

ALMA scientific capabilites and its science with AGN

Paola Andreani ESO-ALMA

AGN Conference, Sep 23-26 2014, Trieste

- Review of the ALMA scientific capabilities
- ALMA and the AGN
 - Outflows/AGN feedback in nearby active galaxies
 - Imaging the obscuring torus/nucleus in intensity and polarisation
 - Megamasers in AGN and H₀
 - QSO as lighthouses: absorption lines and lenses
 - Role of AGN/SMBH in shaping galaxies physical properties
 - Search for the first quasars
- Future plans

ALMA Observatory

The Atacama Large Millimeter Submillimeter Array (ALMA)

located in the Atacama desert in Chile on the Chajnantor plateu at 5000m
ALMA works at low frequencies (from 30GHz to 900 GHz)
50+4 12m + 12 7m high-precision antennas with baselines up to 16km.:
50x12m antennas (high-angular resolution and sensitivity)
+ ACA (Morita Array) 4x12m + 12x7m (for extended structures)

10-100 times more sensitive10-100 times better angular resolutioncompared to current millimeter interferometers.

ALMA Operations Centres

Bilateral Agreement Annex B:

ALMA has three level-1 science requirements:

Abili

*

- To detect spectral line emission from CO or C+ in a normal galaxy
 like the Milky Way at a redshift of z = 3, in less than 24 hours of observation.
 - To image the gas kinematics in a solar-mass protostellar/protoplanetary disc at a distance of 150 pc (~ distance of the star-forming clouds in Ophiuchus or Corona Australis), enabling the study of the physical, chemical, and magnetic field structure of the disc and to detect the tidal gaps created by planets undergoing formation.
- To provide precise images at an angular resolution of 0.1" (accurately representing the sky brightness at all points where the brightness is greater than 0.1% of the peak image brightness). This requirement applies to all sources visible to ALMA that transit at an elevation greater than 20 degrees.

These requirements drive the technical specifications of ALMA

These science goals cannot be achieved by any other instrument

AGN Conference, Se Trieste

	Specification			
Number of Antennas	50×12-m (12-m Array), plus 12×7-m & 4×12-m (ACA)			
Maximum Baseline Lengths	0.15 - 16 km			
Angular Resolution (")	~0.2" × (300/v GHz) × (1 km / max. baseline)			
12-m Primary beam (")	~20.6" × (300/v GHz)			
7-m Primary beam (")	~35" × (300/v GHz)			
Number of Baselines	Up to 1225 (ALMA correlators can handle up to 64 antennas)			
Total Bandwidth	16 GHz (2 polarizations × 4 basebands × 2 GHz/baseband)			
Spectral Resolution	As narrow as 0.008 × (v/300 GHz) km/s			
Polarimetry	Full Stokes parameters			

Full Science Capabilities				Most Compact		Most Extended		
Band	Frequency (GHz)	Wavelength (mm)	Primary Beam (FOV; ")	Continuum Sensitivity (mJy/ beam)	Angular Resolu- tion (")	Spectral Sensitivity ∆T _{line} (K)	Angular Resolution (")	Spectral Sensitivity ∆T _{line} (K)
1	31.3-45	6.7-9.5	197-137	0.04	13-9	0.006	0.12-0.08	255
2	67-90	3.3-4.5	92-69	0.06	6-4.4	0.009	0.06-0.04	413
3	84-116	2.6-3.6	73-53	0.07	4.8-3.4	0.04	0.045-0.032	430
4	125-163	1.8-2.4	49-38	0.06	3.2-2.4	0.048	0.030-0.023	330
5	163-211	1.4-1.8	38-29	0.11	2.5-1.9	0.06	0.027-0.021	641
6	211-275	1.1-1.4	29-22	0.085	1.9-1.5	0.05	0.018-0.014	490
7	275-373	0.8-1.1	22-16	0.15	1.5-1.1	0.08	0.014-0.01	814
8	385-500	0.6-0.8	16-12	0.28	1.04-0.8	0.28	0.01-0.008	1900
9	602-720	0.4-0.5	10-8.6	1.1	0.66-0.55	0.9	0.006-0.005	8900
10	787-950	0.3-0.4	7.8-6.5	1.2	0.51-0.42	1.6	0.005-0.004	_

Spatial resolution Physical size at redshift z=0.01 and z=2

Frequency	Most compact	Most extended
100GHz/ 3mm	700pc – 28.9kpc	6рс - 250рс
250GHz/ 1mm	310pc – 12.8kpc	3рс - 120рс
340GHz/ 870um	220pc – 9.4kpc	2рс - 85рс
450GHz/ 670um	165pc – 6.8kpc	1.6рс – 70рс
660GHz/ 450um	110рс – 4.7крс	1рс - 42рс

AGN Conference, Sep 23-26 2014, Trieste

per baseband for observations in dual polarization

Single polarization modes for all bandwidths:	Mode	Polari- zation*	Band- width (MHz)	Nchan	Chan. Spacing (MHz)	Spectral Resolu- tion† 300 GHz (km/s)
double # of channels and 1/2 channel spacing Full Stokes polarization mode ½ # channels.	FDM	Dual	1875	3840	0.488	0.98
	FDM	Dual	938	3840	0.244	0.49
	FDM	Dual	469	3840	0.122	0.24
	FDM	Dual	234	3840	0.061	0.12
Each receiver outputs four 2 GHz-wide basebands 40 0.0305 0.061						
These basebands can be tuned independently400.01530.031						0.031
	TDM Du The channels within a mode may be set up as one contiguous spectral window, or split up into 2/4 narrower windows.					

Paola Andrean

AGN Conference, Sep 23-26 2014, Trieste

Talk outline

- Review of the ALMA scientific capabilities
- ALMA and the AGN
 - Outflows/AGN feedback in nearby active galaxies
 - Imaging the obscuring torus/nucleus in intensity and polarisation
 - Megamasers in AGN and H₀
 - QSO as lighthouses: absorption lines and lenses
 - Role of AGN/SMBH in shaping galaxies physical properties
 - Search for the first quasars
- Future plans

Central dust lane (dim blue background image, HST) Coloured structures near the centre: ALMA CO(3-2), spiral shape, as well as an unexpected outflow. No HCO⁺ HCN \rightarrow no high density gas in the centre.

Paola Andreani

Combes el, 2013

1700 **Nuclear fueling and feedback in the** Seyfert 1 NGC 1566 CO(3-2) 0.1 1600 0.1 Dynamics inside central 1 kpc: molecular trailing spiral structure of ~ 100pc size inside the Lindblad resonance of the nuclear bar 0.0 → massive central BH significantly influences the dynamics of the gas 1000 HST/CO(3-2) CO(3-2) PV along the minor/major axis: no outflow -54°56'14" Gaseous spiral correlated with -54°56'16" the dusty spiral in 0.2 extinction in HST 1500 -54°56'18" 0.1 Spiral feature seen in emission at -54°56'20" 0.87mm ALMA FOV:=0.9kpc resol=25pc -4-2 0 2

4^h20^m00.5

AGN Conference, Sep 23-26 2014, HCO+(4-3) ~ 3 x HCN(4-3) → SF excitation dominates over AGN heating

Paola Andreani

20"00.0

Combes el, 2014

Major axis position (arcsec)

Talk outline

- Review of the ALMA scientific capabilities
- ALMA and the AGN
 - Outflows/AGN feedback in nearby active galaxies
 - Imaging the obscuring torus/nucleus in intensity and polarisation
 - Megamasers in AGN and H_0
 - QSO as lighthouses: absorption lines and lenses
 - Search for the first quasars
- Future plans

The central torus/nucleus

Polar outflow in the torus/nucleus?

Inflow/outflow of material traced by the magnetic field lines imaged by polarised dust

- Review of the ALMA scientific capabilities
- ALMA and the AGN
 - Outflows/AGN feedback in nearby active galaxies
 - Imaging the obscuring torus/nucleus in intensity and polarisation
 - Megamasers in AGN and H₀
 - QSO as lighthouses: absorption lines and lenses
 - Search for the first quasars
- Future plans

Why the Search for Mm/Submm Masers in AGN?

ALMA

- Probe same regions of AGN as 22 GHz masers:
 - constrain radiative transfer models
 - Map out density and T in AGN central engines
- Probe different regions:
 - trace out conditions and dynamics of uncharted portions of AGN (closer to black hole?)
 - Improve geometric models
 - test AGN unified model
- Search for "supermasers":
 - probe more distance sources
- Search for masers from "back" of discs:
 - improve geometric disc models
- Better angular resolution
 - Higher accuracy H₀
- Probe different SMBH mass range?
 - Constrain the M σ diagram

Masers in AGN: probing the inner accretion disc

- Review of the ALMA scientific capabilities
- ALMA and the AGN
 - Outflows/AGN feedback in nearby active galaxies
 - Imaging the obscuring torus/nucleus in intensity and polarisation
 - Megamasers in AGN and H_0
 - QSO as lighthouses: absorption lines and lenses
 - Search for the first quasars
- Future plans

- Review of the ALMA scientific capabilities
- ALMA and the AGN
 - Outflows/AGN feedback in nearby active galaxies
 - Imaging the obscuring torus/nucleus in intensity and polarisation
 - Megamasers in AGN and H_0
 - QSO as lighthouses: absorption lines and lenses
 - Search for the first quasars
- Future plans

Finding the first QSOs

- Target the central X-ray dominated region (XDR): X-rays photons
 - penetrate molecular clouds even at high column densities (1keV 2x10²² cm⁻², 10keV 4x10²⁵ cm⁻²,100keV 10²⁹ cm⁻²)
 - high heating efficiencies (order of 30%)
 - inefficient in the dissociation of molecules
- at its largest baseline, ALMA can resolve spatial scales of -30 pc at z = 5, and detect and thus resolve the central XDRs

In XDRs: gas and dust at high-T and in dense clouds If heating is due to shocks gas and dust \neq T

ALMA can distinguish between X-ray chemistry and an intense SF burst on the same spatial scales

- Review of the ALMA scientific capabilities
- ALMA and the AGN
 - Outflows/AGN feedback in nearby active galaxies
 - Imaging the obscuring torus/nucleus in intensity and polarisation
 - Megamasers in AGN and H_0
 - QSO as lighthouses: absorption lines and lenses
 - Search for the first quasars
- Future plans

ALMA beyond ALMA

- ALMA will allow transformational science thanks to the sensitivity, angular resolution, spectral coverage and image fidelity, but...
- The baseline ALMA project will only achieve a fraction of the full potential of the site and instrument
- Incomplete Receiver Complement
- Limited Wide Field Capabilities
- Limited Correlator and Data Rate Capabilities
- Extended baselines (30-50km), VLBI (200-10000km)
- Advanced Calibration, Software, Science Tools....

Phasing ALMA for VLBI

The Even Horizon Telescope and Sgr A*

•	ALMA Early Science is just the beginning – Cycle 3: end April 2015 additional capabilities	Spectral Resolu- tion [†] 300 GHz (km/s)
	time	0.98
٠	AGN are ideal target for ALMA	
•	ALMA spatial resolution can be very high	0.49
~	0.2" x (300/v(GHz) x (1km/max baseline)	0.24
		0.12
Α	LMA spectral resolution can be very high	0.061
		0.031
		31.2

