Questions for a next CMB ESA M5 mission

Carlo Burigana

INAF-IASF Bologna,

Univ. Ferrara Dip. Fisica & Scienze della Terra, INFN-Sezione di Bologna

with inputs from Italian CMB community and CORE teams

Meeting INAF - Macroarea 1 Galassie e Cosmologia *Bologna, 16-17 giugno 2016*

2 faces of CMB

The context

- Think of a future CMB polarization mission in synergy with other CMB experiments and other cosmological probes
 - ground/balloons vs. space who does what?
 - (sensitivity, angular resolution, systematics, frequency coverage)
 - synergy with other cosmological probes

(cosmic complementarity: accurate testing of the model)

PIXIE NASA

Scientific goals of future CMB mission(s): B-modes ... but not only © Scientific return even for extremely low r=T/S

In a nutshell: New science with a polarimetric and spectral survey of the Hubble volume from the μ -wave to the far-IR

CORE channels and sensitivity

channel	beam	N_{det}	ΔT	ΔP	ΔI	$\Delta y \times 10^6$	PS flux (5σ)
GHz	arcmin		$\mu K.$ arcmin	$\mu K.$ arcmin	kJy/sr.arcmin	$y_{\rm SZ}. {\rm arcmin}$	mJy
60	14	28	11.3	16	1.14	-2.3	6
70	12	30	10.5	14.9	1.4	-2.2	6.3
80	10.5	38	9.1	12.9	1.53	-2.0	6
90	9.33	72	6.5	9.2	1.32	-1.5	4.6
100	8.4	84	6.0	8.5	1.43	-1.5	4.5
115	7.3	124	5.0	7.0	1.45	-1.3	4
130	6.46	180	4.2	5.9	1.43	-1.3	3.5
145	5.79	264	3.6	5.0	1.37	-1.3	3
160	5.25	254	3.8	5.4	1.6	-1.7	3.1
175	4.8	290	3.8	5.3	1.69	-2.2	3.0
195	4.31	346	3.8	5.3	1.79	-4.1	2.9
220	3.82	200	5.8	8.1	2.78	-	4.0
255	3.29	140	8.9	12.6	4.11	5.5	5.1
295	2.85	60	19.4	27.4	7.84	5.7	8.4
340	2.47	60	30.9	43.7	9.91	5.6	9.2
390	2.15	60	55.0	77.8	12.63	7.0	10.2
450	1.87	60	116.6	164.8	16.48	10.9	11.5
520	1.62	60	295.7	418.2	21.71	21.0	13.2
600	1.4	60	899.7	1272.4	28.61	50.3	15.0

Table 3: Proposed COrE+ frequency channels. The sensitivity is calculated assuming $\Delta\nu/\nu = 25\%$ bandwidth, 50% optical efficiency, total noise of twice the expected photon noise from the sky and the optics of the instrument at 60K temperature. The aggregated CMB sensitivity is $2\,\mu$ K·arcmin in polarization. This is the COrE+ baseline

rms fluctuations in T & P: CMB vs foregrounds Change of paradigm from *Planck* maps

Fig. 16. Brightness temperature rms as a function of frequency and astrophysical component for temperature (*left*) and polarization (*right*). For temperature, each component is smoothed to an angular resolution of 1° FWHM, and the lower and upper edges of each line are defined by masks covering 81 and 93 % of the sky, respectively. For polarization, the corresponding smoothing scale is 40', and the sky fractions are 73 and 93 %.

Planck 353 GHz full sky maps in polarization

353 GHz polarized maps are dominated by Galactic dust emission

Bicep2, Keck Array and Planck Collaboration

Dust essentially everywhere \rightarrow need for space!

Crucial for understanding the nature of B-mode polarization signal

High observed degree of polarization (P/I)obs up to 18%

B2+Keck 150 GHz T/Q/U maps of small sky patch

Planck Collaboration: Dust polarization at high latitudes

Planck 353 GHz \mathcal{D}_{ℓ}^{BB} angular power spectrum computed on M_{B2} defined in Sect. 6.1 and extrapolated to 150 GHz (be es). The shaded boxes represent the $\pm 1\sigma$ uncertainties; blue for the statistical uncertainties from noise; and red adding in uadrature the uncertainty from the extrapolation to 150 GHz. The Planck 2013 best-fit $\Lambda CDM \mathcal{D}_{e}^{BB}$ overplotted as

Impact of residuals foregrounds (including e.g. subdominant components / complexity in dominant components

CORE: lensing & delensing through arcmin resolution

Planck 2013-2015: 25-40 σ detection Matter distribution deflects CMB

Courtesy Feeney & Errard and Challinor

photons \rightarrow map de-focusing

- Internal delensing improves σ(r) by factor
 1.6-2.3 (for low r) at few arcmin resolution
 See Finelli's talk
 - CMB lensing power spectrum helps cosmology
 - E.g., at least 4σ detection of neutrino mass (with DESI/Euclid BAO)

 \checkmark CORÈ alone σ (\dot{M}_n)~44meV + Euclid ~15-20meV

agenzia spaziale italiana

Reionization beyond $\tau = \int \chi_e n_e \sigma_T c dt$ approximation Extension to all modes - EE & BB modes 13 Objects Camilla Monga

1.0

0.8

8° 0.6

0.4

0.2

0.0

4

10.0000

1.0000

15

Dipole spectrum: CMB distortions and CIB

Without absolute calibration, but with only accurate relative & interfrequency calibration CORE will have the chance to detect CIB & reonization (& others?) distortions (see also Liguori's talk) through low multipole pattern

→ Global & (almost) model independent constraints on energy dissipations

- > 3D reconstruction on very large volumes
- Synergy with other experiments (eROSITA,Euclid, LSST, WFIRST, Athena)
- > Velocites (kSZ) to 30,000 clusters with \geq 5 σ precision
- Relativistic tSZ effect

Detection limits for a diffraction-limited survey

In total intensity:

Given current sensitivities, confusion dominates detection limits

→ Angular resolution critical

Planck HFI worse than diffraction limited

Improvements

expected even with smaller telescope but diffraction-limited

Predicted counts in polarization for a 1m telescope

Complete samples in polarization are currently limited to:

- some tens of radio-sources (microwaves/mm)
- ✓ negligible number (sub-mm)

COrE-M5 high sensitivity in polarization open a new window

Simulations for COrE-M5 suggest:

 detection of:
 thousands of sources in its whole frequency range
 for the first time:

hundreds of galaxies with intense star formation with polarized signal by dust grains

\rightarrow Unique information on:

- > their magnetic fields
- unknown origin of tight correlation between
 IR and radio luminosities of these objects

Conclusions

- 1. Planck legacy will set the scene for many years
- **2. Time is appropriate for starting with a new CMB mission**, from both scientific expertise and technological development
- **3. CMB science** ("primary" & "secondary") **essential** for early Universe, cosmic evolution, fundamental physics (see also di Serego's talk)
- 4. Crucial CMB science goals can be achieved by a focussed medium mission
- **5. Synergy between ground & space projects**
- 6. Space necessary for frequency coverage above 200 GHz (dust!)
- 7. Resolution necessary for delensing (!)
- 8. CORE targeted to characterize, not only detect, B-modes down to r ≅ 10⁻³ or even lower (r ≅ 2x10⁻⁴)
- 9. Wide set of key scientific goals & potentially immense legacy science "automatically" assured by this aim

C. Burigana – Next CMB mission – INAF MA1 – Bologna, 16-17/06/2016

C. Burigana – Next CMB mission – INAF MA1 – Bologna, 16-17/06/2016