

Radio Quiet AGN at high radio frequencies: jet or accretion disk corona? <u>Ranieri D. Baldi</u> E. Behar, A. Laor, A. Horesh

local radio-emitting population

Starburst galaxy Radio Quiet AGN

Radio Loud AGN,

Origin of radio emission

- Star formation ⇒ young stellar pop
- Jet \Rightarrow synchrotron for RL AGN

• RQ AGN:

- ~10³ weaker than in RLQ, some show extended jets
- some show high radio brightness $\mathsf{T} \to \mathsf{hot}$ non-thermal electrons
- Unresolved with VLA \rightarrow Smaller than ~1 kpc.
- Unresolved with VLBI \rightarrow Smaller than ~1 pc
- Variable on months timescale \rightarrow Smaller than ~0.1pc
- \rightarrow a scaled-down version of relativistic jet??

But, there is a clue for a different origin....

Radio | X-ray Relation

Laor & Behar (2008) found that the RQQ from the Palomar-Green quasar sample show the following relation:

 $L_R / L_X \approx 10^{-5}$

•X-rays are not relativistically beamed

→ Radio emission in RQQ is also unbeamed.

If radio is from a jet, the jet must be slow.

•X-rays most likely from a hot corona.

Radio | X-ray Relation

Radio | X-ray Relation

Radio | X-ray Relation

Coronally active stars vs RQ AGN

Does radio emission in radio quiet AGN also originate in a magnetically heated corona?

STELLAR - AGN CORONA

Why should similar physics apply to stellar and AGN coronae?

• UV disk: T ~ 5 x 10⁴ K

· LX-AGN ~ 1013LX-☆

 $R_{AGN-X} \sim 10^{15}$ cm (light day), $V_{AGN-X} \sim 10^{45}$ cm³ 0.01 - 0.1 $R_{A-X} \sim 10^{31-33}$ cm³ ~ 10⁻¹³ V_{AGN-X} $Beq-AGN^2 \sim L_{X-AGN} / V_{X-AGN} \sim Beq-Agm^2$

Since the X-ray emission originates from the disk coronae, which are magnetically heated, the radio emission from RQ AGN also derive from coronal activity?

Galeev, Rosner & Vaiana 1979

Magnetically heated coronae in accretion disks (but no mention of observable radio emission)

How can this interpretation be tested?

Radio/X-ray monitoring

X-ray-radio correlated variability
 VLA with RXTE

Clearly, more monitoring is needed

at high radio frequencies..

Synchrotron self absorbed source, radio sphere:

$$R_{ssa} = 0.1 \left(\frac{vL_{v}}{10^{40} \text{ erg s}^{-1}}\right)^{1/2} \left(\frac{B_{\perp}}{\text{Gauss}}\right)^{1/4} \left(\frac{v}{5\text{GHz}}\right)^{-7/4} \text{ pc}$$

- If B ~ 1/R, we saw R_{ssa} ~ L^{1/2} /v ~ v⁻¹. To observe radio sizes comparable to X-ray coronal sizes ~100 times smaller, we need to observe at (assuming L_v = const.) at v= 100 GHz, which should reveal a 20 times smaller source
- absorption decreases with frequency $a_v \sim v (p+4)/2$
- Variability increase ~ v ^{5/4} : at variability time scale at 95 GHz is expected tobe about 40 times shorter than that at 5 GHz

Radio Observations at 95 GHz

- Sample of local bright Seyferts
- radio compact and relatively bright in radio (> a few mJy)
- X-ray monitored and higly variable

-		
9 C.	Australia 1	Telescop
dillo	Compact (urau
	compact a	silay

Object	D_{Lum}
MR 2251-178	289.1
NGC 3783	42.2
NGC 5506	26.8
NGC 7469	71.2
ARK 564	108.4
NGC 3227	16.7
MRK 766	75.0
NGC 5548	56.3

Combined Array for Research in Millimeter-Wave Astronomy

Detections at 95 Ghz

	$95~\mathrm{GHz}$				p · · · · · · · · · · · · · · · · · · ·
	mJy	erg/s	erg/s		scale 2"-11"
Object	Flux	$L_{95 \rm ~GHz}$	L_X	R _{pc}	···
MR 2251-178	5.8 ± 0.3	40.74	44.40	0.0018	
NGC 3783	22.3 ± 0.8	39.65	43.15	0.0019	
NGC 5506	45.7 ± 2.0	39.57	42.74	0.0019	
NGC 7469	$4.95 {\pm} 0.16$	39.46	43.18	0.0019	ottaet
ARK 564	1.14 ± 0.19	39.18	43.57	0.0019	
NGC 3227	4.1 ± 0.24	38.11	41.90	0.0020	
MRK 766	$1.98 {\pm} 0.17$	39.01	43.28	0.0019	
NGC 5548	1.6 ± 0.3	38.85	42.93	0.0019	
			NAL OF A		RA offset (arcsec: J2000)

NO dust/star formation
radio core from a jet
submillimeter-bump due to ADAF
accretion disk corona?

At high GHz, when the jet component fades away, other componets emerges: ADAF and coronal emission

Behar, Baldi, Laor et al in preparation

At high GHz, when the jet component fades away, other componets emerges: ADAF and coronal emission

At high GHz, when the jet component fades away, other componets emerges: ADAF and coronal emission Behar, Baldi, Laor et al in preparation

At high GHz, when the jet component fades away, other componets emerges: ADAF and coronal emission Behar, Baldi, Laor et al in preparation

At high GHz, when the jet component fades away, other componets emerges: ADAF and coronal emission

At high GHz, when the jet component fades away, other componets emerges: ADAF and coronal emission

Laor et al in preparation Behar, Baldi,]

At high GHz, when the jet component fades away, other componets emerges: ADAF and coronal emission

Summary & Conclusions

✓X-ray in AGN produced in the accretion disk corona: L_R/L_X (stellar coronae) ~ 10⁻⁵ ~ L_R/L_X (RQ AGN) → Radio emission in RQ AGN may also originate in the accretion disk corona: coronal mass ejections (CMEs) that feed the extended radiosphere.

At mm-wavlengths different component (jet, ADAF/corona) can coexist and the relative contribution depends on the BH mass and the accretion properties.

Better simultaneous radio/X-ray monitoring is required to further explore this hypothesis.

Observations at higher frequencies not easily accessible (but soon, e.g. ALMA) will be able to test this conjecture

Thank you