of the parameter describing the process of galaxy formation and
evolution. For this reason, following galaxy formation with full “hydrodynamical
simulations” (simulations of collisional system described by the hydrodynamic equa-
tions) in a cosmological environment of several tens of Mpc is a challenging task for
simulations of the present generation (e.g., Nagai & Kravtsov, 2005; Romeo et al.,
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2005; Saro et al., 2006).
This chapter is divided in two parts: a first part in which we will describe from

a general point of view in which way is it possible to treat a system composed
by collisionless and collisional particles, which equations have to be solved and
what are the main problems from a computational point of view. In the second
part we will present the GADGET-2 code (Springel et al. (2005), http://www.mpa-
garching.mpg.de/gadget/), which is the one we used to perform our simulations.

5.1 N-Body methods

Let us consider a system composed by a number N of bodies of mass mi. At the
beginning (t=0) the position of each body is x̄i(0) and the velocity is v̄i(0). The
equations that we have to solve in order to study the dynamics of the system are:

dx̄i

dt
= v̄i (5.1)

dv̄i

dt
=
F̄i

mi
(5.2)

∇2Φ = 4πGρ(x̄, t) (5.3)

The first one is the velocity definition, the second one is the acceleration defini-
tion, and the third one is the Poisson equation. The numerical approach to these
equations consists into solving the total derivatives in equations 5.1 and 5.3 us-
ing the finite methods differences. For example we replace the velocity analytical
expression:

v̄i =
dx̄i

dt
= lim

∆t→0

x̄i(t+ ∆t) − x̄i(t)

∆t
(5.4)

with:

v̄i :=
x̄i(t+ ∆t) − x̄i(t)

∆t
(5.5)

We can summarize the N-body methods as follow:

1. Divide the time interval that you are going to study into segments of length
∆t. The smaller are the segments, the more accurate will be the integration
of the orbits.

2. Calculate the gravitational force that acts on each particle, from the Newton
law:

F̄i

mi
=

N
∑

j=1

Gmj

|r̄ij |3
r̄ij (5.6)

where rij is the vector joining particle i and particle j (j 6= i).
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3. Calculate for each particle the new position and velocity according to:

x̄i,N = x̄i(t+ ∆t) = x̄i(t) + v̄i(t)∆t (5.7)

v̄i,N = v̄i(t+ ∆t) = v̄i(t) +
¯Fi(t)

mi

∆t (5.8)

The operation that costs more in terms of time calculation is the second one (in
particular the computing time grows as N2). In fact, as it can be seen from 5.6, it
is necessary to compute all the distances rij between the N(N −1)/2 possible pairs
of particles. The different algorithms that we are going to illustrate in the following
differ from one another for the methods used in order to calculate the gravitational
force.

5.2 The Particle-Particle method

The Particle-Particle method, or shortly PP − method, is the most obvious one.
It estimates the force acting on each particle by simply summing the contributions
of all the particles in the simulation. It uses basically Newton equation, slightly
modified in order to avoid the divergence of the force for distances approaching
zero:

F̄i

mi
=

N
∑

j=1

Gmj

(|r̄ij| + ǫ)3
r̄ij (5.9)

ǫ is called softening parameter and assigns to each particle a characterist dimension.
Moreover it defines a characteristic scale for the simulation. The simulation will be
reliable on scale greater than ǫ.

In this way one can estimate carefully the gravitational force but spend a lot
of time. This is the reason why it is not possible to use PP method in simulations
with a huge number of particles.

5.3 The Particle-Mesh methods

The Particle-Mesh (PM) method consists into solving the problem in a mean field
approximation. The idea is to build a mesh and to assign at each point on the mesh
a certain value of the density and potential. In this way it is possible to reduce
significantly the number of computations that must be done. However introduction
of a mesh causes a loss of spatial resolution, in the sense that it is not possible to
resolve structures below the the dimension of the mesh. We can represent the space
as a cubic volume os size L. Inside this cube we put the N particles and we build a
mesh inserting M points, called the mesh nodes. The separation between the nodes
is L/M and the volume of the M3 cells is clearly (L/M)3. For simplicity in the
following we put L = 1. The PM computation can be divided in five steps:



5.4 The P 3M method 50

1. Calculate the density within each cell : the mass of each particle is distributed
on the mesh point according to this formula:

ρ(q̄) = mpM
3

N
∑

l=1

W (x̄i − q̄) (5.10)

where q̄ is the the center of mesh point, x̄i is the coordinate of particle i, and
W is a function, called kernel, that interpolates the density field on the mesh,
and it is normalized in order to preserve the total mass.

2. Solve Poisson equation (5.3) using FFT (Fast Fourier Transform). We get:

Φ(q̄) =
1

M3

∑

q̄

G(q̄ − q̄′)ρ(q̄′) (5.11)

where G(q̄) is the Green function of the Laplacian and it is proportional to
−1/q2

3. Calculate the force on each mesh point in the Fourier space:

F̄ (k̄) = −ik̄Φ(k̄) (5.12)

and perform the anti-transformation in order to have F̄ (q̄).

4. Calculate the force acting on each particle with the same interpolation scheme
used for the density:

F̄ (x̄i) =
∑

q̄

W (x̄i − q̄)F̄ (q̄) (5.13)

This method is faster than the direct summation due to the fact the number of
steps in the computation in FFT is on the order of NlogN .

5.4 The P 3M method

This method comes from the necessity to join the precision of PP method and
the speed of PM. The idea is to divide the force acting on each particle in two
contributions: a short one, F̄ PP

i , treated with Particle-Particle method, and a long
one, F̄ PM

i , evaluated by particle-mesh method:

F̄i = F̄ PP
i + F̄ PM

i (5.14)

Clearly it is necessary to introduce a critical distance, scr, that allows to discriminate
between the two contributions. The choice depends on the compromise that one
wants to have between the accuracy and the speed of the calculation: increasing the
critical distance means enlarging the space region around each particle analyzed by
PP method. The simulation is consequently more accurate but the execution time
will be larger.
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Some P 3M codes use adaptive meshes: this means that the spacing between
two nodes can be increased or decreased due to the density of the region. In this
way one can increase the resolution in the higher density regions (that are the most
important for the final result) concentrating there most part of the calculation.

5.5 The Tree codes

The TREE−CODE method is an algorithm that allows to increase the resolution
in the forces computation, preserving roughly the speed of computation. This
algorithm, originally proposed by Barnes & Hut (1986), is based on a hierarchical
subdivision of space in regular cubic cells. At each time , before evaluating the
force, a tree structure must be identified in order to fix the hierarchy. The rules to
follow in order to build the tree can be summarize as follow:

1. Make a partition of the original box (computational domain) into a sequence
of cubes. These cubes form the principal nodes of the tree structure;

2. Make a partition of each principal node into a certain number (that must be
fixed at the beginning) of small cubes. These small cubes form the secondary

nodes of the tree structure;

3. Perform the partition until each cube contains exactly one particle. In this
case the cube is called the leaves of the tree structure;

4. Do not store the empty cubes.

A schematic illustration of Tree-Code in 2-D is given in picture 5.1 During the
building of the tree structure one has to calculate and to assign at each cube the
mass, the center coordinates and the quadrupole moments. The force is computed
then walking the tree and summing up appropriate force contributions from the
tree nodes. In the standard Barnes & Hutt tree walk, the multipole expansion of a
node of lenght l is used only if:

r >
l

θ
(5.15)

where r is the distance of the point of reference to the center of mass of the cell and
θ is an accuracy parameter that determines the execution speed.

If a node fulfills the criterion in equation 5.15, the tree walk along this branch
can be terminated, otherwise it is opened and the walk is continued. A particular
delicate issue is the force resulting from an almost homogeneous mass distribution;
in this case single contributions tends to cancel each other and a relative small error
can end up in a significant relative error in the final results. The criterion shown
above does not guarantee a sufficient accuracy, so that other conditions must be
fulfilled (see Springel et al., 2001 or Springel 2004).
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Figure 5.1: Schematic illustration of TREE-CODE in 2-D. The particles on left are
enclosed in a square (root node).This square is then iteratively subdivided in four
squares oh half size, until exactly one particle is left in each final square (leaves of
the tree). Note that empty squares need not to be stored. (Springel, Yoshida &
White 2001)

5.6 Hydrodynamics methods

In order to have a reliable representation of the matter distribution on large scale
it is sufficient to use collisionless particles (N–body methods). However it is not
possible to base a numerical analysis of the luminous matter in the universe only
onto collisionless N-Body methods. In-fact the baryonic matter follows physical
laws more complicated than the gravitational interaction. Consequently we have to
think about some algorithm that are able to model gas behavior, particularly we
have to describe the gas thermodynamics, the gas radiative and absorption prop-
erties and the influence of star formation. In order to implement these processes
in numerical simulations it is necessary that the gas physics treatment is naturally
complementary to the gravitational treatment. We will call that kind of simulations
“hydrodynamical” due to the fact the gas particles can be described as hydrody-
namical particle, as invented by Lucy (1977) and Gingold & Monaghan (1977).

5.6.1 Collisionless dynamics and gravity

Let start to discuss another formalism (Binney & Tremaine, 1987) to describe from
a mathematical point of view a collisionless fluid that, as we already mentioned,
is a good modelization of DM particles. It is useful to introduce it because it is
easily expandable to the treatment of gas collisional particles. Let’s consider a large
number of particles moving under the influence of a smooth potential Φ(v̄, t). At
a certain time t , a full description of the state of any collisionless system is given
by specifying the number of particles f(x̄, v̄, t) having positions in the small volume
d3x centered on x̄ and velocities in the small range d3v centered on v̄. The quantity
f(x̄, v̄, t) is called distribution function of the system. Clearly f ≥ 0 everywhere
in phase space. If we know the initial coordinates and velocities of every particles,
Newton’s law enable us to evaluate their positions and velocities at any later time.
This means: given f(x̄, v̄, t0) it is possible to calculate f(x̄, v̄, t) for any t using only
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the informations that is contained in f(x̄, v̄, t0). In order to have a more compact
notation we can define the coordinates in phase space as follows:

(x̄, v̄) := w̄ := (w1, ..., w6) (5.16)

so the velocity of this flow may be written :

( ˙̄x, ˙̄v) := ˙̄w = (v̄,−∇Φ) (5.17)

A characteristic of the flow described by ˙̄w is that it conserves particles: in absence
of encounters particles do not jump from one point in phase space to another, but
rather drift smoothly through space. Then, the density of particles f(w̄, t) satisfies
a continuity equation :

∂f

∂t
+

6
∑

α=1

∂(fẇα)

∂wα
= 0 (5.18)

The flow described by ˙̄w has the property that:

6
∑

α=1

∂ẇα

∂wα
=

3
∑

i=1

(

∂vi

∂xi
+
∂v̇i

∂vi

)

=
3
∑

i=1

− ∂

∂vi

(

∂Φ

∂xi

)

= 0 (5.19)

Here (∂vi/∂xi) = 0 because vi and xi are independent coordinates of phase space,
and the last step in equation 5.19 follows because ∇Φ does not depend on the veloc-
ities. If we use equation 5.19 to simplify equation 5.18, we obtain the collisionless

Boltzmann equation:

∂f

∂t
+ v̄ · ∇f −∇Φ · ∂f

∂v̄
= 0 (5.20)

where the gravitational potential Φ is defined through the Poisson equation:

∇2Φ(x̄, t) = 4πG
∫

f(x̄, v̄, t)dv̄ (5.21)

It is very difficult to solve this coupled system of equations (eq. 5.20 and 5.21)
directly with finite difference methods. Instead, the common N–body approach is
followed, where the phase fluid is represented by N particles which are integrated
along the characterist curves of the collisionless Boltzmann equation. In essence,
this is a Monte-Carlo approach whose accuracy depends crucially on a sufficiently
high number of particles.

5.6.2 Collisional system: gas

Gas can be thought of as an ensemble of classical point-like ballistic particles which
collide with each other. We can take into account the collisional behavior of the
gas introducing one extra term in the Boltzmann equation:

df

dt
=

(

∂

∂t
+ ˙̄x∇x+ ˙̄v∇v

)

f =

(

∂f

∂t

)

coll

(5.22)
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The term on the right side of equation 5.22 takes into account the scattering of
particles in and out of a phase–space region.

Defining the velocity average of some function F as :

〈F 〉 =

∫

d3vfF
∫

d3vf
=

1

n

∫

d3vfF (5.23)

the conservation of F during collisions gives:

∫

d3vF (v̄)

(

∂f

∂t

)

coll

= 0 (5.24)

and results in :

∂n〈F 〉
∂t

+
∂n〈F v̄〉
∂x̄

+ n
∂Φ

∂x̄

〈

dF

dv̄

〉

= 0. (5.25)

where Φ is the gravitational potential. Using the previous equation we can derive
the conservation of mass, momentum and energy.

Setting F = m in equation 5.25 we obtain:

∂ρ

∂t
+ ∇ · (ρū) = 0 (5.26)

where ρ = nm and

ū =

∫

d3vf v̄
∫

d3vf
(5.27)

is the bulk velocity. Equation 5.27 is known as the continuity equation and tells us
that the mass variation within a volume must be equal to the mass flux across the
surface defining the same volume. If the observer is moving along with the stream,
it will observe

Dρ

Dt
= −ρ∇ · ū (5.28)

being D/Dt = ∂/∂t + ū · ∇ the Lagrangian derivative.
If F = m equation 5.25 yields to:

∂ρui

∂t
+
∂ρ〈vivk〉
∂xk

+ ρ
∂Φ

∂xi

= 0 (5.29)

Writing the velocity v̄ as v̄ = ū + w̄ where w̄ is the velocity of ’random’ motions
with respect to the mean velocity ū and having ρ < vivk >= Pδik − πik with the
gas pressure

P = ρ〈|w̄|2〉/3 (5.30)

and the viscous stress tensor

πik = ρ〈|w̄|2δik/3 − wiwk〉 (5.31)
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equation 5.25 now reads

∂ρui

∂t
+

∂

∂xk
(ρuiuk + Pδik − πik) = −ρ ∂Φ

∂xk
(5.32)

Using equation 5.26 we obtain Force equation

ρ
Dū

Dt
= −ρ∇Φ −∇P + ∇ · π̄ (5.33)

being (∇ · π)i = ∂πik/∂xk.
Equation 5.25 becomes the law of energy conservation if F = mv2/2 = mu2/2+

mw2/2 +mw̄ · ū. To derive it, let us define the specific internal energy as:

ρǫ = ρ〈w2/2〉 = 3P/2 (5.34)

and the heat conduction flux F̄ as

Fk =
1

2
ρ〈wkw

2〉 (5.35)

so that we obtain the total energy conservation law

∂

∂t

(

1

2
ρu2 + ρǫ

)

+
∂

∂xk

(

1

2
ρuku

2 + ui(Pδik − πik) + ρǫuk + Fk

)

= −ρuk
∂Φ

∂xk
(5.36)

which can be rewritten as the following internal energy equation

∂ρǫ

∂t
+
ρǫuk

∂xk
= −P ∂uk

∂xk
− ∂Fk

∂xk
+ Ψ (5.37)

where the rate of viscous dissipation Ψ is defined as:

Ψ = πik
∂ui

∂xk

=
1

2
πik

(

∂ui

∂xk

+
∂uk

∂xi

)

(5.38)

Using the continuity equation we have finally:

ρ
Dǫ

Dt
= P∇ · ū−∇ · F̄ + Ψ (5.39)

Collecting together the continuity equation, the force equation and the internal
energy equation that represent the moments of the Boltzmann’ transport equation,
we can have all the Navier-Stokes equations:

(

∂

∂t
+ ū · ∇

)

ρ = −ρ∇ · ū (5.40)

ρ

(

∂

∂t
+ ū · ∇

)

ū = −ρ∇Φ −∇P + ∇ · π̄ (5.41)

ρ

(

∂

∂t
+ ū · ∇

)

ǫ = −P∇ · ū−∇ · F̄ + Ψ (5.42)
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being

ρ = m
∫

d3vf(x̄, v̄, t) (5.43)

ū =< v̄ > (5.44)

ǫ =
3

2

P

ρ
=

1

2
< w2 > (5.45)

πik = ρ < |w̄|2δik/3 − wiwk > (5.46)

Fk =
1

2
ρ < wkw

2 > (5.47)

Ψ = πik
∂ui

∂xk

(5.48)

Note that the previous equations have been written in their non conservative

form, i.e. from the point of view of a particle moving in the fluid, which is the
Lagrangian approach used in simulations. It is also worthwhile to note that ∇Φ
should be substituted by a more general term f̄ , which stands for a general external
force per unit mass exerted on a gas volume, when accounting for some other
fields than gravitation, e.g. magnetic field (Dolag et al. 2002). So far we have
written three equations: the continuity equation, the Euler equation and the energy
equation. To close the system we also need a fourth relation, namely the equation

of state which relates the thermodynamical variables with each others. This is:

P = (γ − 1)ρu (5.49)

where γ = 5/3 is the adiabatic exponent for a mono-atomic ideal gas and ǫ is the
energy per unit mass.

The form we use in numerical simulation we run is different from Navier-Stokes
equations because, as it is usual in cosmological simulations, we ignore the viscous
stress tensor and thermal flux terms, then considering the collisional component as
a perfect gas. Then the governing equations are:

(

∂

∂t
+ ū · ∇

)

ρ = −ρ∇ · ū (5.50)

(

∂

∂t
+ ū · ∇

)

ū = −∇Φ − ∇P
ρ

(5.51)

(

∂

∂t
+ ū · ∇

)

ǫ = −P
ρ
∇ · ū− L(ǫ, ρ)

ρ
(5.52)

neglecting other terms than gravity as for the external forces and accounting for
non-hydrodynamical heating and cooling through the L function.
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5.7 Eulerian and Lagrangian approach to compu-

tational fluid dynamics

Considering the continuity equation (5.27) one can infer the existence of two dif-
ferent approach to describe the motion of fluids, namely the Eulerian and the La-

grangian. As for the former, the fluid is studied considering the properties of a fixed
volume in space and studying their variations with space and time. This is what
the left hand in equation 5.28 refers to. In the second approach, the fundamental
object of our analysis is a volume of fluid whose properties are studied along its
trajectories: then, the derivative in the left hand side of mentioned equation 5.28
will be for density:

dρ(x, y, z, t)

dt
=
∂ρ

∂t
+
∂ρ

∂x

dx

dt
+
∂ρ

∂y

dy

dt
+
∂ρ

∂z

dz

dt
(5.53)

leading to the right hand side of equation 5.28. Less formally, we can say that the
first term ∂/∂t of the Lagrangian derivative carries informations about the “local”
or “intrinsic” variation whereas the second one (v̄ · ∇, the convective derivative)
describes the variation due to the surrounding environment. Both Eulerian and
Lagrangian methods present advantages and disadvantages. In particular Eulerian
approaches are best suited as shock-capturing methods and resolve better the under-
dense regions and arbitrarily large gradients, while Lagrangian codes are not locked
to a pre-defined geometry and can adapt the resolution to the local needs allowing
for wide spatial and dynamical ranges. Depending on the problem one is dealing
with, one choice or another is preferable: for a while Lagrangian methods have been
the ones used for the bulk of works in computational cosmology since they are free
of fixed geometries and the ability in managing the huge dynamical ranges that a
typical problem in this field present, e.g. with three or more order of magnitude as
for the density contrast. As a final, quite obvious, note, it is worth to mention that
Eulerian codes are better suited to calculate fluxes and quantity exchanges. e.g.
mass fluxes (and then diffusion equations), radiative transport etc, while a particle
description is useful when dealing with well-separated phase, e.g. in studying the
star formations.

5.8 SPH Code

Real fluids consist of an infinite number of infinitesimal-extended elements which
move obeying the Newtonian equations under the influence of pressure gradients
and other, if any, external forces like gravity, magnetic field, inertial forces from
rotating system etc. For obvious reasons it is definitely impractical to model such
real fluids in the computational realm, so that the standard approach is to select
a set of N finite elements, representing them by particles, and assume that their
mass density is proportional to the mass density of the fluid so that the latter
can be inferred given the former if the system is evolving following the laws of
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thermodynamics. In recovering the density ρ of the fluid from the distribution of
particles we are basically recovering a probability distribution from a sample. To
do this we have to smear out the local statistical fluctuations due to the finite
number of used elements. In the SPH technique, this task is accomplished using
the smoothing kernel methods as first presented by Lucy (1977) and Gingold and
Monaghan (1977). Following the original discussion of Gingold and Monaghan, the
heart of the SPH technique is the evaluation of a smoothed scalar or vector field
A(r̄)

As(r̄) =
∫

W (r̄ − r̄′, h)A(r̄′)dr̄′ (5.54)

by a Monte-Carlo method from a set of N points at coordinates r̄1, ...r̄N :

AN(r̄) :=
N
∑

j=1

A(rj)

nj
W (r̄ − r̄′, h) (5.55)

W (r̄ − r̄′, h) is the so called interpolant kernel, nj is the local number density
of particles at the point r̄j and h is a sort of resolution in the sense that every
properties with length scale l ≪ h is strongly smoothed. The kernel W must
satisfy the condition:

∫

W (r̄)dr̄ = 1 (5.56)

where the integration is over all space. Intuitively it seems reasonable to expect
that W (r̄) can be made more like δ(r̄) as N becomes larger. If this is the case then

As(r̄) → A(r̄) as N → ∞ (5.57)

To make the result more precise it is convenient to write W (r̄) in the form

W (r̄) =
1

h3
K(r̄/h) (5.58)

By an easy generalization of a theorem due to Parzen (1962) we find that if h→ 0
as N → ∞ and if K(ū) is a Borel function satisfying

∫

K(ū)dū = 1, |ū2K(ū)| → 0 as |ū| → ∞,
∫

|K(ū)|dū <∞ (5.59)

then our request 5.57 is satisfied. It is worth to mention that the error in using
equation 5.55 instead of equation 5.54 depends on the disorder of the particles and is
normally O(h2) or better ((Monaghan & Lattanzio, 1985), (Monaghan, 1992)). By
using a differentiable kernel, our estimates are also differentiable and the derivatives
of the interpolant are constructed just using derivatives of Kernel, so that:

∇As(r̄) =
∫

W (r̄ − r̄′, h)∇A(r̄′)dr̄′ (5.60)

becomes, after integrating by part,



5.9 Fundamental equations of Hydrodynamics in SPH 59

∇As(r̄) =
∫

A(r̄′)∇W (r̄ − r̄′, h)dr̄′ (5.61)

as long as we can ignore surface terms, which we are allowed to if AW → 0 on the
boundary. This hypothesis is satisfied because generally the kernel vanishes rapidly
for |r̄ − r̄′| → ∞. In the discrete approximation the previous equation become:

∇As(r̄) =
N
∑

j=1

A(rj)

nj
∇W (r̄ − r̄′, h)dr̄′ (5.62)

in other words, W must be differentiable up to the same order as that of terms
present in the equations to be integrated: for instance, ∇W must exist for non-
pressureless medium and ∇2 must exists if we introduce the diffusion equation (e.g.
to calculate heat conduction or describe diffusive phenomena).

5.9 Fundamental equations of Hydrodynamics in

SPH

In this section we will give the expression of the fundamental equations of hydro-
dynamics in SPH without writing all the details. Fundamentally all the equations
can be derived by the general treatment given in previous section. To have more
details we refer to Hernquist & Katz (1989). From equation 5.55 one can estimate
the mass density ρ(r̄) with nj = ρj/mj :

ρs(r̄) =
N
∑

j=1

mjW (r̄ − r̄′, h) (5.63)

Using this equation and equation 5.62 we can translate the continuity equation in
SPH language as follow:

dρi

dt
=

N
∑

j=1

mj(v̄i − v̄j)∇iWij (5.64)

where ∇i stands for the gradient taken with respect to coordinates of particle i
and Wij = W (r̄ − r̄′, h). In a similar way we can derive the momentum equation:

dv̄i

dt
= −

N
∑

j=1

mj

(

Pj

ρ2
j

+
Pi

ρ2
i

)

∇iWij (5.65)

and the energy equation:

dui

dt
=

1

2

N
∑

j=1

mj

(

Pj

ρ2
j

+
Pi

ρ2
i

)

v̄ij∇iWij (5.66)
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5.10 The kernel choice

Under the general request given in the previous sections, many kernels are found
to work in SPH. Although a Gaussian kernel 1/(h2π)3/2e−r2

ij
/h2

would provide the
easiest interpretation of the physical meaning of equations, it has the disadvantage
of a slow fall off with the rij/h ratio, so that virtually all particles will contribute
to the properties of each one. This is a disadvantages for two reasons. Firstly, it
involves an higher computational effort, secondly the local nature of the physical
properties will be also smoothed while it would be better to retain them as local as
possible. To avoid this drawbacks, other kernels have been proposed, mainly based
on spline functions with compact support as they ensure continuity of derivatives
and good interpolation properties. A wide used kernel is the B-spline based kernel:

W (r̄, h) =
3

4πh2











10
3
− 7u2 + 4u3 if 0 ≤ u ≤ 1

(2 − u)2(5−4u
3

) if 1 ≤ u ≤ 2
0 if u ≥ 2

The smoothing length is chosen according to the required precision for the simula-
tion. For an optimized resolution it is necessary to have 30−50 nearby particles. If
h is assumed to be constant the computation in low–density region is not accurate:
due to this region in modern SPH code the smoothing length varies for each parti-
cles. In this way the particle’s resolution is a function of the local thermodynamic
conditions.

5.11 Artificial viscosity

Due to the intrinsic limitation in spatial resolution, every numerical methods will
lead to some piling of high frequency waves up to the extreme numerical mode. This
could result in more or less severe numerical instability where high wave numbers
are intrinsically present as in case of discontinuities, for instance when a shock
occurs. Furthermore, as for the classical SPH derivation, a method is needed to
prevent particles interpenetration, which would make the fluid properties multi-
valued. Besides this genuinely numerical issue, one also has to mimic the true
physical viscosity that is neglected in the ideal gas approach.

To this purpose, the Von Neumann-Richtmeyer approach of adding an Artificial

Viscosity is commonly followed. Many forms of artificial viscosity have been pro-
posed so far but the symmetrized form for the classical artificial viscosity suggested
by Monagan (1992) has probably been the most widely used:

Πij =
−αµijcij + bµij

ρij
(5.67)

where α and β are constant, cij = (ci − cj)/2 (c is the sound speed), and

µij =

{ v̄ij r̄ij

hij(|r̄i−r̄j |2/h2
ij

+η2)
if v̄ij ˙̄rij < 0

0 if v̄ij ˙̄rij ≥ 0
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having, as before, v̄ij = v̄i − v̄j and r̄ij = r̄i − r̄j . This is a combination of a
bulk viscosity and the Von Neumann-Richtmeyer viscosity, respectively linear and
quadratic in µij. This form is very effective in preventing particles’ interpenetration
in strong compression regions due to its dependence on pairwise produces v̄ij ˙̄rij.
For the same reason, when this terms are non-null but the particles are not getting
a head-head collision (as in shear flows), the resulting viscosity does not vanish,
becoming a shear viscosity in a side-effect.

5.12 GADGET-2

GADGET-2 (GAlaxies with Dark matter and Gas intEracT ) is a freely available code
for cosmological N-body/SPH simulations on massively parallel computers with dis-
tributed memory. It computes gravitational forces with a hierarchical tree algorithm
(optionally in combination with a particle-mesh scheme for long-range gravitational
forces) and represents fluids by means of smoothed particle hydrodynamics (SPH).
The code can be used for studies of isolated systems, or for simulations that include
the cosmological expansion of space. In all these types of simulations, GADGET-2
follows the evolution of a self-gravitating collisionless N-body system. Besides grav-
itational and hydrodynamical treatment of the gas in an expanding background, the
code also implements several physical processes: radiative cooling, ionizing effect
of the UV background, star formation process for multi-phase gas, magnetic field,
chemical enrichment, thermal conduction, cosmic rays, etc. A comprehensive re-
view of its features is given in a number of article by its author Volker Springel
(Springel et al. (2001), Springel et al. (2005)).

5.12.1 Integration scheme

Once all the equations have been written down, the integration scheme must be
specified. One of the most common methods used to solve a system of differential
equations is the ones developed at the beginning of the last century by Runge &
Kutta. This methods is quite fast but it introduces some perturbations that strongly
influence the final solution. Consequently in GADGET-2 a symplectic integrator is
used that preserves the phase–space structure and allows to have a solution closer
to the real one. Particularly the symplectic scheme used is the “leapfrog” developed
by Quinn et al. (1997),Preto & Tremaine (1999). The name is due to the way in
which the positions r̄ and the velocities v̄ are updated at each step n:

v̄n+1/2 = v̄n +
1

2
τ ā(r̄n)

r̄n+1 = r̄n + τ v̄n+1/2

v̄n+1 = v̄n+1/2 +
1

2
τ ā(r̄n+1) (5.68)

where ā is the acceleration and τ the time interval. From a numerical point of view,
a “symplectic integrator is an exact solution to a discrete Hamiltonian system that
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is close to the continuum Hamiltonian of interest” (Quinn et al., 1997). Then, the
integration will conserve an energy that is an approximation to the true energy of
the system: if the difference is small, almost all the orbits that are stable in the
real system will continue to be stable in the discrete representation.

We have now to specify the choice of the time step τ . It is useful to use an
adaptive time–steppening, that allows to follow more in details the particles on
which acts strong forces. Quinn et al. (1997) make use of a decomposition of the
overall integration time in power of two subdivisions, then restricting the choice for
the time step of the particle i at the step n to:

τn
i =

τtotal

2k
i,n

(5.69)

for some integer ki,n < K where τtotal/2
K is the minimum step allowed.



Chapter 6

Simulations of isolated halos

In this chapter we will present the details of the simulations that we have performed.
We simulated isolated DM halos in which the gas sits in hydrostatic equilibrium and
it is allowed to cool down radiatively. The statement “isolated halos” means that
the halos are not formed through a hierarchical process in a cosmological context, as
it’s supposed to happen in the real world. This means that we neglect the merging
history of each halo that affects the gas behavior in the DM potential wells. It is
clear that our simulations are totally unrealistic, because any feedback mechanism
are neglected, both and because we don’t take into account the influence that the
mergers have on the gas. However this controlled numerical experiment allow us to
study in detail the effect of pure radiative cooling of the gas and therefore allow a
more precise comparison with SAMs. We will discuss this point in the next chapter.

6.1 Initial conditions

As it is clear, one of the crucial points for a numerical simulation is the generation of
initial conditions. Initial conditions for isolated halos have been created by placing
gas in hydrostatic equilibrium within a DM halo, having a NFW density profile (see
equation 2.1). In order to ensure hydrostatic equilibrium we followed the approach
by Komatsu & Seljak (2001), described in chapter 2, who provide the expression for
the gas density profile given by equation 2.17. In order to generate initial conditions,
the analytical profiles (equations 2.1 and 2.17) must be discretized into individual
particles and the initial particle positions, velocities and internal energy must be
specified.

We stress here that the gas density analytical profile (eq. 2.17), has been ob-
tained assuming the gas mass vanishing, that is not the case of the simulations. We
will came back on this point in the following section.

Initial positions of DM and gas particles are generated by Monte-Carlo sampling
the analytical profiles of equations 2.1 and 2.17. To create an equilibrium config-
uration for the DM halo, initial velocities of the particles are assigned according
to a local Maxwellian approximation (Hernquist, 1993). On the other hand, since
equations 2.17 and 2.18 are hydrostatic solution, gas particles are initially assigned
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zero velocity. In the following we discuss only the main ideas and equations of this
approach. We assume that the mass distribution is spherical, then the second order
moment of the collisionless Boltzmann equation reads:

d(ρv̄2
r)

dr
+
ρ

r
[2v̄2

r − (v̄2
θ + v̄2

φ)] = −ρdΦ
dr

(6.1)

where v̄2
r , v̄

2
θ , v̄

2
φ are the dispersions in spherical coordinates (e.g. Binney & Tremaine

1987). If the system is also isotropic we can integrate this equation to give:

v̄2
r =

1

ρ(r)

∫ ∞

r
ρ(r)

dΦ

dr
dr (6.2)

Here Φ includes not only the self-gravity of the halo but the contributions of the
other components to the gravitational field as well. We can rewrite equation 6.2 in
the form:

v̄2
r =

1

ρ(r)

∫ ∞

r
ρ(r)GM(r)r2dr (6.3)

where M(r) is the cumulative mass distribution :

M(r) =
∫ r

0
(u2(ρgas(u) + ρDM (u))du (6.4)

We have now to select a function whose second order moment is v2
r . An obvious

choice is a Gaussian. In practice, it is convenient to select speeds of particles from

F (v, r) = 4π

(

1

2πσ2

)3/2

v2 exp(−v2/2v̄2
r) (6.5)

where F (v, r) is normalized to 1. Once the speed of a halo particle has been chosen,
the Cartesian velocity components are initialized from v, assuming isotropy.

Finally the internal energy for the gas particles is assigned according to the
effective polytropic equation of state.

Each halo has been sampled with 6 ·104 DM particles inside R200 and an initially
equal number of gas particles. The ratio between the mass of DM and gas particles
is determined by the baryon fraction, that we assumed to be fbar = 0.19. To ensure
stability of the halos in the absence of cooling, density profiles have been sampled
with particles out to about 8r200. This also ensure an adequate reservoir of external
gas that can flow in while cooling removes support in the central halo regions.

6.2 Non–radiative simulations

Before performing radiative simulations (i.e. before turning the cooling on in the
code) we did a set of simulations without cooling in order to check that the gas in
DM halos is in hydrostatic equilibrium. We simulated 12 different halos spanning
a range in mass from 1011 to 1015M⊙ with effective polytropic index from 1.1 to
1.25. For each halo we calculated the concentration parameter following Navarro
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et al. (1997). The characteristic of the simulated halos are summarized in Table
1. We note that in this table is also specified the redshift. Although redshift never
explicitly enters in our simulations of isolated halos, it appears in a indirect way
when we fix the value of critical density. Ultimately, increasing redshift amounts
to take higher value of ρcrit and , therefore, a higher halo density for a fixed value
of M200. In this way we expect that “high–redshift” halos will have a shorter
cooling time. In the following we assume the relation between redshift and critical
density holding for a cosmological model with Ωm = 0.3 and ΩΛ = 0.7. Our
reference halo has a mass M200 = 1013M⊙ (halo no. 1 in Table 1), typical of a
poor galaxy group, with a concentration of CNFW = 6.3 and r200 = 350kpc. Two
other halos of the same mass have been also simulated, having different values of
the concentration parameter, still lying within the scatter in the M200 − CNFW

relation (halos no. 2 & 3). For the three halos we used the same value γ = 1.18 for
the effective polytropic index. We simulated another halos (halos no. 5) with the
same value of the concentration parameter of halo no. 1, but with different effective
polytropic index (γ = 1.25). We have then simulated smaller and larger halos than
the reference one, spanning a range in mass from M = 1011M⊙ to M = 1015M⊙,
so as to sample more or less all the scales from elliptical galaxies to rich clusters
(halos no. 4,6,7,8 & 9). We have finally considered two halos at z = 1 (halos no.
10 & 11) and one halo at z = 2 (halo no. 12). In table 1 we report for each halo
the values of dynamical time-scale, which is defined as

tdyn =

(

1

4πGρ

)1/2

(6.6)

and that of the cooling time calculated at the center of the halo,

tcool =
3kBT0µmp

2ρ0Λ(T0)
(6.7)

Moreover in Table 1 we specify for which simulation we have performed also the
radiative runs.

In principle, our controlled numerical experiments could have been performed
by using a static NFW potential, instead of sampling the halo with DM particles.
Although this procedure would have allowed to save CPU time, it does not permit to
account for any backreaction of cooling on the DM component. Indeed it is known
from cosmological simulations that including gas cooling causes a small but sizeble
change of the DM halos. As for the choice of the gravitational softening, it has been
always chosen to be about three times larger than the lower limit recommended by

Power et al. (2003), ǫ = 3r200/
√

(N200), where N200 is the number of particles within
r200. Only for the halo no. 1, we also generated initial conditions at higher resolution
by using 10 times more particles, in order to check for numerical convergence for
our final results (see fig. 6.2).

All the initial condition were first evolved for 10 dynamical times. This allowed
us to check that temperature and density profiles are always stable, thus confirm-
ing that the initial conditions roughly correspond to configurations of hydrostatic
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M200(M⊙) γ CNFW redshift R200(kpc) tdyn(Gyr) tcool(Gyr)
1 1013(c) 1.18 6.3 z = 0 350 0.56 0.56
2 1013(c) 1.18 7.25 z = 0 350 0.56 0.4
3 1013(c) 1.18 5.25 z = 0 350 0.56 0.82
4 1014 1.10 6.3 z = 0 750 0.56
5 1013 1.25 6.3 z = 0 350 0.56
6 1011 1.18 8.1 z = 0 75 0.56
7 1012(c) 1.18 7.25 z = 0 162 0.56 0.12
8 1014 1.18 5.25 z = 0 753 0.56
9 1015(c) 1.18 4.3 z = 0 1623 0.56 6.67

10 3 · 1011(c) 1.18 6.53 z = 1 75 0.32 0.04
11 1013(c) 1.18 5.63 z = 1 241 0.33 0.31
12 1012(c) 1.18 5.92 z = 2 79 0.19 0.04

Table 6.1: Scheme of performed simulations.In the first column we report the halo’s
mass, in the second the effective polytropic index γ, in the third the concentration
parameter CNFW , in the fourth the redshift z, in the fifth the value of R200 in
the sixth the dynamical time tdyn as defined in equation 6.6 and in the seventh
the cooling time as defined in equation 6.7. Moreover we have also indicated the
simulation for which we have performed the radiative runs. (c).
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equilibrium. The DM and gas density profiles and the gas temperature profiles,
evaluated in the interval [0, 10]tdyn for the halos in Table 1, are plotted in figures
6.1-6.11. Making a comparison between the different simulations we can make gen-
eral statements :

1. Fixing the effective polytropic index γ and the value of M200 we note (see
figures 6.1, 6.3, 6.4) that a lowering of the concentration parameter CNFW is
reflected in a flattening in the DM and gas profiles;

2. Increasing the effective polytropic index γ with fixed M200 and CNFW (see
figures 6.1, 6.6) lowers the gas density profile and increase temperature profile.

3. Fixing the effective polytropic index and increasing the value of M200 (see
figures 6.1, 6.7, 6.8, 6.9, 6.10) we observe that the temperature profiles increase
while the density profile starts decreasing at larger radii.

Before starting the description of the radiative simulations we would like to stress
other two points. The first one concerns the oscillations in the density profiles for
small value of r. They are present in all the twelve halos’ profiles and they are
due to Poissonian numerical noise. In fact, if we increase the number of particles
inside r200 (see figure 6.2 and 6.1) we can see how the noise in the profiles tends to
vanish. Second point: at the beginning of the evolution (this means more or less
until 2.5tdyn) there is an initial small relaxation of the initial conditions towards a
configuration of minimum energy. The particles are re-distributed on the density
and temperature profiles until the minumum energy configuration is reached. In
particular (see 6.12) a reduction of the spread in the gas density distribution and
an increasing of the gas temperature’s spread take place. This is due to the two
facts: (i) in the initial condition the temperature of all particles is fixed in order
to reproduce the profile describe by equation 2.19, while the density is assaigned
through a Poissonian sampling of the profile. The code makes then a Poissian
sampling of the density profiles (equation 2.17) that causes the spread seen in the
first panel of figure 6.12. (ii) the gas mass is not negligible, while it is assumed to
be vanishing in euqtaion 2.17.

We found that for all the halos a relaxed configuration is reached after more or
less 2.5 dynamical times and therefore we prefer to use as initial conditions for the
radiative runs the configuration attained by evolving the non–radiative runs for at
least two dynamical times.

We want to stress here that even the relaxed configuration (right panels in figure
6.12) presents a scatter in density, amounting to five per cent and some scatter in
temperature, amounting to fifteen per cent. The scatter in the realxed configuration
is not simply numerical, as it does not decrease with increasing number of particles.
The importance of this scatter will be discussed in the next chapter.
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6.3 Simulations with radiative cooling

As we mentioned at the beginning of this chapter our aim is to study what happens
in the isolated halos if we turn on cooling. We selected eight significant halos from
Table 1, five at redshift z = 0, the two at redshift z = 1 and the one at z = 2.
We chose these halos because they are rappresentative of interesting astrophysical
situations, such as elliptical galaxies, galaxy groups and galaxy clusters. As we
stressed at the end of the previous section, the initial conditions for this new set
of simulations are the configurations attained at two dynamical times by the non–
radiative simulations. Once cooling is turned on, all the simulations are let evolving
for 8 cooling time. This second set of simulations are very expensive in terms of
computational time. In order to make the simulations faster we decided to introduce
in the code also a very easy criterium for star formation: when a gas particle reaches
a temperature below 3 ·104K it is converted into a collisionless star particle. In this
way at each time step the SPH calculation has to be done over a smaller number of
particles while the computation of the coldest and densest particles is switched off.
We verified that the cold gas fraction in the simulations with star formation opened
and closed (see figure 6.13) is exactly the same. Finally, in order to follow in details
the trajectories of gas particles in the phase diagram, while they are undergoing
cooling, we have implemented a conservative criterion of time–stepping, in which
the maximum time–step allowed for a gas particle is one tenth of its cooling time.
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6.4 Qualitative analysis of the radiative simula-

tions

Up to now we have described only the characteristics and the main details of our
radiative simulations. In this section we will give a phenomenological description
of gas behaviour when radiative cooling is turned on. All the plots in the following
will be refered to the reference halo (no. 1 in Table 1) where only radiative cooling
is turned on (i.e no conversion of cold particles into stars).

Let us start by considering figure 6.14. In the left panel we plot the temperature
initial condition for the radiative run (we recall that this situation corresponds to the
configuration attained by evolving the non–radiative runs for 2.5 dynamical times).
In the second panel we show the configuration achieved after 8 cooling times with
the cooling turned on. At this point we are not interested in a quantitative analysis
of the phenomena, while we are interested in a qualitative discussion of the gas
behaviour. The first comment is that it is easy to identify two well separated phases:
a cold one with temperature below 104K and a hot one with temperature higher
than 106K. The “warm” phase is essentially vanishing (there are only few particles
with temperature between 104 and 106K, negligible in term of mass contribution).
In the following we will refer to the particles with a temperature lower than 104K
as “cold mass”. Due to this well defined separation between the two phases it is
not difficult to define in the simulation a “cooling radius”, or a “cooling region”, as
the region where there is the transition between the hot and the cold phase. This
point will be crucial in the following.

Quite similar considerations can be done when considering figure 6.15, where
instead of considering the particles’ temperature we consider the density of the
particles. Once again it is easy to find a criterium in density to separate the hot
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Figure 6.15: First panel : Particles’ density at 2.5 tdyn. This is the initial condition
for the radiative simulation. Second panel : Particles’ density at 8 tcool.

and cold phase (ρ < 10−24g/cm3), and as in figure 6.14 it is easy to define a “cooling
region”. Moreover if we take into account a phase diagram of density vs temperature
(figure 6.16) it is clear that in order to select the cold particles it is enough to put a
limit in temperature: infact all the particles cooler than 104K are the same particles
denser than 10−24g/cm3.

6.5 Tracing particle trajectories

In order to have a better comprehension of the simulations we study the evolution
of thermodynamical properties of individual particles randomly selected in three
distance intervals from the center (10-20 kpc, 30-40 kpc and 50-60 kpc) in the initial
conditions. As before, we report the results obtained for the reference simulation
(no. 1 in Table 1). For the other simulations analized we found similar behaviours
for the thermodynamics properties of the gas.

In Figure 6.17 we plot the evolution of the temperature as a function of time (left
panels) and radial coordinate (right panels) for five particles per distance bin. The
vertical line in the right panels denotes the dimension of softening. The behaviour
of the particles is very clear: each particle mantains its initial temperature for some
time (that depends on its density and initial distance from the center) and then, in
a very short time interval, it cools down to a temperature below 104K, where the
cooling function drops. This means that the cooling takes place quite rapidly and
therefore, as we have stressed in the previous section, a small number of “warm”
particles (104 < T < 106K) are present in the snapshots. As in figure 6.14 and 6.15
it is possible to identify a “cooling region” as the spherical shell where the drop in
temperature takes place. It is interesting to note that this region is more or less the
same for all the particles independently of their initial position. Once the particles
have cooled down, they continue moving towards the center until they reach the
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Figure 6.16: Phase diagram density vs temperature for all the particles at 8 cooling
times.

softening scale (see figure 6.17, right panels). Then they start orbiting around the
center at about the same scale. Similar conclusions are reached when density is
considered in place of temperature.

However, as it is clear from figure 6.18, when a particle moves towards the center
of the halo, before reaching the “cooling region” it increases its density by more
than one order of magnitude (while its temperature remains almost constant).

We show finally the evolution of the cooling time (figure 6.19, left panels) and
its variation as a function of radius (figure 6.19, right panels).

The cooling time is computed from the density and the temperature of the gas,
consequently its behaviour is easly understandable once the behavior of temper-
ature and density is known. In particular, we note how the variation of cooling
time depends essentially on the variation of the density as it is expected from its
definition.

The infall of cooled gas from the cooling region to the center of the halo, where
star formation is supposed to take place, is not well resolved by our simulations. In
any case it is worth to notice that the transport of the gas from its initial position
to the center of the halo takes place mostly while the gas is still hot.
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Chapter 7

Cooling: SAMs and numerical

simulations

In this chapter we will concentrate on the comparison between the results of the
simulations and the predictions of the SAMs. Our goal is to understand radiative
cooling of gas in DM halos and to point out which of the “cooling models” described
in chapter 2 gives the most reliable representation of the phenomenon. We will
discuss in detail simulation 1 of Table 1, the analysis of the other simulations
confirms our findings.

7.1 Is cooling isobaric ?

As we discussed in chapter 4, the rigid interpretation of cooling time used by the
CM (the gas shell cools in one cooling time) gives a good approximation of the time
taken by a parcel of gas to cool down to 104 only if the pressure is constant during
the evolution. In order to check the validity of this hypothesis we calculate the
pressure profiles of the hot gas in the simulation at several epochs.

These are shown in figure 7.1, normalized to the pressure profile evaluated at
t = 0. Clearly, in the inner parts of the halo pressure increases for a few dynamical
times, to saturate later to values that are a factor of five higher just outside the
cooling region. This is due to the fact that both the temperature and the density
profiles of the hot gas change with time. In particular, as it is shown in figure 7.2,
the density profile becomes higher (by about one order of magnitude more) in the
inner part while the temperature profile becomes first lower in the inner part and
then it tends to reach a shape similar to the initial one or a little bit higher.

Relatively to the initial profiles the largest variation takes place in the density
profile.

We conclude that the effect of cooling is to induce a rearrangement of the hot
gas. Particular, we have checked that the increase of pressure marks a violation of
the hydrostatic equilibrium.

Since the cooling time is inversely proportional to the density, the net result
of the increase of the density is a decrease of the cooling time (we will discuss in
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Figure 7.1: Pressure for the hot phase of the gas at different epochs normalized to
the pressure at t = 0 for the radiative simulation no. 1.

details this point in the following section).

7.2 Simulation versus analytical models

In summary the simulations show that: (i) the drop in temperature from ∼ 106 to
∼ 104 K is quite rapid; (ii) this drop takes place in a spherical shell, the cooling
region, which separates the inner and the outer regions respectively dominated by
cold and hot particles; (iii) the radius of the cooling region is almost constant with
time, (iv) gas evolution is not isobaric, (v) scatter in density and temperature is
present.

Are the cooling recipes described in chapter 2 able to reproduce this behaviour?

7.2.1 Initial conditions: SAMs and simulations

In order to answer this question, we first address the tuning of the initial conditions.
This is a crucial point because in order to make a reliable comparison between SAMs
and numerical simulations we must be sure that the initial conditions are the same.
The parameters that determine the density and temperature profiles for the gas
are in both case the halo gas mass M200, the effective polytropic index γ, and the
central temperature of the gas (in unit of the virial one) η.

As we have seen in chapter 6, the gas in the simulations tends to rearrange itself,
therefore it is not obvious in principle that the value of γ and η set in the initial
conditions are the same as in the relaxed configuration, while the mass M200 is a
much more stable quantity. In order to find the “real” value of γ and η in the sim-
ulations we have taken 900 choices for the pair of parameters (γ, η) variying both
the effective polytropic index and the energy factor in the range [1.1 : 1.4]. We have
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Figure 7.3: Initial gas density (first panel) and temperature (second panel) profile
for simulation no. 1. The red line is the profile as calculated from the simulation,
while the blue lines represents all the theoretical models that satisfy to the criterion
described in the text.

calculated then for each pair the theoretical profiles (density and temperature, Πth

thereafter) and we compared them with the profiles from simulations (Πsim ther-
after). The criterium used to choose the pair of parameters that better reproduce
Πsim is quite simple. First of all we evaluated :

∆(rbin) = |Πsim(rbin) − Πth(rbin)| (7.1)

where rbin can assume values from 0 to r200. The bins’ number have been chosen in
order to map well Psim. We computed then max(∆(rbin)) and we imposed that :

max(∆(rbin)) = ∆(rbin⋆
) <

1

10
Πsim(rbin⋆

) (7.2)

This means requiring that the maximum difference between Πsim and Πth will be
smaller than the difference between Πth and Πth ± 10%.

We have performed this calculation both for the density and for the temperature
profile. In this way, for each halo we obtained at the end two sets of theoretical
models, one that reproduces quite well the density profile and one the tempera-
ture profile. In order to have the pairs of parameters that are able to reproduce
both profiles we choose the intersection between the two sets. The results for the
simulation no. 1 are shown in figure 7.3.

7.3 Results

Once we are sure that the initial conditions are the same, we perform two compar-
isons between analytical models and simulations. The first comparison concerns the
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evolution of the cooled mass fraction, the second one the evolution of the cooling
radius. In particular, reproducing the cooled mass fraction of simulations is clearly
the critical test for the models. Since the cooling radii are defined differently in
the classical, Unclosed and Closed morgana models, their ability to reproduce a
stable cooling region allows us to shed further light on the hypothesis on which the
models are based on, and thus to answer to the questions addressed in the previous
section.

7.3.1 Cooled mass fraction

In figure 7.4 and 7.5 we plot the predicted cooled mass fraction for all the simu-
lations. For each run we plot the simulated cooled mass with black triangles; the
prediction of the three models (classical, Unclosed and Closed morgana) is denoted
with a colored area (red, magenta and green respectively). The areas are calculated
taking into account all the models that reproduce within 10% the initial conditions
in the simulation according to the criteria described in the previous section.

We have checked that the result is stable versus the number of particles used to
sample the initial profile and versus the gravitation softening used in the simulation.
In particular in figure 7.6 we plot, for simulation no. 1, the cold mass fraction using
6 · 104 and 6 · 105 particles respectively inside R200. It is clear that, apart from a
small initial transient, the result is the same. In figure 7.7 we plot the cold mass
fraction using for the gravitational softening the values of 6 and 3 kpc respectively.
Also in this case the two simulations converge quite soon.

We draw the following conclusions :

1. The classical cooling model (red area in figure 7.4 and 7.5) underestimates
systematically the fraction of cooled gas, especially at early times.

2. The unclosed morgana model (magenta area) follows in a much closer way
the cooled mass at early times. The onset of cooling is by construction sharp.
Therefore, much more gradual accumulation the first 10−3 fraction of cooled
gas, which takes place over a time-scale shorter than the central cooling time
(especially for halo no. 9), is not reproduced. At epochs ranging from 1 to
a few central cooling times the fit is very good in most cases. Later, the
simulated cooled mass is underestimated.

3. The closed morgana models behaves very similarly to the unclosed one for
a few central cooling times, then gives a higher fraction of cooled mass that
fits nicely the results of simulations.

The reason why the classical model underestimates the cooled gas fraction are
the following.

1. As we have discussed in section 6.2, initial conditions of simulations show an
intrinsic scatter in temperature and density.
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Figure 7.4: In the four panels we plot the cooled gas fraction for the simulations
number 1, 2, 3, 7 until 8 tcool. The dot black points are the simulations result while
the colored lines are the predictions of the three different models. In particular red
lines represent the morgana model (MM), blue lines the Closed morgana model
(CMM) and the magenta lines the classical model (CM). We plot for each halo all
the theoretical models (obtained by changing γ and η) that reproduce the initial
conditions in the simulations according to the criteria described in section 7.2.1 .
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Figure 7.5: As in figure 7.4, but for simulations number 9, 10, 11, 12.
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Figure 7.6: Cooling mass fraction calculated in simulation no.1 using respectively
6 · 104 (red dots) and 6 · 105 (black dots) particles inside R200. The plot shows the
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Let us suppose that each particle cools down exactly after its initial cooling
time (this is not true as we have stressed before). According to the classical
model, at a time t⋆ all possible contributions to the cold phase come from
the gas lying at r < rcool(t⋆). However, due to the scatter in the density
distribution, there are some particles, lying at r > rcool(t⋆) and with a central
cooling time smaller than t⋆, that contribute to the cold phase. Therefore,
especially at the beginning, when the gas density profile is rather flat at the
center, there is a large number of particles lying outside the cooling radius
that contribute to the cooling flow and that are not considered by the classical
model.

On the other hand, the morgana model, although it moves from the same
definition of cooling time, assumes that the cooling rate of each mass shell
is proportional to the mass of the hot gas in the shell divided by its cooling
time, making no assumption on the time the shell takes to cool down. This
allows, at a certain time t⋆, to take into account the contributions from the
gas at r > rcool(t⋆). Clearly, this fact is important if we want to reproduce
the simulations, especially at the beginning where, due to the flatness of the
density profile, and the scatter in the density of particles, there are a lot of
particles at r > rcool(t⋆) with a cooling time shorter than t⋆, that contribute
at t⋆ to the cold mass.

The quantitative effect of the scatter is shown if figure 7.8, where the fraction
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of cooled mass was estimated by computing the number of particles of the
relaxed initial conditions that have a cooling time shorter than the time con-
sidered. In other words we applied to the particles in the simulation the idea
on which the classical model is based. By definition, if the scatter is negligi-
ble, we sholuld find exactly the same result of the classical model prediction.
Instead we have found that the result is always above the classical model.
In particular it coincides well with the cooled mass of the simulation at early
time and falls below the results of the simulation later (see in particular figure
7.9). The reason of this behavior will soon be clear.

We conclude that the scatter in the actual thermodynamical variables of gas
particles is especially important at early times, but it cannot fully explain the
difference between the classical model and the simulations.

2. The rigid prediction of the classical model that each gas shell cools to 104 K in
exactly one cooling time (computed on the initial conditions) is roughly valid
only in the case of isobaric cooling, which clearly does not apply to our case
as the hot gas falling toward the cooling region is subject to an increase in
pressure. We have checked this point by verifying also that the cooling times
of the particles in the simulation, calculated using their initial temperature
and density, are always larger than the times need to reach T = 104K. In
more formal terms, while the evolution of the cooling radius rC in the classical
model is obtained by simply inverting the cooling time function, the equation
for the minimal radius rM of the morgana model is obtained by the weaker
assumption that the cooling region is always sharp.
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As we have already discussed, the increase in pressure is due to an increase
in density, and an increase in density means a decrease in the cooling time.
Consequently, not taking into account the increase in density, amounts to
predict a slower cooling flow and a smaller amount of cold gas. The increase
of gas pressure is the reason why in figure 7.8 the cold mass fraction, computed
by applying to the initial condition of simulation the prescription of classical
model, coincides with the cooled mass of simulation at early time (when the
increase in pressure is negligible) and falls below later (when the increase in
pressure is important).

We want to stress that both scatter and increase of pressure are not explicitly
taken into account by the morgana model, and its success should be ascribed
simply to the relaxation of the strongest assumptions of the classical model.

Finally, in the Closed morgana model the gas profile, which is recomputed
at each time step (see section 4.4), changes with time as the gas flows toward
the cooling region. The predicted density profiles are shown in figure 7.10 for
simulation no.1 at 0.8 and 1.56 Gyr, together with the initial and simulated profiles.
Consistently with the simulation, the density in the closed morgana model tends to
increase at the border of the cooling region, but this agreement is only qualitative at
the beginning, and the quantitative agreement present at 4 dynamical times is soon
lost when the closing of the cooling hole is halted (see section 4.4). Nonetheless, this
model correctly predicts a higher cooling flow in this range. The most significant
difference comes from the different estimate of the cooling radius (visible in figure
7.10): since rM,ch < rM , even for a constant density profile, the density at the border
of the cooling region, and thus the cooling flows, is always higher in the closed model,
and this effect is more relevant than the increase in the density profile visible in
figure 7.10.

7.3.2 Evolution of the cooling radius

So far we have only described the evolution of the cooling gas fraction. However
the three models make also predictions about the evolution of the cooling radius.
In particular, the improvements in the fit of cooled mass of the closed morgana

models versus the classical model reflects in a better description of the dimension
of the cooling region in Lagrangian space. In figures 7.11 and 7.12 we plot the
temperature and the density of gas particles versus their initial position for three
snapshots (at 0.58, 1.36 and 2.15 Gyr) of simulation no.1. Once more we notice
that, while the temperature profile remains close to the initial one, density increases
with time in the vicinity of the cooling region; this implies that the increase of
pressure visible in figure 7.1 is mostly given by an increase in density. Secondly,
the Lagrangian size of the cooling region is much better represented by rM than by
rC . While this is an obvious consequence of the good agreement shown in figure
7.4 and 7.5 (the cooled mass is the integral of the initial profile up to the cooled
region), these figures clearly show how the improvement is connected to the looser
assumption made on the cooling radius.
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Figure 7.10: The density profile for the hot gas in the simulation number 1 at
2 tdyn (first panel) and 4 tdyn (second panel). We plot the profile obtained from
simulation (red line), the initial theoretical profile (magenta line), the truncation of
the theoretical profile at rcool as calculated by morgana model (blue line) and the
modified profile calculated by the Closed morgana Model (green line) truncated
to r′cool.
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Figure 7.11: Density vs initial positions of gas particles in simulation no.1 at 4 times.
We overplot the cooling radius as predicted by “classical model” (green line), and
the cooling radius as predicted by “morgana model” (blue line).

In order to perform the same comparison using the prediction of the morgana

model with the closure of the cooling hole, we plot the density and the temperature
of the particles at a given time t⋆ in the simulations versus their position at t⋆. In
fact this model attempts to follow the physical evolution of the system and then
the cooling radius should be interpreted as an Eulerian quantity (see figure 7.13).
This shows the stability of the cooling region in the Eulerian space, to be compared
with the prediction of the closed morgana model rM,ch. Despite the simplified
modeling of the closure of the cooling hole, the closed morgana model is able to
predict a stable cooling region. Very similar conclusions are drawn by analyzing
the corresponding density profiles.

Figure 7.14 and 7.15 shows the predicted values of all cooling radii compared
respectively to the size of the Lagrangian and Eulerian regions estimated by com-
puting the point at which the average temperature profile crosses the level 104 K.
It shows that the better agreement of the rM radius with the Lagrangian cooling
region, with respect to the classical rC, holds at all epochs, while the good agree-
ment between rM,ch and the Eulerian cooling radius breaks at t ∼ 1.5 Gyr or ∼ 1.5
dynamical times. At this moment the average specific thermal energy of the hot
gas, predicted by the closed morgana model, drops below the virial value. As
explained in section 2.3, if extrapolated further the model predicts a catastrophic
cooling of all the hot gas. A good reproduction of the cooled mass is obtained by
simply dropping the −cs term in equation 4.13, i.e. the closure of the cooling hole
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Figure 7.12: Temperature vs initial positions of gas particles in simulation no.1 at
4 times. We overplot the cooling radius as predicted by “classical model” (green
line), and the cooling radius as predicted by “morgana model” (blue line).

is suppressed, with the consequence that the prediction of the radius of the cooling
hole is spoiled. We have found no simple way to achieve a good fit of both cooled
mass and cooling radius; the trick of halting the closure of the cooling hole is then
regarded just as a simple, phenomenological way to achieve a good fit of at least
the cooled mass fraction.

7.4 Summary

In this section we summarize the main results obtained through the comparison be-
tween the predictions of the different cooling recipes and the numerical simulations.

1. The drop in temperature from ∼ 106 to ∼ 104 is quite rapid. This is evident in
the study of the variation of the temperature of the particles with respect to
time and it is confirmed by the fact that there are only few “warm” particles in
the snapshots. Both morgana and classical models assuming a sharp border
between the hot and the cold phase reproduce this behavior.

2. The classical cooling model systematically underestimates the fraction of
cooled mass with respect to simulations, especially at early times (compared
to the central cooling time). This disagreement is ascribed to two main facts.
Firstly, at early times the scatter in density and temperature of gas particles,
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Figure 7.13: Particles’ temperature vs particles’ positions in simulation no.1 at 4
times. We overplot the cooling radius as predicted by “morgana model with the
closure of cooling hole” (blue line) and the temperature profiles of the gas (green
line)

Figure 7.14: Evolution of the Lagrangian cooling radii for simulation 1 (trian-
gles), compared to the predicted rC (classical model),red area, and rM (unclosed
morgana model),magenta area. As in figure 7.4 colored areas represent all the
theoretical models in agreement with the initial conditions of simulation.
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Figure 7.15: Evolution of the Eulerian cooling radius for simulation 1, compared
to the predicted rM,ch (closed morgana model). Colored area represents all the
theoretical models in agreement with the initial conditions of simulation.

which naturally arises in the relaxed and thermalized gas configuration, in-
creases the number of particles that are subject to early cooling. This effect
is enhanced by the flatness of the density profile in the center, so that many
shells contribute to cooling at the same time. Secondly, at later times pressure
increases just beyond the cooling radius. This increase of pressure hastens the
cooling process, so that less than a cooling time is required to a particle to
get to 104 K (where the cooling function drops).

3. The unclosed morgana model gives a much better fit to both the cooled mass
fraction and the position of the Lagrangian cooling radius, i.e. the radius
which separates the hot and cold phases in the space of initial positions (the
Lagrangian space). We are convinced that this improvement is not due to
a specific modeling of the two points mentioned above (scatter in density
and temperature of particles and increase of pressure) but to a relaxation of
the strongest hypotheses of the classical model. In more detail, the “decay
equation” (equation 4.8) used for cooling of mass shells implicitly can account
(at least to some degree) for scatter in density and temperature. Cooling from
several mass shells is esplicitely accounted for, and the equation for the cooling
radius rM does not require to assume that each mass shell cools in exactly one
cooling time. These looser assumptions allow us to reproduce the quick onset
of cooling (although cooling before the central cooling time is neglected by
construction, and this does not allow to account for the first ∼ 10−3 cooled
fraction) and the overall higher cooled mass fraction.

4. The closed morgana model further improves the fit of the simulated mass
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fraction. Moreover, the predicted cooling radius rM,ch can be compared with
the actual (Eulerian) position of the cooling radius in the simulations. We find
that the closed morgana model correctly reproduces the initial rapid increase
and successive roughly constant value of the Eulerian cooling radius. The
main reason for the improvement of the closed with respect to the unclosed
model is that the lower value of the cooling radius leads to an increase of
the density of the cooling shell, simply because the gas is allowed to stay at
smaller radii. The steepening of the density profile as the simulation evolves is
reproduced only qualitatively. Unfortunately, the validity of this model breaks
as soon as the energy of the hot gas (which decreases due to the decreasing
temperature profile) drops below the virial value. In this case we still obtain
a good match of the cooled mass fraction by simply dropping the sound speed
term responsible for the closing of the cooling hole.

5. The closed morgana model gives a good fit, within 20-50 per cent, of the
cooled mass fractions for all the simulations presented in this Thesis.



Chapter 8

Conclusion

The main goal of this Thesis was to study in detail the process of radiative cooling
of gas in DM halos. Gas cooling is the basic process in galaxy formation due to
the fact that it controls the available amount of cold gas that forms the reservoir
for star formation. There are two possible approaches to the problem of studying
galaxy formation: Semi–Analytical Models and numerical simulations. In the first
approach the background cosmological model uniquely predicts the hierarchical
build–up of the DM halo and the gas cooling is modelized through very simple
recipes. On the contrary numerical simulations follow in details (by integrating
the hydrodynamical equations described in chapter 5) the evolution of the cosmic
baryons during the shaping of the large scale–cosmic structure. In this Thesis we
have compared the two approaches and in particular we used numerical simulations
to test the hypothesis on which the different cooling recipes implemented in SAMs
are based. The cleanest approach to perform this comparison is to turn-off, both in
SAMs and in numerical simulations, the complications associated to the hierarchical
merging of the halos (such as the virialization of the gas after a merging) and all
the possible physical process, such as feedback mechanisms, that can affect the gas
behavior.

We have therefore simulated isolated halos making, for DM and gas component,
the same hypotheses on which the cooling recipes in SAMs are based on. In par-
ticular we have assumed that the DM density profile can be described by an NFW
profile, that the gas is in hydrostatic equilibrium and that a polytropic relation
between the gas temperature and density holds. In this way the initial conditions
in the simulated halos and in the cooling models are the same and, due to the fact
that cooling is the only process turned on, we can perform a reliable comparison
of the gas behavior seen in the simulations and the ones predicted by the different
recipes.

In the literature it is possible to find two different modeling of gas cooling:
the so–called “classical model” (White & Frenk, 1991), implemented in the largest
part of SAMs, and the so–called “morgana model” (Monaco et al., 2007). They
are based on different hypotheses, and therefore they give different predictions for
example about the amount of cold gas at a fixed time. The first goal of this Thesis
was to clarify the main differences between the two models. We can summarize
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them as follow: the classical model assumes that, at a fixed time t⋆, the amount
of cold gas is given by the integral of the initial density profile up to a radius,
called the “cooling radius”, which is defined as the radius at which the cooling time
(computed on the initial conditions) is equal to t⋆. This means that, by definition,
it is not possible for a gas shell outside the cooling radius to contribute to the cold
mass at t⋆. On the contrary, the morgana model weights the contribution of a
gas shell to the cold mass at a time t⋆ with the shell cooling time (calculated on
the initial conditions) and then it assumes that a sharp border is anyhow preserved
and uses this to compute the cooling radius. In other words, according to the
morgana model, there is a non–vanishing contribution to the cold mass by all the
gas shells. Both these two models, due to the fact that the computation of cold mass
fraction is performed starting from the initial density profile and assuming that the
temperature profile is constant, assume intrinsically that cooling is isobaric, i.e.
that there is no evolution of the pressure profile. We have discussed in Chapter
2 how the assumption that the gas is pressure–supported at the cooling radius is
in general false, and in Chapter 7 we have shown that the pressure of the gas in
the simulations is not constant in time. Therefore we presented a variation of the
morgana model, the so–called “Closed morgana Model”, in which the “cooling
hole” is allowed to close at the sound speed. In this way it is possible to follow the
evolution of the system in a more detailed way.

Having clarified the differences among the models, we have performed with the
GADGET-2 code a set of simulations of isolated halos in which gas cooling is turned
on. For each simulation we have defined a “cold phase” (T < 104K) and we
calculated the evolution with time of the cold gas fraction. As a first test, we have
verified that this quantity is not dependent on the resolution of the simulation and
on the choice of gravitational softening, which guarantees the numerical robustness
of our results.

We concluded that the best model for gas cooling is the Closed morgana Model.
This is due to the following facts:

1. The Closed morgana Model, as the Unclosed morgana Model, does not
make any assumption on the time that each gas shell takes to cool down. We
have shown how this fact is important if we want to reproduce the simulations.
This is especially true at the beginning, when, due to the flatness of the
density profile and the scatter in particle density there are a lot of particles
at r > rcool(t⋆) with a cooling time shorter than t⋆, that contribute at t⋆ to
the cold mass;

2. The Closed morgana Model mimics the increase of the density profiles near
the cooling radius that is seen in the simulations. In this way, the computed
cooling times are shorter and the cooling rate larger as seen in the simulations.

Once again we want to stress here that the better prediction of morgana models
with respect to the classical one is neither due to a specific modeling of scatter in
temperature and density seen in the simulations, nor to a specific modeling of the
increase of pressure. It is rather related to a relaxation of the strongest hypotheses
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of the classical model. Therefore morgana models must be considered as effective
models, which can be used to obtain reliable predictions on the specific aspect of
the gas cooling processes, such as the mass deposition rate.

In the wider context of galaxy formation, cooling of hot virialized gas represents
the starting point for all the astrophysical processed involved in the formation of
stars (and super-massive black holes) and their feedback on the interstellar and
intra-cluster media. Clearly, a good modeling of cooling is needed both to obtain
reliable results and to limit the freedom of these models. We find that the classical
model, used in most semi-analytic models of galaxy formation, leads to a significant
underestimate of the cooled mass at early times. This result is apparently at vari-
ance with previous claims of an agreement of models and simulations in predicting
the cooled mass (Benson et al. (2001); Helly et al. (2003); Cattaneo et al. (2006)).
These papers used cosmological boxes with simulated halos and SPH hydrodynam-
ics with cooling and no heating, compared to the results of semi-analytic models
run on the simulated merger trees. Given the much higher complexity of the initial
conditions used, a direct comparison of the results is hard to perform. Here we only
want to stress the advantage of performing simpler and more controlled numerical
tests in order to constrain a single process at a time.

It is well possible that the different behavior of simulations and of the classical
cooling model is less visible when more complicated initial conditions are considered.

Once the process of cooling has been safely constrained, the approach of this
Thesis can be extended by successive sophistication to address many problems. For
example it will be possible to simulate the merging of such equilibrium halos to
constrain the process of gravitational heating of gas, with particular attention to
the time-scale needed for the gas to reach a new equilibrium configuration, or it
will be possible to use cooling halos to study feedback from jets emitted by massive
black holes accreting mass from the same cooling gas. These studies will eventually
lead to a decrease in the parameter freedom of galaxy formation models, and then
to a net increase of their predictive power.



Appendix A

Cosmological framework

In this appendix we give the most important equations in cosmology without demon-
stration and with only a brief discussion. In order to have a more detailed treatment
we suggest to read for example Coles & Lucchin (2002) or Peacock & Murdin (2002).

A.1 General relativity and the cosmological prin-

ciple

Every model for the universe is based on the so called Cosmological Principle, that
is the universe is homogeneous and isotropic in its spatial components. The metric
for a space-time in which is valid such principle can be written as:

ds2 = (cdt)2 − a(t)2

[

dr2

1 −Kr2
+ r2(dϑ2 + sin2 ϑdϕ2)

]

(A.1)

Here we use spherical coordinates : r, ϑ, ϕ are comoving coordinates, t is the proper
time, a(t) is the universe expansion factor, K is the curvature parameter and can
assume only three value : 1, 0,−1 (open, flat,closed universe). This metric is called
Robertson-Walker metric.

With this metric it is possible to solve the Einstein equation for gravitational
field:

Gik = Rik −
1

2
gikR− Λgik =

8πG

c4
Tik (A.2)

for a homogeneous and isotropic fluid with pressure p and rest energy density ρc2.
Λ is the so-called “cosmological constant”. The solutions are called Friedmann
cosmological equations and read, for Λ = 0, as :

ä = −4

3
πG

(

ρ+ 3
p

c2

)

a (A.3)

ȧ2 +Kc2 =
8

3
πGρa2 (A.4)
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From A.4, we can get the curvature of the universe:

K

a2
=

1

c2

(

ȧ

a

)2(
ρ

̺c

− 1

)

(A.5)

where

ρc =
3

8πG

( ȧ

a

)2
=

3H2

8πG
(A.6)

is called critical density and has the value 1.88 · 10−29h2g/cm3 , while the quantity
H(t) is called Hubble constant. At present time it is parameterized as follow:

H0 = h · 100km · s−1 ·Mpc−1 (A.7)

The space will be closed, open or flat if the density parameter:

Ω(t) =
ρ

ρc
(A.8)

will be grater, smaller or equal to one.

A.2 The density of the universe

The Friedmann equations are valid for a perfect fluid and can be solved assuming
an equation of state:

p = ωρc2 with 0 ≤ ω ≤ 1 (A.9)

where ω = 0 for collisionless non–relativistic matter, ω = 1/3 for radiation and
ω = −1 for the vacuum.

If we assume that the expansion of the universe is adiabatic we can write:

d(ρa3) = −3
p

c2
a2da (A.10)

Solving together equations A.8and A.9 we get:

ρa3(1+ω) = const. (A.11)

If we consider now a non relativistic fluid (ω = 0) we have :

ρm = ρm0(1 + z)3 (A.12)

while for the radiation (ω = 1/3) we get:

ργ = ργ0(1 + z)4 (A.13)

where z is the redshift and it is linked to the expansion parameter a in this way:

(1 + z) =
a(t0)

a(t)
(A.14)
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Once the ratio between density and radiation increases with redshift we can conclude
that at high z the universe was radiation dominated. The transition between the
radiation dominated epoch and the matter dominated one is called equivalence

(z ≃ 5900).
We will report now the solution of the Friedmann equations for some particular

cosmological models. All this universe scenario has a time at which a → 0 and
consequently ρ→ ∞. This singularity in the space-time is called Big Bang.

1. Einstein-de Sitter universe (EdS):

Ωm = 1, ω = 0 (matter dominated) ⇒ a(t) ∝ t
2
3 (A.15)

Ωm = 1, ω =
1

3
(radiation dominated) ⇒ a(t) ∝ t

1
2 (A.16)

The expansion factor a grows indefinitely with time; moreover an Einstein–de
Sitter universe approximates the expansion of flatness universe in the first
epochs when the curvature term in Friedmann equation is negligible.

2. Open universe :

Ωm < 1 (A.17)

As in the previous case the expansion factor grows indefinitely with time. If
Ω = 0 it is a(t) ∝ t. The expansion is linear with time. This kind of universe
approximates the expansion of an open universe when a(t) is large, so that
the density term is small and the deceleration term (ä ≃ 0) is negligible.

3. Closed universe :

Ωm > 1 (A.18)

In this case it is possible to show that, at a certain time, the expansion factor
becomes negative. The solution is therefore symmetric with respect time and
consequently there are two singularities, the Big Bang and the so–called the
Big Crunch

4. de Sitter universe:

p = −ρ (A.19)

This situation correspond to the vacuum domination. The expansion is in
this case exponential:

a(t) ∝ exp(Ht) (A.20)
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A.3 Standard cosmological model

In this section we will summarize the main points of the standard cosmological
model.

1. The expansion of the universe implies the Big Bang singularity;

2. In the first epochs of the universe the baryonic matter was fully ionized and all
the particle (photons included) were in thermodynamical equilibrium. Conse-
quently the universe was opaque and we are not able to detect any radiations
coming from this epochs;

3. At high redshift the universe was radiation dominated. At z ≃ 5900 (equiva-
lence) the energy and the matter density were the same. After the equivalence
the universe was matter dominated;

4. When the photon temperature became lower than 104K, proton and electron
bounded together into hydrogen atoms and the photons had their last interac-
tion with the baryonic matter. This epoch is called recombination (z ≃ 1090);

5. From the recombination epoch the primordial photons travelled freely in the
universe and their frequencies were shifted into microwaves. Today we observe
that photons as the cosmic microwave background (CMB). The CMB spec-
trum confirms that the universe were at the beginning in thermodynamical
equilibrium;

6. There are small fluctuations in temperature (δT/T ≃ 10−5) in the CMB. This
fluctuations are induced by the perturbation in the radiation and baryonic
field and also in the field of a weak interactive particle that we call dark matter.
The large scale structure of the universe depends on this small perturbations
as it will be discussed in section B;

7. According to observations we live in a flat universe with Ωm ≃ 0.3 and ΩΛ ≃
0.7;

There are basically two problems that cannot be solved inside this model:

1. Why the universe is flat ?

2. Why the CMB is isotropic ?

Both this two problems can be solved inside the so called inflationary theories.
According to these theories after the Big Bang there was an accelerate expansion
that amplified the scale factor of the universe of a factor e60. In this way the horizon
became smaller in cosmological unit and therefore regions that were before causally
connected after this expansion period were causally disconnected. In this way the
isotropy of the CMB can be explained. Another effect of the inflation is to stress
the curvature term in such a way that today it is not possible to distinguish from
a flat to a non–flat universe.



Appendix B

Cosmological perturbations

The main assumption we made in Appendix A to solve the Einstein equation is
the homogeneity and isotropy of the universe. Even if this assumption is correct on
large scale it is wrong on small scale where we see stars, galaxies, clusters of galaxies
not distributed in an homogeneous way. These inhomogeneities can be related to
the fluctuations in the temperature field seen in the CMB. In the following we will
show the main ideas to describe the time evolution of these small perturbations and
consequently the growth of the structures in the universe.

B.1 Gravitational instability

Let us consider a collisionless gas that in Newtonian approximation is possible
to describe through the continuity equation, the Euler equation and the Poisson
equation:

∂ρ

∂t
+ ∇ · ρv̄ = 0 (B.1)

∂v̄

∂t
+ (v̄ · ∇)v̄ +

1

ρ
∇p+ ∇φ = 0 (B.2)

∇2φ− 4πGρ = 0 (B.3)

where ρ is the gas density, v̄ is its velocity and p is the pressure. The system has
a static solution ρ = ρ0, v̄ = 0, p = p0 and ∇φ = 0. The idea is now to perturb
infinitesimally that solution and to study the first order solution of the perturbed
system. Particularly we are looking for solutions like:

δui = δu0i exp(ik̄ · r̄) exp(iωt) (B.4)

where i denotes the physical quantity (density, velocity...) and δu0i the amplitude
of the perturbation. The system of equations can be solved now by assuming an
expanding background and considering the limit |δ| ≪ 1. The solution is:

δ̈ + 2
ȧ

a
δ̇ + (v2

sk
2 − 4πGρ)δ = 0 (B.5)
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where vs =

(

∂p
∂ρ

)1/2

is is the sound speed.

For a collisionless and non-radiative fluid, the solution can be written as:

δ = At2/3 +Bt−1 (B.6)

The evolution of the non–linear perturbations (δ >> 1) can be followed using
N–body simulations. In the classical cosmological scenario the formation of the
structure is driven by the DM. If the DM is “hot” (i.e. the DM particles decouple
when they are still relativistic) the first structures that were formed are clusters
of galaxies (M ∼ 1015M⊙). This scenario is called top down and is not able to
reproduce the galaxy distribution at z = 0 and the observed galaxy formation at
z ∼ 3 − 5. On the contrary if the DM is “cold” (i.e. the DM particles decouple
when they are not relativistic) the scenario can be defined “bottom up”: the large
scale structure is the result of following merging of small clumps of DM. According
to the observations this is the most reliable case.

B.2 Spherical collapse

Let consider a perturbation with an uniform over-density 〈δ〉 and radius R. Ac-
cording to the Birchoff theorem the matter outside the sphere doesn’t exert any
pressure onto the matter inside the sphere. Due to this fact we are able to write
the equation of motion for the perturbation radius:

d2R

dt2
= −GM

R2
= −4πG

3
〈ρ〉(1 + 〈δ〉)R (B.7)

Integrating once this equation we obtain:

1

2

dR

dt
− GM

R
= E (B.8)

where E is the energy and it is a negative quantity due to the fact that the system
is gravitationally bound. This equation has a parametric solution in the form:

R

Rm
=

1

2
(1 − cos η) (B.9)

and
t

tm
=

1

π
(η − sin η) (B.10)

where Rm is the maximum radius reached by the sphere at tm. Therefore the per-
turbation grows until the value Rm is reached and then it starts collapsing. During
the collapse pressure gradients and thermal shocks take place and consequently
the problem cannot be studied in spherical symmetry. The final state will not be
characterized by a singularity, as if the collapse is spherical, but by an extended
region with finite density, a certain radius Rvir and a mass M . Neglecting mass and
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energy loss, and assuming that the over-density is the same at the collapse epoch
and at the virialization epoch, we can infer some relations that depend only on the
cosmological model. In particular, in the case of an Einstein de Sitter universe, the
computation is very easy. Expanding equation B.9 and B.10 in Taylor series at the
lower order, we can get:

R

Rm

=
1

4

(

6πt

tm

)2/3(

1 − 1

20

(

6πt

tm

)2/3

+ ...

)

(B.11)

The first multiplicative term represents the unperturbed evolution of R(t) for a EdS
universe. The mean over-density will be:

〈δ〉 =
ρ

〈ρ〉 − 1 =
(R/Rm)3

unp

(R/Rm)3
=

(

1 − 1

20

(

6πt

tm

)2/3)−3

− 1 ≃ 3

20

(

6πt

tm

)2/3

≃ 1.06

(B.12)
The collapse takes place at t = 2tm and the over-density in the linear theory is
therefore:

δc = 〈δ〉(2tm) =
3

20
(12π)2/3 = 1.689 (B.13)

Once the the collapse is basically non–linear this is not the “correct” value for the
critical over-density. It is possible to show that in the case of an EdS universe at
t = tm the non-linear density contrast is δc(tm) = 5.55 and the collapsed structure
reaches a radius that is half than the maximum expansion radius and the over-
density is δc(2tm) = 178.
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