

Osservatorio Astronomico di Bologna Istituto Nazionale di Astrofisica

Signature of Early BH in cosmic backgrounds?

Nico Cappelluti INAF-OABO Yanxia Li,G. Hasinger, A. Kashlinsky, A. Comastri et al. Plus some input from SNS-Pisa

"We acknowledge the contribution of the FP7 SPACE project "ASTRODEEP" (Ref.No: 312725), supported by the European Commission.

Unexplored epoch of Cosmic History

z=20

 $10^9 M_{\odot}$ at z=7

z=7

z=1000

<u>t=0.2-0.8 Gyr</u> Structure assembly, First Stars and Black Holes <u>t>0.8 Gyr</u> Galaxy-AGN Surveys

State of the art

Spitzer Space Telescope • IRAC

After removing foreground sources the CIB revealed an unexpected pattern of the fluctuations

Known Properties

Large scale excess: •IRAC m>25 •No correlation with <1 μm •Optical m>28 •Lyman Break ~1 μm

Large scale excess: • Consistent with population in high-z structures • Scales larger than 5' fundamental After removing foreground sources the CIB revealed an unexpected pattern of the fluctuations

Known Properties

Large scale excess: •IRAC m>25 •No correlation with <1 μm •Optical m>28 •Lyman Break ~1 μm

Large scale excess: • Consistent with population in high-z structures • Scales larger than 5' fundamental

Large scale excess: • Correlations with the CXB • Significant BH population

SED of DCBH that explain the observed CXB-CIB correlation

C-thick Absorption

Figure 1. Upper: the primary spectrum (solid) for a BH with $M_{\rm BH} = 10^6 \,\rm M_{\odot}$ and its three components. Bottom: the emerging (thick solid line) quasar spectrum of above BH when $N_{\rm H} = 1.5 \times 10^{25} \,\rm cm^{-2}$ and the four components (thin lines).

DCBH from high-z

The model fits but there are caveats!

INFANT UNIVERSE 13.8 billion years ago with seeds of future galaxies

COSMIC DARK AGES 380,000 to 400 million years after the Big Bang

Chandra | CXB

NASA/JPL-Caltech

First stars

Spitzer | CIB

NASA/JPL-Caltech, A. Kashlinsky (GSFC)

FIRST STARS & QUASARS 400 million years after the Big Bang

NASA/ESA S. Beckwith (STScl) The HUDF Team

NASA WMÁP Sciénce Téam

- 1. There are pieces of evidence that large scale CIB fluctuations may arise from high-z
- 2. CIB fluctuations correlate with CXB
- 3. Models explain the observations with DCBH
- 4. We are likely accessing for the first time BH formation epoch with observational proxies
- Need of deep and wide field observation to construct the SED of the fluctuations
- 6. More to come....