

Stellar Populations at intermediate redshift Survey

Amata Mercurio – INAF OANapoli On behalf of the StePS team*

<u>Team Leads</u>: A. Iovino, B. Poggianti <u>INAF 'active' members</u>: M. Longhetti, F. La Barbera, S. Zibetti, I. Lonoce, L. Pozzetti, M. Bolzonella, S. Bardelli, G. Busarello, A. Gallazzi, C. P. Haines, P. Merluzzi, N. R. Napolitano, D. Vergani, E. Zucca <u>Project Scientist</u>: S. Trager

*http://www.ing.iac.es/weave/science_team.html

WEAVE in 2017 VisionINAF Document

Formation and Evolution of Galaxies and Cosmic Structures.

Key Question: What are the physical processes driving the assembly and the evolution of structures on scales of galaxies up to clusters of galaxies?

Origin and fate of galaxies.

External and internal mechanisms (environment and relationship with the Cosmic Web) regulating the efficiency of star formation and stellar population properties.

Origin and fate of galaxies.

External and internal mechanisms (environment and relationship with the Cosmic Web) regulating the efficiency of star formation and stellar population properties.

Extend to higher redshift and with comparable wealth of data the analysis done in the local universe.

Tracing back in cosmic time the evolution of galaxy stellar population properties as a function of galaxy stellar mass, star formation activity and environment will provide empirical constraints on the physical mechanisms responsible for galaxy formation and assembly history.

Layout:

- ✓ Scientific goals;
- ✓ Sample selection;
- ✓ Observing strategy.

Layout:

- ✓ Scientific goals;
- ✓ Sample selection;
- Observing strategy.

✓ Operational rehearsal.

StePS characteristics:

~ 30K galaxies at z=0.3-0.7 with $I_{AB} \leq 20.5$ mag, pre-selected to be at z > 0.3.

With

WEAVE @ WHT

SAIt- LXI Congresso Italiano, Padova

WEAVE Characteristics

Telescope, diameter	WHT, 4.2m	
Field of view	2° Ø	
Number of fibers	960 (plate A)/940 (plate B)	
Fiber size	1.3″	
Number of small IFUs, size	20 x 11"x12" (1.3" spaxels)	
LIFU size	1.3'x1.5' (2.6" spaxels)	
Low-resolution mode resolution	5750 (3000–7500)	
Low-resolution mode wavelength coverage (Å)	3660–9590	
High-resolution mode resolution	21000 (13000–25000)	
High-resolution mode wavelength coverage (Å)	4040–4650, 4730–5450 5950–6850	

StePS will observe with:

Telescope, diameter	WHT, 4.2m	
 Field of view	2° Ø	
Number of fibers	960 (plate A)/940 (plate B)	
Fiber size	1.3″	
Number of small IFUs, size	20 x 11"x12" (1.3" spaxels)	
 LIFU size	1.3'x1.5' (2.6" spaxels)	
Low-resolution mode resolution	5750 (3000–7500)	
Low-resolution mode wavelength coverage (Å)	3660–9590	
 High-resolution mode resolution	21000 (13000–25000)	
High-resolution mode wavelength coverage (Å)	4040–4650, 4730–5450 5950–6850	

StePS characteristics:

~ 30K galaxies at z=0.3-0.7 with $I_{AB} \le 20.5$ mag, pre-selected to be at z > 0.3.

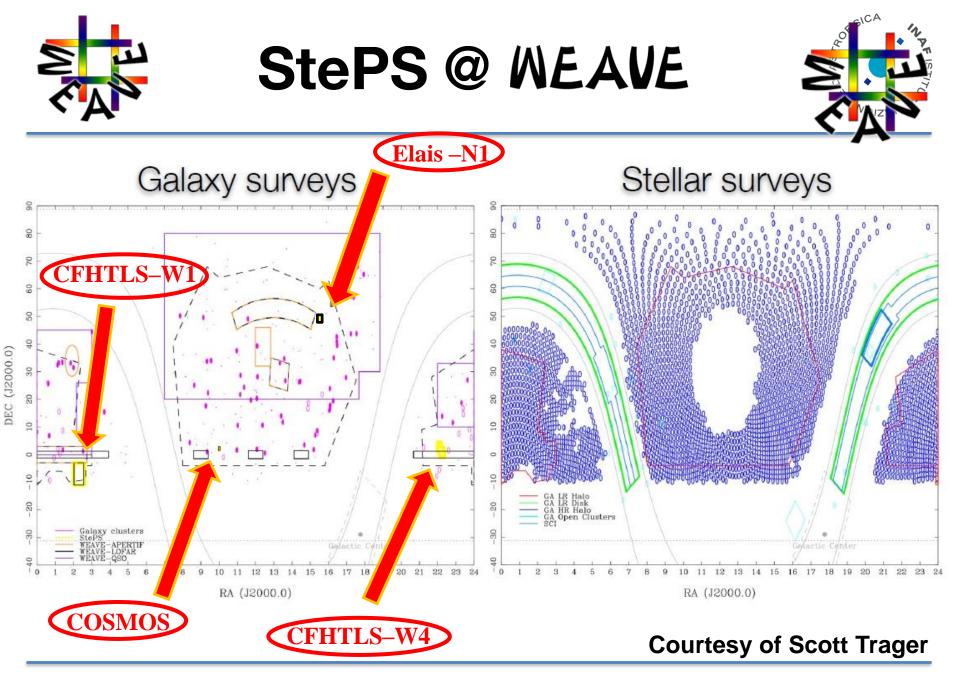
Unprecedented signal-to-noise ratio

S/N>15 per resolution element (~1Å) in order to:

- study stellar ages, star formation and star formation histories, stellar and gas metallicities,
- stellar velocity dispersions and gas kinematics,
- the relations with their intrinsic (galaxy stellar mass, morphology/color/size) and environmental properties.

Uniqueness:

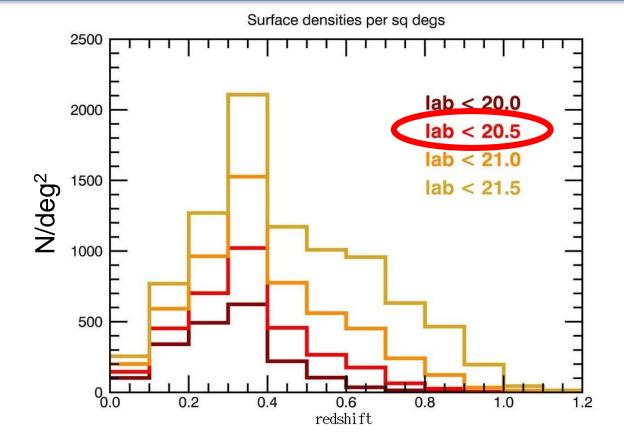
high spectral quality (all main galaxy properties) for a large sample of galaxies covering a wide range of cosmic time, galaxy intrinsic properties (e.g. stellar mass, type, color) and environment.



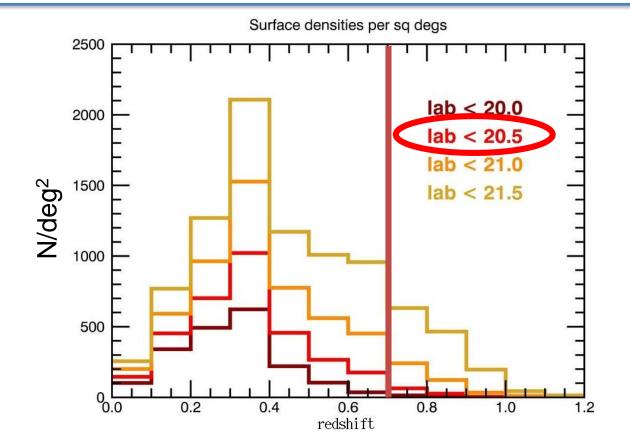
StePS Fields:

name	coordinates	area covered (sq.deg)	tiles	Ntot
CFHTLS-W1 (XMM-LSS)	02:18:00 -05:00:00	14.0	7	28k
CFHTLS-W4	22:13:18 +01:19:00	6.0	3	12k
COSMOS	10:00:28 +02:12:21	2.2	1	7k
ELAIS-N1	16:12:10 +54:30:00	3.0	1	6k

Fields pre-requisites:


- 1. Availability of good optical and near IR data, for photo-z's and target selection.
- 2. Well sampled spectroscopic data and/or very high quality photo-z, for environment characterization.
- 3. Ancillary data (e.g. X-ray for environment, HST for getting good morphologies etc.) increases science impact!

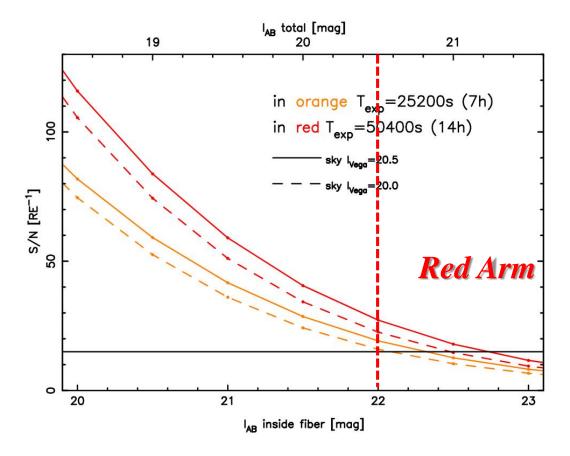
SAIt- LXI Congresso Italiano, Padova



Galaxy surface density values (deg⁻²) from COSMOS catalog

Mag limit	I _{AB} <20.0	I _{AB} <20.5	I _{AB} <21.0	I _{AB} <21.5
All gals	2000	3300	5500	9000
Z _{phot} >0.3	1000	2000	3700	6600

9000 LRmode 8000 Sky lambda (Å) 0002 (Å) OH lines 6000 Lines list Abs-Em-Abs/E 8 C4668 B2900 5000 [OII] - 3727 2 $9 H\beta - 4861$ 10 OIII - 4959 D4000 3 Ηδ 4102 11 OIII - 50075 G4300 12 Fe5015 4000 $6 H\gamma - 4341$ 13 Mgb-5175 7 Fe4383 14 Ha - 6563 0.2 0.4 0.6 0.8 0 1 redshift


Main lines visibility:

SAIt- LXI Congresso Italiano, Padova

S/N as a function of exp time

SAIt- LXI Congresso Italiano, Padova

IAB total [mag] 19 20 21 $in cyan T_{exp} = 25200s$ (7h) in blue T_{exp}=50400s (14h) in magenta T_{exp}=100800s (28h) 8 $(I-V)_{AB}=0.0$ (I–V)_{AB}=–1.0 s/n [re⁻¹] $(I-V)_{AB} = -2.0$ 20 **Blue** Arm

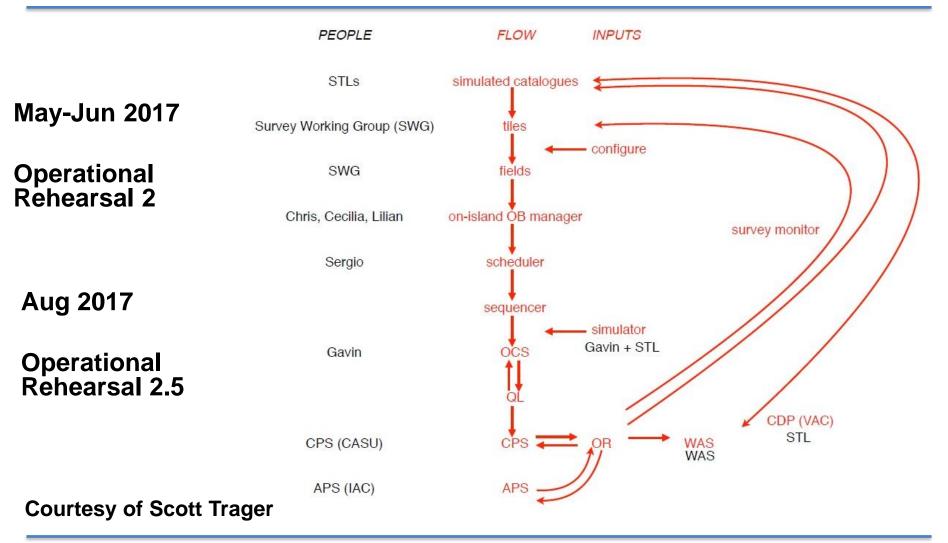
IAB inside fiber [mag]

22

21

S/N as a function of exp time

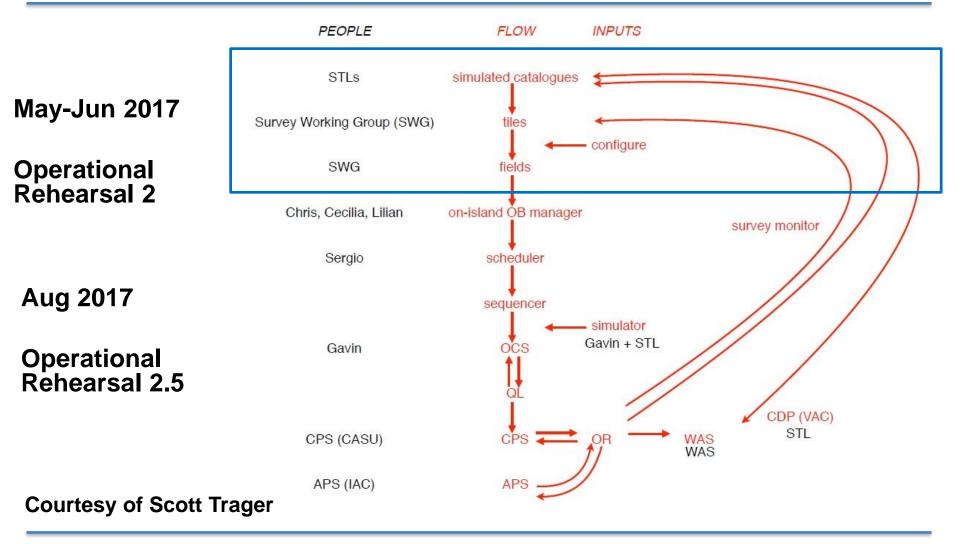
SAIt- LXI Congresso Italiano, Padova


0

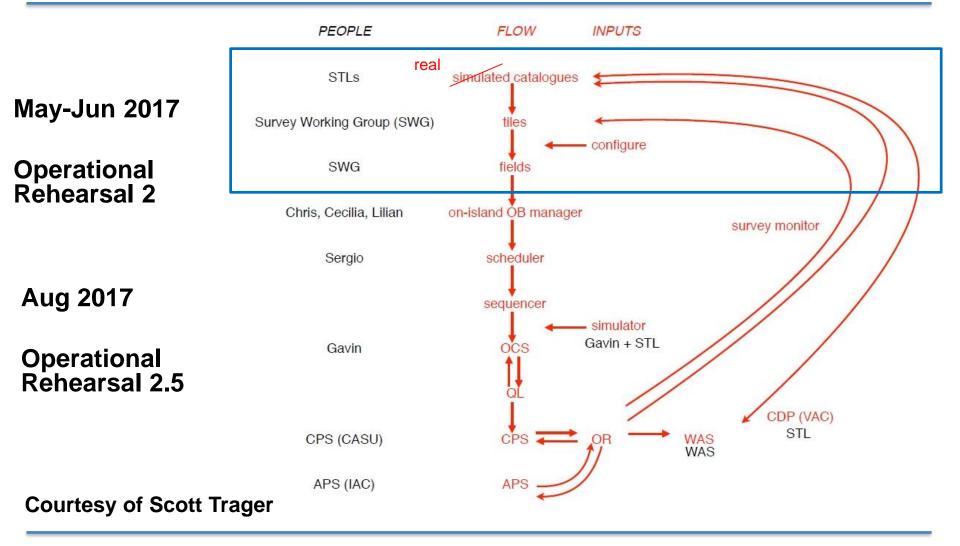
20

Mercoledì 13 settembre 2016

23



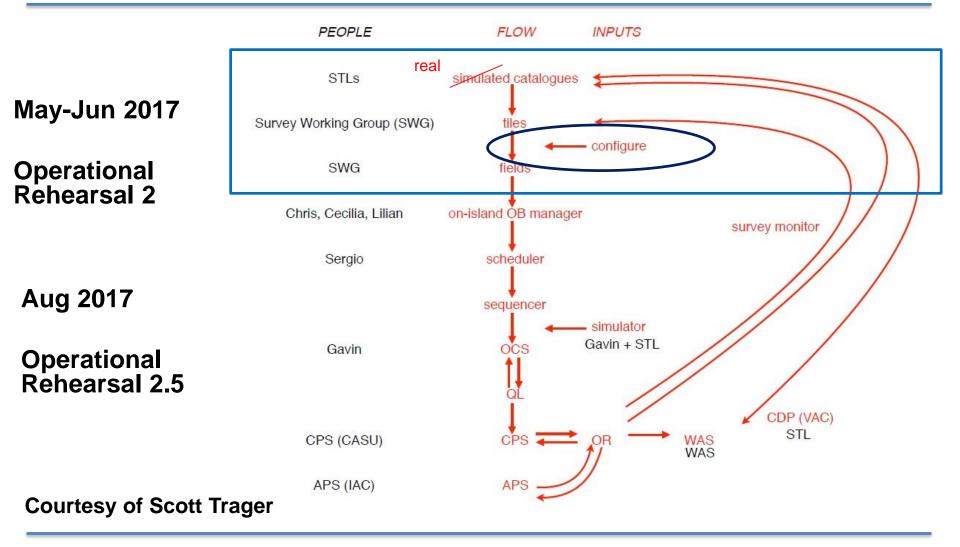
SAIt- LXI Congresso Italiano, Padova



SAIt- LXI Congresso Italiano, Padova

SAIt- LXI Congresso Italiano, Padova

Catalog of ~ 8000 galaxies in COSMOS field:


I_{AB} ≤ 20.5 mag,

NO pre-selection.

Synthetic spectra template (actually no emission lines included).

SAIt- LXI Congresso Italiano, Padova

configure Zenith distance = 31.7 degrees, Hour Angle = 0.5 hours

- 8 guide stars
- 20 calibration
- 50/80 sky
- 890/860 science

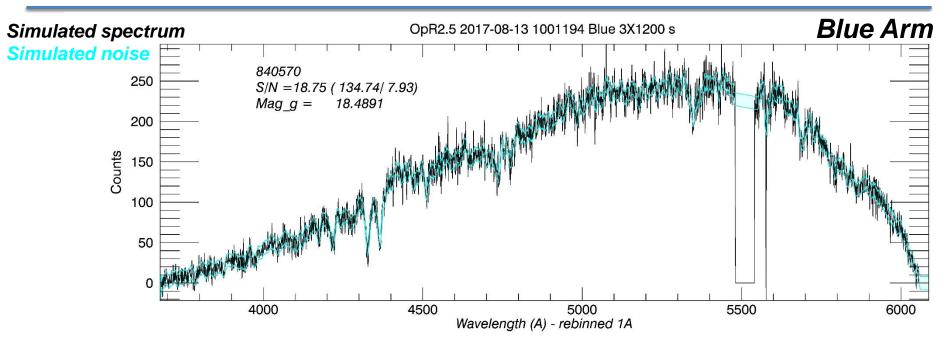
XML input and output files

SAIt- LXI Congresso Italiano, Padova

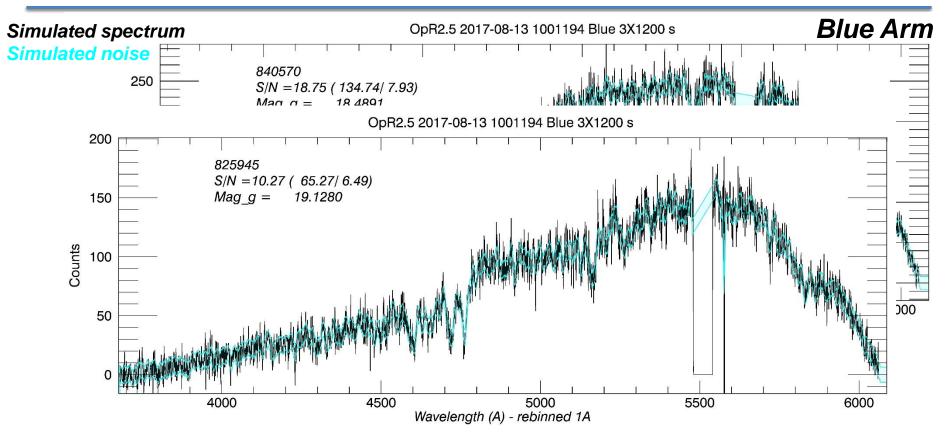
Input files:

- Field file: containing scientific targets (max 2 x num of fibres, calibration stars and guide stars;
- Source file: containing all sources in the field down to I~24 mag.

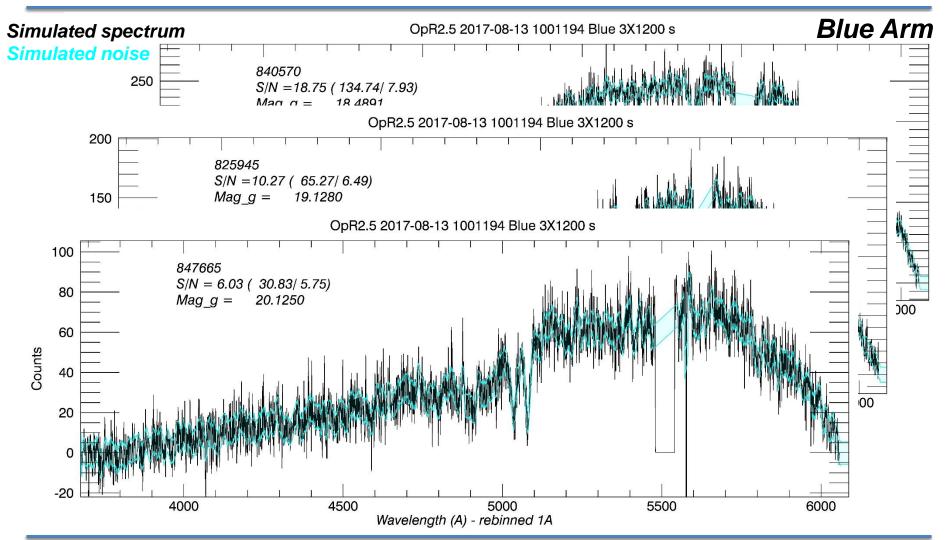
		config	jure			
ile						
Field						
/home/amata/sof	tware/weave/e	xamples	/configA1.xn	าไ		
Source list						
/home/amata/sof	tware/weave/e	xamples	/sources1.xn	nl		
· · · · · · · · · · · · · · · · · · ·						
epoch of obs (yr)	2017	start T	200	cycle length	200000	
HA (hr)	0	end T	50	threads	0	
Pressure (mBar)	770	dT	0.01	margin	0.25	
-						
Open	Optimiz	ze	Freeze Fi		ind Sky	
Save	Stop		Unfreeze Fir		ind guide	
Park	Re-ma	р	Check U		ncollide	

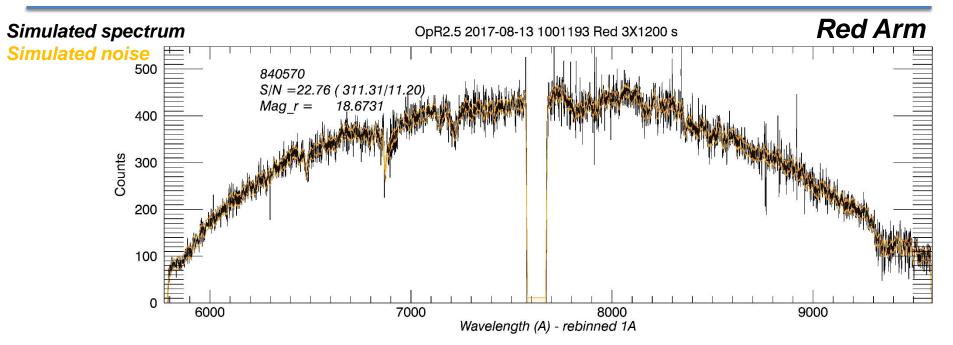

Observational Constraints

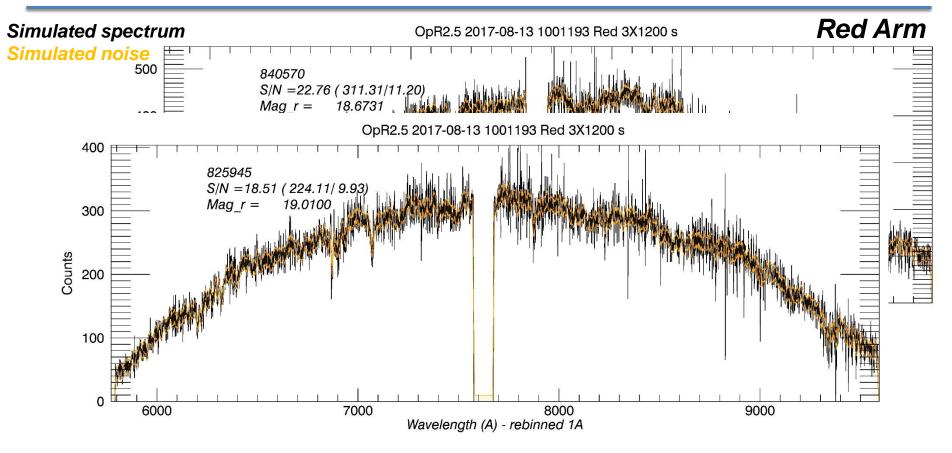
The environmental constraints for the observations are required for being used as an input to the Weave Queue


The following constraints shall be included into the XML field definitions (see WEAVE-ICD-025) under a XML group called **<obsconstraints/>**:

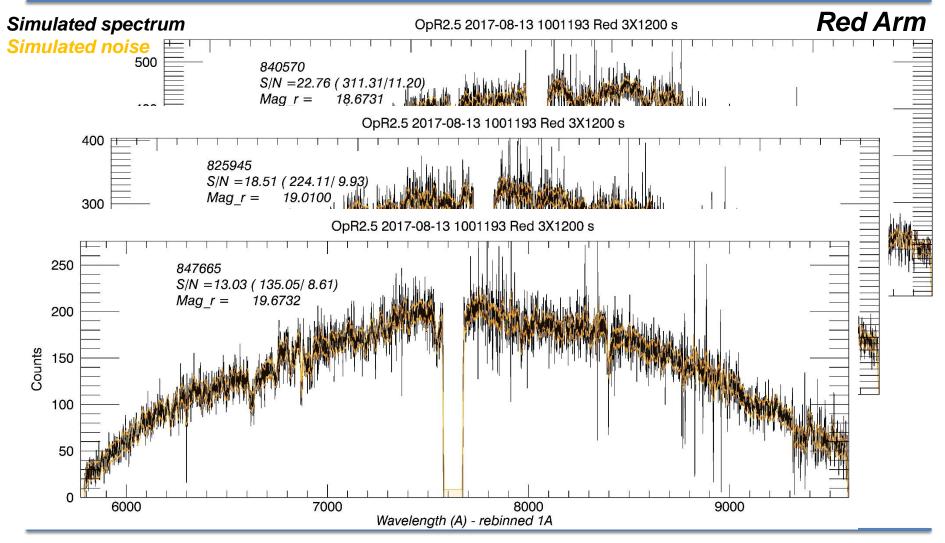
- **seeing_max**: Maximum seeing (arcsecs)
- skybright_max: Maximum Sky Brightness (mag/arsec2)
- elevation_min: Minimum elevation (degrees)
- moondist: Min lunar distance (degrees)
- transparency_min: Min transparency, expressed as a fraction n.n to 1.0 e.g. 0.9







SAIt- LXI Congresso Italiano, Padova



SAIt- LXI Congresso Italiano, Padova

Thanks!

SAIt- LXI Congresso Italiano, Padova

Catalogue Format

Mandatory Columns from	Column Name	Definition	Columns in OCS/CPS Data p	products Fibre info Ta	able
	Naming & Priority				
Mandatory	CNAME	Unique Target identifier provided by SWG - leave empty	CNAME		
Mandatory	TARGSRVY	The Survey where the target belongs	TARGSRVY? StePS		
Mandatory	TARGPROG	Sub-programme name within the survey	TARGPROG?		
Mandatory	TARGCAT	Catalogue name and version (e.g. GA-LRHalo_cat_v1.0.fits)	TARGCAT?		
Mandatory	TARGID	The identifier of the target assigned by survey	TARGID?		
Mandatory	TARGNAME	The target name (e.g. Draco ET11)	TARGNAME?		
Mandatory	TARGPRIO	Target relative priority within a survey	TARGPRIO? Used by Survey	/s for intra-survey pr	iorities. I
	Coordinates in Gaia	Reference Frame			
Mandatory	GAIA_RA	The catalogue RA of object in decimal degrees [Gaia Reference Frame?]	TARGRA (need for CNAME a	assignment)	
Mandatory	GAIA_DEC	The catalogue Dec of object in decimal degrees [Gaia Reference Frame?]	TARGDEC (need for CNAME	assignment)	
Mandatory	GAIA_EPOCH	The catalogue epoch of the object in decimal years (ICRS 2015 for Gaia DR1	TARGEPOCH (need for CNA	ME assignment)	
Mandatory (if available)	GAIA_PMRA	Target proper motion in mas/yr in RA	TARGPMRA (need for CNAM	IE assignment if ava	ilable)
	GAIA_EPMRA	Error in target proper motion in mas/yr in RA			
Mandatory (if available)	GAIA_PMDEC	Target proper motion in mas/yr in Dec	TARGPMDEC (need for CNAME assignment if		ailable)
	GAIA_EPMDEC	Error in target proper motion in mas/yr in Dec			
Mandatory (if available)	GAIA_PARAL	Target parallax in arcsec	TARGPARAL		
	GAIA_EPARAL	Error in target parallax in arcsec			
				Previously indicate	ed as pro

Catalogue Format

Mandatory Columns	in all Catalogues				
CNAME	WEAVE object name from coordinates	A	data format of field: ASCII Character	none	physical unit of field
TARGSRVY	The Survey where the target belongs	A	data format of field: ASCII Character	none	physical unit of field
TARGPROG	Sub-programme name within the survey	A	data format of field: ASCII Character	none	physical unit of field
TARGCAT	Catalogue name and version	A	data format of field: ASCII Character	none	physical unit of field
TARGID	The identifier of the target assigned by survey	A	data format of field: ASCII Character	none	physical unit of field
TARGNAME	The target name	A	data format of field: ASCII Character	none	physical unit of field
TARGPRIO	Target relative priority within a survey (1=lowest, 10=highest)	1	data format of field: 2-byte INTEGER	none	physical unit of field
GAIA_RA	The catalogue RA of object in decimal degrees [Gaia RF]	D	data format of field: 8-byte DOUBLE	Degree decimals	physical unit of field
GAIA_DEC	The catalogue Declination of object in decimal degrees [Gaia RF]	D	data format of field: 8-byte DOUBLE	Degree decimals	physical unit of field
GAIA_EPOCH	The catalogue epoch of the object in decimal years (GDR1 ICRS 2015)	E	data format of field: 4-byte REAL	Decimal years	physical unit of field
GAIA_PMRA	Target proper motion in mas/yr in RA	E	data format of field: 4-byte REAL	mas/yr	physical unit of field
GAIA_EPMRA	Error in target proper motion in mas/yr in RA	E	data format of field: 4-byte REAL	mas/yr	physical unit of field
GAIA_PMDEC	Target proper motion in mas/yr in Dec	E	data format of field: 4-byte REAL	mas/yr	physical unit of field
GAIA_EPMDEC	Error in target proper motion in mas/yr in Dec	E	data format of field: 4-byte REAL	mas/yr	physical unit of field
GAIA_PARAL	Target parallax in arcsec	E	data format of field: 4-byte REAL	arcsec	physical unit of field
GAIA_EPARAL	Error in target parallax in arcsec	E	data format of field: 4-byte REAL	arcsec	physical unit of field

Catalogue Format

Mandatory Columns in all Catalogues

SDSS_ID	SDSS ID	А	data format of field: ASCII Character	none	physical unit of field
SDSS_MAG_G	Magnitude estimate for the target in the SDSS g band	Е	data format of field: 4-byte REAL	mag	physical unit of field
SDSS_EMAG_G	The error in the magnitude estimate for the target in the SDSS g band	E	data format of field: 4-byte REAL	mag	physical unit of field
SDSS_MAG_R	Magnitude estimate for the target in the SDSS r band	E	data format of field: 4-byte REAL	mag	physical unit of field
SDSS_EMAG_R	The error in the magnitude estimate for the target in the SDSS r band.	E	data format of field: 4-byte REAL	mag	physical unit of field
SDSS_MAG_I	Magnitude estimate for the target in the SDSS i band	E	data format of field: 4-byte REAL	mag	physical unit of field
SDSS_EMAG_I	The error in the magnitude estimate for the target in the SDSS i band.	E	data format of field: 4-byte REAL	mag	physical unit of field
GAIA_ID	Gaia ID	A	data format of field: ASCII Character	none	physical unit of field
GAIA_MAG_GG	Magnitude estimate for the target in the Gaia G band (AB mag system)	E	data format of field: 4-byte REAL	mag	physical unit of field
GAIA_EMAG_GG	Error in the magnitude estimate for the target in the Gaia G band	E	data format of field: 4-byte REAL	mag	physical unit of field
GAIA_MAG_BP	Magnitude estimate for the target in the Gaia BP band (AB mag system)	E	data format of field: 4-byte REAL	mag	physical unit of field
GAIA_EMAG_BP	Error in the magnitude estimate for the target in the Gaia BP band	E	data format of field: 4-byte REAL	mag	physical unit of field
GAIA_MAG_RP	Magnitude estimate for the target in the Gaia RP band (AB mag system)	E	data format of field: 4-byte REAL	mag	physical unit of field
GAIA_EMAG_RP	Error in the magnitude estimate for the target in the Gaia RP band	E	data format of field: 4-byte REAL	mag	physical unit of field

Catalogue Format

Survey Specific columns present in individual survey catalogues only

StePS	provided non-GaiaRF coords. need to convert these					
EXTCAT_ID	Catalogue name and target ID of non-Gaia source of coords					
EXTCAT_RA	RA of target in non-Gaia catalogue in decimal degrees	D	data format of field: 8-byte DOUBLE	Degree decimals	physical unit of field	
EXTCAT_DEC	Dec of target in non-Gaia catalogue in decimal degrees.	D	data format of field: 8-byte DOUBLE	Degree decimals	physical unit of field	
EXTCAT_EPOCH	RA of target in non-Gaia catalogue in decimal degrees	E	data format of field: 4-byte REAL	Decimal years	physical unit of field	
PMCAT_ID	Catalogue and target id from which alternative PM is taken	A	data format of field: ASCII Character	none	physical unit of field	
PMCAT_PMRA	Alternative PMRA from non-Gaia catalogue if available	E	data format of field: 4-byte REAL	mas/yr	physical unit of field	
PMCAT_PMDEC	Alternative PMDEC from non-Gaia catalogue if available	E	data format of field: 4-byte REAL	mas/yr	physical unit of field	
lab_mag_selection	lab_mag_selection	Catalogue	e file already provided with the following field	S		
Kab_mag_selection	Kab_mag_selection					
z_selection	z_selection (zphot/zspec)					
stargal_flag	Star/Galaxy separation from photometry, magnitude, SED fitting etc					
photometry_flag	Masked areas, bright stars etc					
U_mag	Variety of magnitudes from a variety of sources					
u_mag						
g_mag						
r_mag						
i_mag						
z_mag						
JPAS, PAU mags +200) cols					

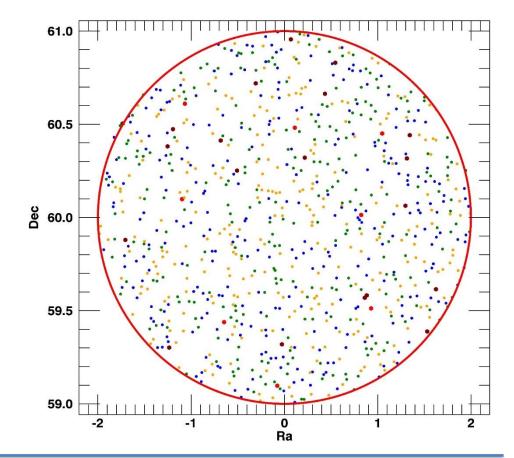
steps Stallangs Malahaes

				Previously indicated a	s providing
	Photometry - Ideal s	Photometry - Ideal set for CPS		StePS	
Desirable	SDSS_ID	SDSS ID			
Desirable	SDSS_MAG_G	Magnitude estimate for the target in the SDSS g band	MAG_G		
Desirable	SDSS_EMAG_G	The error in the magnitude estimate for the target in the SDSS g band	EMAG_G		
Desirable	SDSS_MAG_R	Magnitude estimate for the target in the SDSS r band	MAG_R	у	
Desirable	SDSS_EMAG_R	The error in the magnitude estimate for the target in the SDSS r band.	EMAG_R	у	
Desirable	SDSS_MAG_I	Magnitude estimate for the target in the SDSS i band	MAG_I		
Desirable	SDSS_EMAG_I	The error in the magnitude estimate for the target in the SDSS i band.	EMAG_I		
Desirable	GAIA_ID	Gaia ID			
Desirable	GAIA_MAG_GG	Magnitude estimate for the target in the Gaia G band (AB magnitude system)	MAG_GG		
Desirable	GAIA_EMAG_GG	Error in the magnitude estimate for the target in the Gaia G band (including rr	EMAG_GG		
Desirable	GAIA_MAG_BP	Magnitude estimate for the target in the Gaia BP band (AB magnitude system	MAG_BP		
Desirable	GAIA_EMAG_BP	Error in the magnitude estimate for the target in the Gaia BP band (inlcuidng	EMAG_BP		
Desirable	GAIA_MAG_RP	Magnitude estimate for the target in the Gaia RP band (AB magnitude system	MAG_RP		
Desirable	GAIA_EMAG_RP	Error in the magnitude estimate for the target in the Gaia RP band (including	EMAG_RP		

input sources: 1601 science - 100 Guide stars - 100 Calibration stars

3 surveys - 948 fibers

Survey_1: 531 Input 298 Fibres (green Points) Input max number of fb: 600

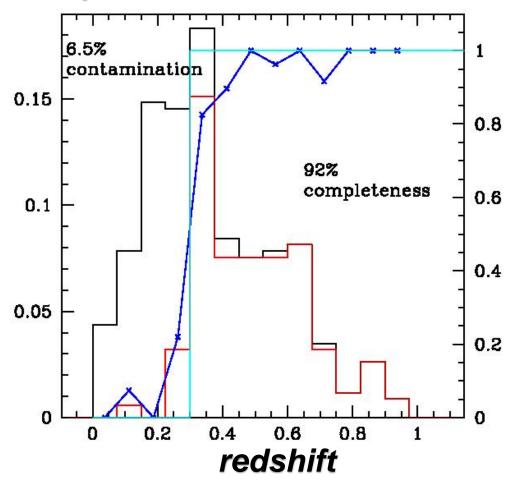

Survey_2: 538 Input 265 Fibers (blue Points) Input max number of fb: 400

Survey_3: 532 Input 281 Fibers (orange Points) Input max number of fb:

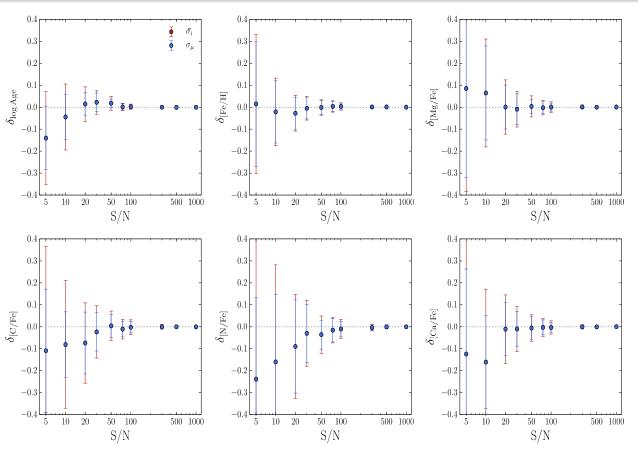
8 giude star (red points) 20 calibration (brown points)

76 Sky fibres

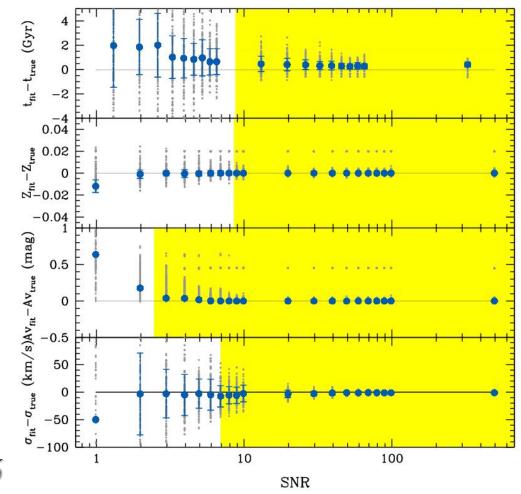
Plate A - Field 1



SAIt- LXI Congresso Italiano, Padova

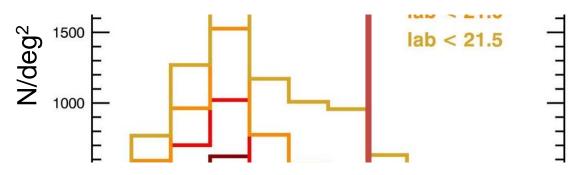

Photometric redshift preselection: how accurate ?

Stellar ages, metallicities, dust extinction and velocity dispersions, are all recovered without significant systematic offsets (accuracy higher than 10%) with a S/N~15.


Figure A1. The difference between parameters measured from artificially degraded spectra and the original high-quality SDSS stacked spectrum. We construct 50 realizations at each S/N. The different colored symbols represent two independent error estimates, where the red is the average of the 50 errors measured by the fitting code and the blue corresponds to the 1σ scatter of the 50 measured parameters. Age and [Fe/H] are accurately recovered without significant systematic offsets down to S/N $\approx 10 \text{ Å}^{-1}$. [Mg/Fe] and [Ca/Fe], on the other hand, require S/N $\approx 20 \text{ Å}^{-1}$, and [C/Fe] and [N/Fe] demand S/N $\approx 30 \text{ Å}^{-1}$.

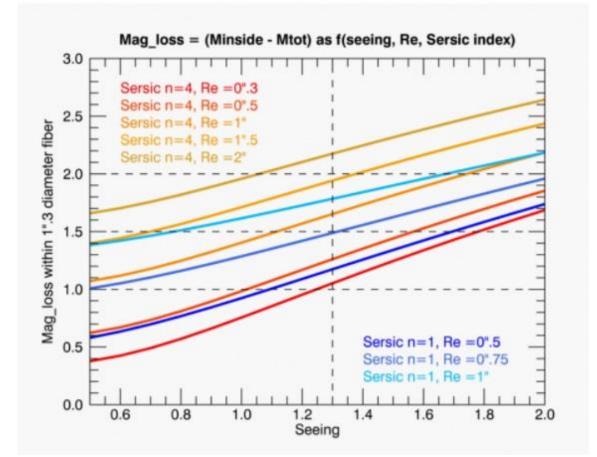
Choi et al. 2014

Stellar ages, metallicities, dust extinction and velocity dispersions, are all recovered without significant systematic offsets (accuracy higher than 10%) with a S/N~15.


Citro, Pozzetti et al. 2016

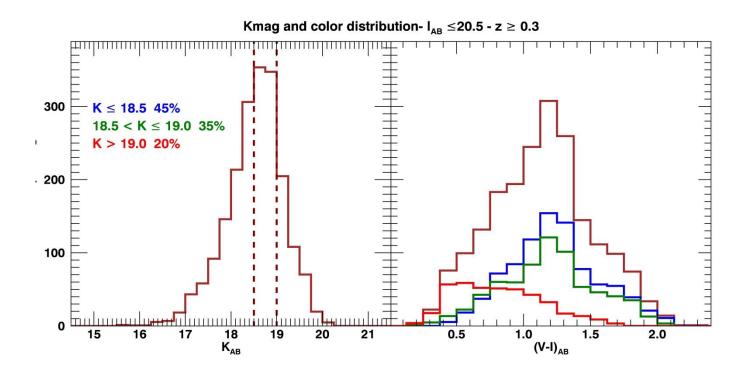
SAIt- LXI Congresso Italiano, Padova

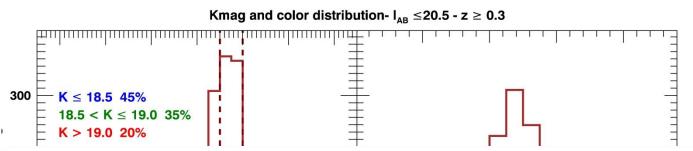
Redshift	Mass limit (log(M/M _{sun})) at lab < 20.5		
z=0.3	10.2		
z=0.5	11.0		
z=0.8	11.5		



Galaxy surface density values (deg⁻²) from COSMOS catalog

Mag limit	I _{AB} <20.0	I _{AB} <20.5	I _{AB} <21.0	I _{AB} <21.5
All gals	2000	3300	5500	9000
z _{phot} >0.3	1000	2000	3700	6600




A possible prioritization strategy....

A possible prioritization strategy....

Tab le 1					
	I _{AB} ·	< 20.5	K _{AB} < 18.5		
Redshift	Red galaxies	Blue galaxies	Red galaxies	Blue galaxies	
0.15	9.92	9.67	10.22	10.18	
0.35	10.60	10.45	10.85	10.76	
0.45	10.88	10.75	11.09	10.98	
0.55	11.12	10.99	11.29	11.16	
0.65	11.31	11.16	11.44	11.29	

v<observation> <configure num sky_fibres="50" plate="PLATE_A" max_calibration="20" maximum_gate_angle="10"/> v<survevs> <survey max fibres="600" name="survey 1"/> <survey max fibres="400" name="survey 2"/> </surveys> v<field Dec="+60 00 00.00" RA="00 00 00.000"> <target Dec="+59 56 39.43" survey="survey_2" priority="1" id="1" RA="00 04 09.061" use="Science" name="Science"/> <target Dec="+59 08 40.69" survey="survey 1" priority="1" id="2" RA="00 04 03.698" use="Science" name="Science"/> <target Dec="+60 38 19.58" survey="" priority="1" id="3" RA="00 06 18.494" use="Science" name="Science"/> <target Dec="+59 34 37.07" survey="" priority="1" id="4" RA="23 56 52.703" use="Science" name="Science"/> <target Dec="+59 49 05.95" survey="" priority="1" id="5" RA="00 03 17.463" use="Science" name="Science"/> <target Dec="+60 03 27.90" survey="survey 1" priority="1" id="6" RA="23 52 39.839" use="Science" name="Science"/> <target Dec="+60 17 23.61" survey="survey 1" priority="1" id="7" RA="00 04 47.434" use="Science" name="Science"/> <target Dec="+60 47 15.83" survey="survey 1" priority="1" id="8" RA="00 02 55.362" use="Science" name="Science"/> <target Dec="+60 46 30.60" survey="survey_2" priority="1" id="9" RA="00 03 40.585" use="Science" name="Science"/> <target Dec="+59 55 03.50" survey="survey 1" priority="1" id="10" RA="00 06 40.409" use="Science" name="Science"/> <target Dec="+59 32 56.57" survey="survey 2" priority="1" id="11" RA="00 02 31.627" use="Science" name="Science"/> <target Dec="+60 41 38.08" survey="survey_2" priority="1" id="12" RA="00 02 13.110" use="Science" name="Science"/> <target Dec="+60 15 12.66" survey="" priority="1" id="13" RA="00 05 36.958" use="Science" name="Science"/> <target Dec="+60 41 29.65" survey="survey 1" priority="1" id="14" RA="00 01 41.033" use="Science" name="Science"/> <target Dec="+60 10 15.92" survey="" priority="1" id="15" RA="23 58 53.712" use="Science" name="Science"/> <target Dec="+59 24 35.29" survey="survey 2" priority="1" id="16" RA="23 54 58.681" use="Science" name="Science"/> <target Dec="+59 01 45.69" survey="survey 1" priority="1" id="17" RA="23 56 22.812" use="Science" name="Science"/> <target Dec="+59 20 24.06" survey="survey_2" priority="1" id="18" RA="00 06 53.325" use="Science" name="Science"/> <target Dec="+60 10 59.99" survey="survey1" priority="1" id="19" RA="00 01 10.324" use="Science" name="Science"/> <target Dec="+59 19 43.05" survey="" priority="1" id="20" RA="23 55 21.250" use="Science" name="Science"/> <target Dec="+60 32 14.98" survey="" priority="1" id="21" RA="00 05 14.195" use="Science" name="Science"/> <target Dec="+60 52 24.21" survey="survey_1" priority="1" id="22" RA="00 04 21.695" use="Science" name="Science"/> <target Dec="+59 00 28.23" survey="survey 2" priority="1" id="23" RA="00 03 02.886" use="Science" name="Science"/> <target Dec="+60 06 22.21" survey="" priority="1" id="24" RA="23 58 51.202" use="Science" name="Science"/> <target Dec="+60 26 45.26" survey="survey 1" priority="1" id="25" RA="23 59 20.981" use="Science" name="Science"/> <target Dec="+60 35 23.82" survey="survey 1" priority="1" id="26" RA="00 00 45.003" use="Science" name="Science"/> <target Dec="+60 01 40.33" survey="survey_1" priority="1" id="27" RA="00 06 32.588" use="Science" name="Science"/> <target Dec="+60 02 30.19" survey="survey_2" priority="1" id="28" RA="23 55 42.923" use="Science" name="Science"/> <target Dec="+60 08 54.69" survey="" priority="1" id="29" RA="00 00 47.483" use="Science" name="Science"/> <target Dec="+59 23 30.97" survey="" priority="1" id="30" RA="23 59 29.966" use="Science" name="Science"/> <target Dec="+60 48 23.32" survey="survey 1" priority="1" id="31" RA="23 55 08.408" use="Science" name="Science"/> <target Dec="+59 51 44.06" survey="survey_1" priority="1" id="32" RA="23 54 52.886" use="Science" name="Science"/> <target Dec="+60 33 10.04" survey="survey_2" priority="1" id="33" RA="00 01 09.226" use="Science" name="Science"/> <target Dec="+60 19 54.09" survey="survey_1" priority="1" id="34" RA="00 08 02.669" use="Science" name="Science"/> <target Dec="+60 27 21.11" survey="survey 1" priority="1" id="35" RA="23 53 41.291" use="Science" name="Science"/> <target Dec="+60 14 31.71" survey="" priority="1" id="36" RA="00 02 10.288" use="Science" name="Science"/> <target Dec="+60 44 21.12" survey="survey 1" priority="1" id="37" RA="00 02 32.089" use="Science" name="Science"/> <target Dec="+60 18 02.24" survey="survey 2" priority="1" id="38" RA="00 04 17.491" use="Science" name="Science"/> <target Dec="+60 02 38.61" survey="" priority="1" id="39" RA="23 55 36.921" use="Science" name="Science"/> <target Dec="+59 16 56.28" survey="survey_1" priority="1" id="40" RA="00 00 10.854" use="Science" name="Science"/> <target Dec="+60 10 43.11" survey="" priority="1" id="41" RA="00 03 09.502" use="Science" name="Science"/> <target Dec="+60 37 56.77" survey="survey 2" priority="1" id="42" RA="00 03 03.918" use="Science" name="Science"/> <target Dec="+59 27 26.94" survey="survey 2" priority="1" id="43" RA="23 56 11.746" use="Science" name="Science"/> <target Dec="+60 34 23.52" survey="survey 1" priority="1" id="44" RA="00 02 47.224" use="Science" name="Science"/> <target Dec="+60 05 06.14" survey="survey_2" priority="1" id="45" RA="00 02 49.106" use="Science" name="Science"/> <target Dec="+60 34 28.38" survey="survey 1" priority="1" id="46" RA="00 05 44.468" use="Science" name="Science"/> <target Dec="+59 21 45.91" survey="" priority="1" id="47" RA="23 58 10.472" use="Science" name="Science"/>

SAIt- LXI Congresso Italiano, Padova

v<sources> <source RA="00 04 09.061" Dec="+59 56 39.43"/> <source RA="00 04 03.698" Dec="+59 08 40.69"/> <source RA="00 06 18.494" Dec="+60 38 19.58"/> <source RA="23 56 52.703" Dec="+59 34 37.07"/> <source RA="00 03 17.463" Dec="+59 49 05.95"/> <source RA="23 52 39.839" Dec="+60 03 27.90"/> <source RA="00 04 47.434" Dec="+60 17 23.61"/> <source RA="00 02 55.362" Dec="+60 47 15.83"/> <source RA="00 03 40.585" Dec="+60 46 30.60"/> <source RA="00 06 40.409" Dec="+59 55 03.50"/> <source RA="00 02 31.627" Dec="+59 32 56.57"/> <source RA="00 02 13.110" Dec="+60 41 38.08"/> <source RA="00 05 36.958" Dec="+60 15 12.66"/> <source RA="00 01 41.033" Dec="+60 41 29.65"/> <source RA="23 58 53.712" Dec="+60 10 15.92"/> <source RA="23 54 58.681" Dec="+59 24 35.29"/> <source RA="23 56 22.812" Dec="+59 01 45.69"/> <source RA="00 06 53.325" Dec="+59 20 24.06"/> <source RA="00 01 10.324" Dec="+60 10 59.99"/> <source RA="23 55 21.250" Dec="+59 19 43.05"/> <source RA="00 05 14.195" Dec="+60 32 14.98"/> <source RA="00 04 21.695" Dec="+60 52 24.21"/> <source RA="00 03 02.886" Dec="+59 00 28.23"/> <source RA="23 58 51.202" Dec="+60 06 22.21"/> <source RA="23 59 20.981" Dec="+60 26 45.26"/> <source RA="00 00 45,003" Dec="+60 35 23,82"/> <source RA="00 06 32.588" Dec="+60 01 40.33"/> <source RA="23 55 42.923" Dec="+60 02 30.19"/> <source RA="00 00 47.483" Dec="+60 08 54.69"/> <source RA="23 59 29.966" Dec="+59 23 30.97"/> <source RA="23 55 08.408" Dec="+60 48 23.32"/> <source RA="23 54 52.886" Dec="+59 51 44.06"/> <source RA="00 01 09.226" Dec="+60 33 10.04"/> <source RA="00 08 02.669" Dec="+60 19 54.09"/> <source RA="23 53 41.291" Dec="+60 27 21.11"/> <source RA="00 02 10.288" Dec="+60 14 31.71"/> <source RA="00 02 32.089" Dec="+60 44 21.12"/> <source RA="00 04 17.491" Dec="+60 18 02.24"/> <source RA="23 55 36.921" Dec="+60 02 38.61"/> <source RA="00 00 10.854" Dec="+59 16 56.28"/> <source RA="00 03 09.502" Dec="+60 10 43.11"/> <source RA="00 03 03.918" Dec="+60 37 56.77"/> <source RA="23 56 11.746" Dec="+59 27 26.94"/> <source RA="00 02 47.224" Dec="+60 34 23.52"/> <source RA="00 02 49.106" Dec="+60 05 06.14"/> <source RA="00 05 44.468" Dec="+60 34 28.38"/> <source RA="23 58 10.472" Dec="+59 21 45.91"/> <source RA="00 04 42.069" Dec="+59 18 43.21"/> <source RA="23 59 34.671" Dec="+60 51 04.35"/> <source RA="23 58 35.206" Dec="+60 26 36.57"/> <source RA="00 02 55.806" Dec="+59 50 42.64"/> <source RA="00 03 25.796" Dec="+59 11 50.19"/> <source RA="00 04 20.365" Dec="+60 21 41.72"/>

SAIt- LXI Congresso Italiano, Padova

v<observation;</pre> v<configure num sky fibres="50" plate="PLATE A" plate version="test 0001" maximum gate angle="10" max calibration="20"> <conditions tlr="0.0065" pressure="770" ha="0" temperature="293" relative humidity="0.2"/> <hour_angle_limits latest="0.9" earliest=" 1"/> </configure> ▼<survevs> <survey name="survey_1" max_fibres="600"/> <survey name="survey_2" max_fibres="400"/> </surveys> v<field RA="00 00 00.000" Dec="+60 00 00.00"> <target x="105.8320387657853" y="-10.52189240031424" priority="1" name="Science" fibre="276" use="Science" id="1" RA="00 04 09.061" survey="survey_2" Dec="+59 56 39.43"/> <target x="107.1307854253901" y="-175.1559236838459" priority="1" name="Science" fibre="411" use="Science" id="2" RA="00 04 03.698" survey="survey_1" Dec="+59 08 40.69"/> <target x="158.2175693360819" y="132.5717582787377" priority="1" name="Science" use="Science" id="3" RA="00 06 18.494" survey="" Dec="+60 38 19.58"/> <target x="-80.54760947826531" y="-85.7332039859829" priority="1" name="Science" use="Science" id="4" RA="23 56 52.703" survey="" Dec="+59 34 37.07"/: <target x="84.13868101975471" y="-36.43833419864352" priority="1" name="Science" fibre="341" use="Science" id="5" RA="00 03 17.463" survey="" Dec="+59 49 05.95"/> <target x="-187.9076969923904" y="14.47298331440923" priority="1" name="Science" fibre="766" use="Science" id="6" RA="23 52 39.839" survey="survey_1" Dec="+60 03 27.90"/> <target x="121.1598408293398" y="60.25896698199412" priority="1" name="Science" fibre="190" use="Science" id="7" RA="00 04 47.434" survey="survey_1" Dec="+60 17 23.61"/> <target x="73.12786985375708" y="161.8998120201898" priority="1" name="Science" fibre="79" use="Science" id="8" RA="00 02 55.362" survey="survey 1" Dec="+60 47 15.83"/> <target x="92.09114273732798" y="159.6848378648529" priority="1" name="Science" fibre="84" use="Science" id="9" RA="00 03 40.585" survey="survey_2" Dec="+60 46 30.60"/> <target x="171.3318140835472" y="-14.7271471040255" priority="1" name="Science" fibre="271" use="Science" id="10" RA="00 06 40.409" survey="survey 1" Dec="+59 55 03.50"/> <target x="65.22315377480156" y="-91.55750573318564" priority="1" name="Science" use="Science" id="11" RA="00 02 31.627" survey="survey_2" Dec="+59 32 56.57"/> <target x="55.51885634847669" y="142.1030249325952" priority="1" name="Science" use="Science" id="12" RA="00 02 13.110" survey="survey_2" Dec="+60 41 38.08"/> <target x="142.4224737082538" y="53.33263294669789" priority="1" name="Science" fibre="197" use="Science" id="13" RA="00 05 36.958" survey="" Dec="+60 15 12.66"/> <target x="42.12406981750267" y="141.4549428084163" priority="1" name="Science" fibre="78" use="Science" id="14" RA="00 01 41.033" survey_"survey_1" Dec="+60 41 29.65"/> <target x="-27.88135399216676" y="34.78123899606205" priority="1" name="Science" fibre="960" use="Science" id="15" RA="23 58 53.712" survey="" Dec="+60 10 15.92"/2 <target x="-131.0011312688003" y="-119.7509660173669" priority=1" name="Science" fibre="651" use="Science" id="16" RA="23 54 58.681" survey="survey_2" Dec="+59 24 35.29"/> <target x="-95.30436520418178" ý="-197.9419275383197" prioritý="1" name="Science" use="Science" id="17" RA="23 56 22.812" survey="survey_1" Dec="+59-01 45.69"/> <target x="179.6755195208989" y="-132.7154939723492" priority="1" name="Science" use="Science" id="18" RA="00 06 53.325" survey="survey"2" Dec="+59 20 24.06"/> <target x="29.57509356213196" y="37.27261408757569" priority="1" name="Science" fibre="143" use="Science" id="19" RA="00 01 10.324" survey="survey_1" Dec="+60 10 59.99"/> <target x="-121.5603991980899" y="-136.6582118310569" priority="1" name="Science" use="Science" id="20" RA="23 55 21.250" survey="" Dec="+59 19 43.05"/> <target x="131.9495020709717" y="111.4326076715803" priority="1" name="Science" fibre="139" use="Science" id="21" RA="00 05 14.195" survey="" Dec="+60 32 14.98"/> <target x="108.6098618339318" y="179.586956791534" priority="1" name="Science" use="Science" id="22" RA="00 04 21.695" survey="survey_1" Dec="+60 52 24.21"/2 <target x="80.27705697573967" y="-202.5449191700741" priority="1" name="Science" use="Science" id="23" RA="00 03 02.886" survey="survey_2" Dec="+59 00 28.23"/> <target x="-28.98813741175525" y="21.60577437049574" priority="1" name="Science" fibre="956" use="Science" id="24" RA="23 58 51.202" survey="" Dec="+60 06 22.21"/> <target x="-16.30763863625442" y="90.72448405341238" priority="1" name="Science" use="Science" id="25" RA="23 59 20.981" survey_1" Dec="+60 26 45.26"/> <target x="18.78131083377302" y="120.2953613476673" priority="1" name="Science" fibre="56" use="Science" id="26" RA="00 00 45.003" survey="survey 1" Dec="+60 35 23.82"/> <target x="167.3456568337675" y="7.76428584432371" priority="1" name="Science" fibre="231" use="Science" id="27" RA="00 06 32.588" survey="survey 1" Dec="+60 01 40.33"/> <target x="-108.9423085271929" y="9.386082452579418" priority="1" name="Science" use="Science" id="28" RA="23 55 42.923" survey="survey_2" Dec="+60 02 30.19"/> <target x="19.98373763155823" y="30.1630925918946" priority="1" name="Science" fibre="59" use="Science" id="29" RA="00 00 47.483" survey="" Dec="+60 08 54.69"/><target x="-13.00318012077774" y="-123.9810154676461" priority="1" name="Science" fibre="563" use="Science" id="30" RA="23 59 29.966" survey="" Dec="+59 23 30.97"/> <target x="-121.2446452094911" y="166.1303903925333" priority="1" name="Science" use="Science" id="31" RA="23 55 08.408" survey="survey_1" Dec="+60 48 23.32"/> <target x="-131.1241368935607" y="-26.83832592128942" priority="1" name="Science" use="Science" id="32" RA="23 54 52.886" survey="survey 1" Dec="+59 51 44.06"/> <target x="28.90584852699605" y="112.7048618652853" priority="1" name="Science" use="Science" id="33" RA="00 01 09.226" survey 2" Dec="+60 33 10.04"/> <target x="203.6640931075195" y="70.94956373494408" priority="1" name="Science" use="Science" id="34" RA="00 08 02.669" survey="survey_1" Dec="+60 19 54.09"/> <target x="-159.6734383339948" y="95.47227677229853" priority="1" name="Science" fibre="853" use="Science" id="35" RA="23 53 41.291" survey="survey 1" Dec="+60 27 21.11"/> <target x="54.75594167645781" y="49.42247593703544" priority="1" name="Science" use="Science" id="36" RA="00 02 10.288" survey="" Dec="+60 14 31.71"/> <target x="63.42418460901268" y="151.6227298689472" priority="1" name="Science" fibre="67" use="Science" id="37" RA="00 02 32.089" survey="survey 1" Dec="+60 44 21.12"/> <target x="108.4036374617738" y="62.17531708201052" priority="1" name="Science" use="Science" id="38" RA="00 04 17.491" survey="survey_2" Dec="+60 18 02.24"/> <target x="-111.4999524702725" y="9.906185389891004" priority="1" name="Science" fibre="772" use="Science" id="39" RA="23 55 36.921" survey="" Dec="+60 02 38.61"/> <target x="4.710384892403485" y="-146.650316491188" priority="1" name="Science" fibre="486" use="Science" id="40" RA="00 00 10.854" survey="survey_1" Dec="+59 16 56.28"/> <target x="79.8577756167159" y="36.79951165653757" priority="1" name="Science" fibre="181" use="Science" id="41" RA="00 03 09.502" survey="" Dec="+60 10 43.11"/> <target x="76.83728324443354" y="129.7216001027656" priority="1" name="Science" use="Science" id="42" RA="00 03 03.918" survey="survey_2" Dec="+60 37 56.77"/> <target x="-98.78228021979668" y="-110.1536264912818" priority="1" name="Science" fibre="612" use="Science" id="43" RA="23 56 11.746" survey="survey_2" Dec="+59 27 26.94"/> <target x="69.89419510859905" y="117.3737530155118" priority="1" name="Science" fibre="93" use="Science" id="44" RA="00 02 47.224" survey="survey_1" Dec="+60 34 23.52"/> <target x="71.40590958225162" ý="17.65441015027646" prioritý="1" name="Science" fibre="224" use="Science" id="45" RA="00 02 49.106" survéy_2" Dec="+60 05 06.14"/><target x="144.7512584932255" y="119.4981253921431" priority="1" name="Science" fibre="141" use="Science" id="46" RA="00 05 44.468" survey="survey_1" Dec="+60 34 28.38"/> <target x="-47.49608358041701" y="-129.9395806162752" priority="1" name="Science" use="Science" id="47" RA="23 58 10.472" survey="" Dec="+59 21 45.91"/>

Thanks to Angela we can read xml files producing ascii catalogs and plot results.

Formation and Evolution of Galaxies and Cosmic Structures.

A detailed picture of the stellar and (multi-phase) gas kinematics, gas inflows and outflows in both high-z and mid-z star-forming galaxies and its connection with the circum-galactic and intergalactic medium is becoming accessible thanks to spatially resolved (optical/IR/radio) spectroscopy