

Black Holes-galaxies co-evolution Physical Models

V. Antonuccio-Delogu **INAF-Catania Astrophysical Observatory**

Galaxy-SMBH connection: the numerical gap

Galaxy-SMBH connection: the numerical gap • Accretion/jet production region: $R_d \sim 10^3 r_g$ (~ 4.78*10⁻³ pc)

Tchekhovskoy et al., 2015

axy System 3C 321 O HUBBLESITE.org

Galaxy-SMBH connection: the numerical gap • Accretion/jet production region: $R_d \sim 10^3 r_g$ (~ 4.78 * 10⁻³ pc)

than R_d production

Tchekhovskoy et al., 2015

AMR (Gaspari, Brüggen, Fong, Bicknell, Wagner, Cielo+V.A.-D.,..): $l_{max}=10-15 \rightarrow R = L_{box}/2^{lmax} \simeq 1.52 - 48.8 \text{ pc}, 3 \text{ orders of magnitude larger}$

Galaxy-SMBH connection: the numerical gap • Accretion/jet production region: $R_d \sim 10^3 r_g$ (~ 4.78 * 10⁻³ pc)

Tchekhovskoy et al., 2015

AMR (Gaspari, Brüggen, Fong, Bicknell, Wagner, Cielo+V.A.-D.,..): $l_{max}=10-15 \rightarrow R = L_{box}/2^{lmax} \simeq 1.52 - 48.8 \text{ pc}, 3 \text{ orders of magnitude larger}$

Galaxy-SMBH connection: HOW TO FILL the numerical gap?AREPO (TreeSPH, *Springel*) + HPC parallel *simulations*

Curtis & Sijacki., 2015

Galaxy-SMBH connection: HOW TO FILL the numerical gap? • AREPO (TreeSPH, Springel) + HPC parallel simulations

\rightarrow Resolves accretion region (~10⁴ r_g) within a <u>single galaxy</u>

Curtis & Sijacki., 2015

• High resolution \rightarrow <u>backflows</u> from the large-scale jet are resolved

System 3C 321 (S) HUBBLESITE.org

Galaxy-SMBH connection: HOW TO FILL the numerical gap? • AREPO (TreeSPH, Springel) + HPC parallel simulations

\rightarrow Resolves accretion region (~10⁴ r_g) within a <u>single galaxy</u>

Curtis & Sijacki., 2015

• High resolution \rightarrow <u>backflows</u> from the large-scale jet are resolved

Syst

Galaxy-SMBH connection: HOW TO FILL the numerical gap? • AREPO (TreeSPH, Springel) + HPC parallel simulations

\rightarrow Resolves accretion region (~10⁴ r_g) within a <u>single galaxy</u>

Curtis & Sijacki., 2015

• High resolution \rightarrow <u>backflows</u> from the large-scale jet are resolved

Sijacki, 2015 [from Read & Trentham, 2005]

from SN/wind and AGN feedback $(M_* \leq few \ 10^{11} M_{\odot} \ [z \sim 0])$

Sijacki, 2015 [from Read & Trentham, 2005]

Negative AGN feedback ("quenching")• Baryonic galaxies MF: features
from SN/wind and AGN feedback
 $(M_* \leq \text{few } 10^{11} \, \text{M}_{\odot} \, [\underline{z} \sim 0])$ • Montecarlo (including N-body+hydro)
techniques reproduce also the evolution
of the MF \rightarrow fine tuning of feedback
parameters

Sijacki, 2015 [from Read & Trentham, 2005]

Negative AGN feedback ("quenching") Montecarlo (including N-body+hydro) • Baryonic galaxies MF: features techniques reproduce also the evolution from SN/wind and AGN feedback of the MF \rightarrow fine tuning of feedback $(M_* \leq few \ 10^{11} M_{\odot} \ [z \sim 0])$

Sijacki, 2015 [from Read & Trentham, 2005]

parameters

GECO: Ricciardelli & Franceschini, 2010

• "Subgrid physics" hides the lack of a physically motivated link between galactic scale and galaxy formation E.g.:

- "Subgrid physics" hides the lack of a physically motivated link between galactic scale and galaxy formation E.g.:
- \rightarrow SN shock heating of the ISM (thermodynamic feedback from stellar to ~ few 10s pc);

- "Subgrid physics" hides the lack of a physically motivated link between galactic scale and galaxy formation E.g.:
- \rightarrow SN shock heating of the ISM (thermodynamic feedback from stellar to ~ few 10s pc);
- → Jet-GMCs interaction: how is SF quenched?

- "Subgrid physics" hides the lack of a physically motivated link between galactic scale and galaxy formation E.g.:
- → SN shock heating of the ISM (thermodynamic feedback from stellar to ~ few 10s pc);
- → Jet-GMCs interaction: how is SF quenched?

Tortora et al. (2009): positive feedback precedes quenching

Powerful Jet from a Supermassive Black Hole in Galaxy Sy

- "Subgrid physics" hides the lack of a physically motivated link between galactic scale and galaxy formation E.g.:
- \rightarrow SN shock heating of the ISM (thermodynamic feedback from stellar to ~ few 10s pc);
- → Jet-GMCs interaction: how is SF quenched?

Tortora et al. (2009): positive feedback precedes quenching

Powerful Jet from a Supermassive Black Hole in Galaxy Sy

- "Subgrid physics" hides the lack of a physically motivated link between galactic scale and galaxy formation E.g.:
- → SN shock heating of the ISM (thermodynamic feedback from stellar to ~ few 10s pc);
- → Jet-GMCs interaction: how is SF quenched?

Tortora et al. (2009): positive feedback precedes quenching

Powerful Jet from a Supermassive Black Hole in Galaxy Sy

- "Subgrid physics" hides the lack of a physically motivated link between galactic scale and galaxy formation E.g.:
- \rightarrow SN shock heating of the ISM (thermodynamic feedback from stellar to ~ few 10s pc);
- → Jet-GMCs interaction: how is SF quenched?

Tortora et al. (2009): positive feedback precedes quenching Jet-induced SF is localized to the rims of the cocoon's lobes

Powerful Jet from a Supermassive Black Hole in Galaxy Sy

- "Subgrid physics" hides the lack of a physically motivated link between galactic scale and galaxy formation E.g.:
- \rightarrow SN shock heating of the ISM (thermodynamic feedback from stellar to ~ few 10s pc);
- → Jet-GMCs interaction: how is SF quenched?

Tortora et al. (2009): positive feedback precedes quenching Jet-induced SF is localized to the rims of the cocoon's lobes

Powerful Jet from a Supermassive Black Hole in Galaxy Sy

- "Subgrid physics" hides the lack of a physically motivated link between galactic scale and galaxy formation E.g.:
- \rightarrow SN shock heating of the ISM (thermodynamic feedback from stellar to ~ few 10s pc);
- → Jet-GMCs interaction: how is SF quenched?

Tortora et al. (2009): positive feedback precedes quenching Ster ro, ming Clump A Jet-induced SF is localized to the rims Star Forming Clump B of the cocoon's lobescompare with Carniani et al., 2016; Cresci et al, 2015 Powerful Jet from a Supermassive Black Hole in Galaxy System 3C 321 HUBBLESITE.org

Outflow direction

- "Subgrid physics" hides the lack of a physically motivated link between galactic scale and galaxy formation E.g.:
- \rightarrow SN shock heating of the ISM (thermodynamic feedback from stellar to ~ few 10s pc);
- → Jet-GMCs interaction: how is SF quenched?

Tortora et al. (2009): positive feedback precedes quenching Ster roming Jet-induced SF is localized to the rims Clump B of the cocoon's lobescompare with Carniani et al., 2016; Cresci et al, 2015 Powerful Jet from a Supermassive Black Hole in Galaxy System 3C 321 HUBBLESITE.org

Positive feedback lasts lesser than quenching....

Is positive feedback <u>cosmologically relevant</u> to galaxy stellar formation @ $z \geq 2$?

Is positive feedback <u>cosmologically relevant</u> to galaxy stellar formation (a) $z \geq 2$?

unbiased, realistic hints.

Only modelling (incl. numerical experiments) can provide us with

Backflows within AGNs relativistic jets: The <u>link</u> between large- and subparsec scale feedback

Backflows within AGNs relativistic jets: The <u>link</u> between large- and subparsec scale feedback

Backflow: gas streaming opposite to and along the boundary of the cocoon.

Backflows within AGNs relativistic jets: The <u>link</u> between large- and subparsec scale feedback

Backflow: gas streaming opposite to and along the boundary of the cocoon.

before the Hot Spot

Origin is *thermodynamical* : vorticity is produced from jet's gas crossing the shock

Backflows within AGNs relativistic jets: The link between large- and subparsec scale feedback

Powerful Jet from a Supermassive Black Hole in Galaxy System 3C 321 (O) HUBBLESITE.org • Backflow is *spatially coherent* and *intrinsically axisymmetric* all way down to the accretion region

Backflow: gas streaming opposite to and along the boundary of the cocoon.

before the Hot Spot

Origin is *thermodynamical* : vorticity is produced from jet's gas crossing the shock

Backflows within AGNs relativistic jets: The link between large- and subparsec scale feedback

Powerful Jet from a Supermassive Black Hole in Galaxy System 3C 321 (O) HUBBLESITE.org • Backflow is *spatially coherent* and *intrinsically axisymmetric* all way down to the accretion region

• Backflow drives low-L_z gas into the <u>SMBH accretion region</u>

Backflow: gas streaming opposite to and along the boundary of the cocoon.

before the Hot Spot

Origin is *thermodynamical* : vorticity is produced from jet's gas crossing the shock

Observational evidence for backflows

Observational evidence for backflows

Figure 9. Predicted brightness distributions for the outflowing and backflowing parts of the model for 0206+35. (a) outflow; (b) backflow.

Laing & Bridle, 2012: FRI, mildly relativistic velocities

Observational evidence for backflows

Figure 9. Predicted brightness distributions for the outflowing and backflowing parts of the model for 0206+35. (a) outflow; (b) backflow.

Laing & Bridle, 2012: FRI, mildly relativistic velocities

Numerical experiments

• Plotting only counterstreaming gas $(\mathbf{v}_z \cdot \mathbf{v}_j \le 0)$

Numerical experiments

• Plotting only counterstreaming gas $(\mathbf{v}_z \cdot \mathbf{v}_j \le 0)$ • Lessons: plane)

Numerical experiments

1) Backflow develops a *large-scale pattern* (HS \rightarrow meridional

• Plotting only counterstreaming gas $(\mathbf{v}_z \cdot \mathbf{v}_j \le 0)$ • Lessons: plane) 2) Dynamics is stochastic

Numerical experiments

1) Backflow develops a *large-scale pattern* (HS \rightarrow meridional

Plotting only counterstreaming gas $(\mathbf{v}_z \cdot \mathbf{v}_j \le 0)$ • Lessons: plane) 2) Dynamics is stochastic 3) No meridional plane bending of the flow is detected \rightarrow perpendicolar backflow

Numerical experiments

1) Backflow develops a *large-scale pattern* (HS \rightarrow meridional

Backflow \rightarrow enhanced mass accretion

Backflow \rightarrow enhanced mass accretion \rightarrow P_{jet} change with time

Backflow \rightarrow enhanced mass accretion \rightarrow P_{jet} change with time

Black curve: template mass flow model

On the right plot the predicted change in $P_{jet} \propto \Sigma^{3/2} (\rho v_z)^{1/2}$

Backflow \rightarrow enhanced mass accretion \rightarrow P_{iet} change with time

Black curve: template mass flow model

On the right plot the predicted change in $P_{iet} \propto$ $\Sigma^{3/2} (\rho v_z)^{1/2}$

- P_{jet} enhanced by a factor ~ 10 on 15-20 Myrs.
- EUV ($\lambda \leq 1100$ Å) correlates with GHz synchr for RLQ

evolution bridges with GWs and GR

• Star formation is classical physics \rightarrow yet SMBH-galaxy co-

evolution bridges with GWs and GR

• The investment to fill the gap between subparsec (star formation) and kpc scales is <u>also</u> in new algorithms and HPC computing \rightarrow Human Capital (<u>young reearchers</u>) \rightarrow buying silicon is not enough

• Star formation is classical physics \rightarrow yet SMBH-galaxy co-

- evolution bridges with GWs and GR

Powerful Jet from a Supermassive Black Hole in Galaxy System 3C 321 (O) HUBBLESITE.org

• Star formation is classical physics \rightarrow yet SMBH-galaxy co-

• The investment to fill the gap between subparsec (star formation) and kpc scales is <u>also</u> in new algorithms and HPC computing \rightarrow Human Capital (<u>young reearchers</u>) \rightarrow buying silicon is not enough

• Tighter interaction with the <u>Numerical Analysis</u> and <u>Computational</u> <u>Physics</u> communities \rightarrow <u>credible</u> physical targets and language

Black Holes-galaxies co-evolution *Physical Models*

- Abramowicz, Narayan, Lasota)
- history and SF history

• Backflow: low L_z accreting gas from large (SF) to AU (BH) accretion scales, connection between Powerful Jet from a Supermassive Black Hole in Galaxy System 3C 321 (O) HUBBLESITE.org

• Jet's feedback - Jet's production, SMBH accretion: highly decoupled in spatial scales, but strongly coupled energetically (GRMHD -Tchekhovskoy, Sądowski, McKinney..., theory: Paczinsky,

Positive feedback: outflows at $z \gtrsim 1$ (Maiolino, Lehnert) - is it <u>cosmologically</u> significant? Can it boost sognificantly the SFR? SMBH physics: directly accessible through $GWs \rightarrow BHs'$ growth

