

The interstellar medium at high redshift

Roberto Decarli INAF Osservatorio Astronomico di Bologna

We now know the Cosmic Star Formation History

"Lilly-Madau" plot

Madau & Dickinson (2014)

What drives the Cosmic Star Formation History?

What drives the Cosmic Star Formation History?

"Lilly-Madau" plot, for gas

What drives the Cosmic Star Formation History?

"Lilly-Madau" plot, for gas Does the gas supply evolve?

What drives the **Cosmic Star Formation History?**

plot, for gas Does the gas supply evolve?

Does the star formation efficiency change?

A change of gear in ISM studies at high z

A novel approach: Molecular Deep Fields

CO line emission:

- Gas content
- CO excitation
- Gas fraction,
 depletion time,
 role of AGN, etc

Decarli et al. (2016b)

The physics of the ISM at high z

Nebular lines (rest-frame optical) are out of reach at high z

The physics of the ISM at high z

Nebular lines (rest-frame optical) are out of reach at high z

Fine-Structure Lines: - main coolant of the cold ISM - accessible at [sub-]mm wavelengths

The physics of the ISM at high z

Nebular lines (rest-frame optical) are out of reach at high z

Fine-Structure Lines: - main coolant of the cold ISM - accessible at [sub-]mm wavelengths

ISM in quasar hosts at z>6

6 lines detected

No detection of: H₂O High-J CO (contrary to J1148+5251, P036+03)

No [OI] nor [OIII] data yet

P183+05, P036+03, J1148+5251, J2348-3054 Adapted from Meijerink et al. 2007

From [CII]/CO(7-6): n_{gas}~2e5 cm⁻³

P183+05, P036+03, J1148+5251, J2348-3054 Adapted from Meijerink et al. 2007

From [CII]/CO(7-6): n_{gas}~2e5 cm⁻³

From [CII]/[CI]: G~8e3 G_0

P183+05, P036+03, J1148+5251, J2348-3054 Adapted from Meijerink et al. 2007

From [CII]/CO(7-6): n_{gas}~2e5 cm⁻³

From [CII]/[CI]: $G \sim 8e3 G_0$

X-ray powering is unlikely

P183+05, P036+03, J1148+5251, J2348-3054 Adapted from Meijerink et al. 2007

From [CII]/CO(7-6): n_{gas}~2e5 cm⁻³

From [CII]/[CI]: G~8e3 G₀

X-ray powering is unlikely

[NII] 122/205: n_e-~300 cm⁻³

Adapted from Herrera-Camus et al. (2016)

In brief

In brief

Molecular Deep Fields: the evolution of molecular gas content

Dedicated follow-up studies: the physics of the star-forming ISM

Opportunities for the Italian community

Facility	Access	Archive
ALMA	30% through ESO	Open
IRAM 30m + NOEMA	15% open time	Headers; Contact PIs
JVLA	Open	Open
SRT, SKA, ?		

