A Definitive Study of Cosmic Dust in the Local Universe

Viviana Casasola

INAF - Osservatorio Astrofisico di Arcetri

Meeting INAF - Macroarea 1, Padova, 13 settembre 2017

DustPedia - A Definitive Study of Cosmic Dust in the Local Universe (FP7-SPACE proj. 606847)
PI: Jon Davies (Cardiff University). 6 European nodes.

A legacy database of 875 galaxies observed by *Herschel* (HRS, KINGFISH, HeViCS...). $D_{25} > 1'$, v < 3000 km/s, multiwavelength coverage from UV to submm (up to 42 bands/ galaxy)

DustPedia

This project has received funding from the European Union's Security Framework Programme for research, technological development and demonstration under grant agreement to 66874.

These are all 844 galaxies within 140 million light-years of us (that have angular sizes over l_{46}^{++} a degree) that were observed by the Herschel Space Observatory's SPRE camera. These images show how these galaxies appear at a wavelength of 250 µm (2000 times longer than what our eyes see). At this wavelength, we observe the thermal glow of the cosmic dust that floats between stars, and coccons star-formation. In galaxies with no dust, we only see the even more distant galaxies behind.

"[...] nearby galaxies offer rich and still far from completely explored clues to a better picture of how galaxies form." (Peebles & Nusser 2010)

- J. Davies (PI) M. Baes (co-PI) <u>S. Bianchi (co-PI)</u> A. Jones (co-PI) S. Madden (co-PI) E. Xilouris (co-PI)
- V. Casasola L. Cassara' C. Clark I. De Looze P. De Vis R. Evans

<u>J. Fritz</u>

- F. Galliano M. Galametz S. Lianou A. Mosenkov S. Verstocken
- S. Viaene N. Ysard

....

....

<u>L. Magrini</u> (external) M. Smith (external)

DustPedia is capitalizing on the legacy of *Herschel* (Davies et al. 2017).

A database of multi- λ imagery and photometry that greatly exceeds the scope (in terms of λ coverage and n. of galaxies) of any previous local-Universe survey.

DustPedia database (<u>http://dustpedia.astro.noa.gr/</u>): dedicated *Herschel* reductions, along with standardized archival observations from GALEX, SDSS, DSS, 2MASS, WISE, Spitzer, and Planck.

The aperture-matched photometry, combined with the external supplementary photometry, represents a total of **21,857 photometric measurements**.

NGC4559 GALEX FUV GALEX_NUV SDSS_g SDSS r SDSS DSS2 R Spitzer_3.6 Spitzer_5.8 PACS 70 Spitzer 4. Spitzer 8,0 PACS 100 PACS 160 SPIRE 250 SPIRE 350 PIRE 500 **Clark et al. (2017)**

- ✓ Sub-sample of 18 face-on ((d/D)_{submm}>0.4), large (D_{submm}>9'), spiral galaxies from the DustPedia sample (Davies et al. 2017), imaged with both PACS and SPIRE in *Herschel* (Clark et al., 2017)
- Molecular (CO) and atomic (HI) gas maps, and metallicity info from the literature

Surface brightness and U: Typical plot

Stellar Mass and SFR: Typical plot

Scale-length vs. λ

- DUST scale-length is ~1.8 times the stellar one:
 - ♦ could be explained by a change in the typical lifetimes of grains against destruction by shocks, with a longer lifetime at larger radii (e.g., Sauvage+05)
 - in agreement with radiative transfer analysis of dust extinction in edge-on galaxies (e.g., Xilouris+99, Bianchi+07, De Geyter+14)

DUST scale-length is ~1.8 times the stellar one:

- ♦ could be explained by a change in the typical lifetimes of grains against destruction by shocks, with a longer lifetime at larger radii (e.g., Sauvage+05)
- in agreement with radiative transfer analysis of dust extinction in edge-on galaxies (e.g., Xilouris+99, Bianchi+07, De Geyter+14)

First 'direct' confirmation of the large gradients in the dust disks

- Casasola et al. (2017) is the first scientific <u>DustPedia</u> publication
- The 42 UV-submm bands for 875 <u>DustPedia</u> galaxies: scientific cases (individual and statistical studies)
- Science within <u>DustPedia</u> is 'exploding': low metallicity galaxies, elliptical galaxies, morphological classification, extended dust in edge-on systems, radiative transfer modelling, scaling laws, global dust absorption, and environmental effects
- Science outside **DustPedia**: see **DustPedia** database <u>http://dustpedia.astro.noa.gr/</u>
- The <u>DustPedia</u> database will also contain the results of the SED fitting and radiative transfer modelling performed on this data, for each galaxy

Documento di visione strategica INAF

8. Formation and Evolution of Galaxies and Cosmic Structures

[... the basic key question is: which physical processes drive the transformation of galaxy properties? Astronomers can hint at the answer(s) by observing the properties of nearby galaxies in great details, and at the same time looking at the distant Universe to examine the properties of galaxies at different epochs in the past ...]

Documento di visione strategica INAF

8. Formation and Evolution of Galaxies and Cosmic Structures

Origin and fate of galaxies	Detailed observations of gas kinematics,	SKA, ALMA
the galaxy stellar mass	outflows, inflows. Connection with CGM	VLT, ELT
function and morphological	and IGM	WEAVE
differentiation.		
Feedback processes among	Observations of molecular gas	ALMA
the different components of		JVLA
galaxies (stars, gas, dust) and		IRAM PdBI
AGN. Role of DM halos.		& NOEMA
External and internal	HI content of galaxies	SKA
mechanisms (environment and	ISM in the MIR and FIR	SPICA?
relationship with the Cosmic	Connection between the central region and	JWST
Web) regulating the efficiency	the growth of galaxies at high redshift	ELT
of star formation and the	Link the galaxy evolution markers (size,	Euclid
structural parameters of	mass, shape of galaxies, presence of disk	LSST
galaxies	instabilities) with the driving mechanisms	VST

Meeting INAF - Macroarea 1, Padova, 13 settembre 2017