
•  The Hot Universe: How does the ordinary 
matter assemble into the large-scale structures 
that we see today? 

 
[N.B: >50% of the baryons today are in a hot (>106 K) phase; and 
there are as many hot (> 107 K) baryons in clusters as in stars 
over the entire Universe] 

 

•  The Energetic Universe: How do black 
holes grow and influence the Universe? 

 
[N.B: Building a SMBH releases 30 × the binding energy of a 
galaxy; and 15% of the energy output in the Universe is in X-rays 
(mostly released via accretion)] 

 

•  The (strawman) Mission: High-throughput 
X-ray Observatory (X-IFU + WFI) 

A fantastic machine to address the Hot and Energetic 
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Why does  the  observab le  un iverse   
look  the  way i t  does?   

Dark Matter structure of the Universe 

Springel et al. 2005  



Key ques t ions  fo r  observat iona l   
as t rophys ics  in  2028  

1. How does ordinary matter assemble into the large scale structures we see today? 

 

Athena+ Deep Field 

Extended X-ray sources 

Oppenheimer et al. 2009 

Pointecouteau, Reiprich et al., 2013 arXiv1306.2319 
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How and when was the energy contained in the hot intra-cluster medium generated? 

How does ordinary matter assemble into the large-scale structures that we see today? 
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The  fo rmat ion  and evo lu t ion  o f  c lus te r s   
and g roups  o f  ga lax ies   

How and when was the energy contained in the hot intra-cluster medium generated? 

 

How does ordinary matter assemble into the large-scale structures that we see today? 
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Simulated Velocity map 

 

Ettori, Pratt, et al., 2013 arXiv1306.2322 



The  chemica l  evo lu t ion  o f  ho t  baryons  

When and how were the largest baryon reservoirs in galaxy  
clusters chemically enriched? 

 

How does ordinary matter assemble into the large-scale structures that we see today? 

Ettori, Pratt, et al., 2013 arXiv1306.2322 
 

z=2 cluster 



The  Warm-Hot  in te rga lact ic  medium (WHIM)  
Where are the missing baryons in the local Universe? What is the underlying mechanism 

determining the distribution of the hot phase of the cosmic web? 

How does ordinary matter assemble into the large-scale structures that we see today? 

Kaastra, Finoguenov et al., 2013 arXiv1306.2324 



Key ques t ions  fo r  observat iona l   
as t rophys ics  in  2028  

1. How does ordinary matter assemble into the large scale structures we see today? 

 

2. How do black holes grow and shape the Universe?  

Athena+ Deep Field 

Extended X-ray sources X-ray point sources 

MS0735+7451	
  



Cosmic  feedback and 
the  o r ig in  o f  b lack  ho le  w inds   

How do black holes launch winds and outflows?  
How much energy do they carry out to larger scales? 

 

How do black holes grow and shape the Universe? 

Cappi, Done et al., 2013 arXiv1306.2330 
Dovciak, Matt et al., 2013 arXiv1306.2331 



i)	
  How	
  do	
  accreRon	
  disks	
  around	
  black	
  holes	
  launch	
  winds/ouWlows,	
  
and	
  how	
  much	
  energy	
  do	
  these	
  carry?	
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UFO Feedback 3

Fig. 1.— Midplane density slices of the evolution of a 1044 erg s�1 UFO in an ISM devoid of clouds (Run A). See the electronic edition
of the Journal for a color version of this figure.

Fig. 2.— Same as Fig 1, but for a two-phase ISM with spherically distributed clouds (Run B).

Fig. 3.— Same as Fig 1, but for a two-phase ISM with clouds distributed in a quasi-Keplerian dis (Run C).

galactic plane and central BH by the turbulent, ram-
pressure dominated back-flow in the bubble. The results
of this run are similar to those of the simulations by SB07
and Gaibler et al. (2012) for AGN jets interacting with
a dense galactic disc.
Runs B and C demonstrate that the feedback on the

warm phase of the ISM depends strongly on the spa-
tial distribution of clouds. In all runs, however, the
UFO-blown bubble remains in the energy-driven regime,
despite radiative cooling in the clouds. This is consis-
tent with the predictions of recent analytic models by
Faucher-Giguère & Quataert (2012), which also justify
our neglect of inverse-Compton cooling.
In the following, we use the four quantities to measure

the e�ciency of feedback by the UFO: the mean radial
velocity, the velocity dispersion, the mechanical advan-
tage, and the kinetic energy of the clouds.
We define the density-weighted mean radial outflow ve-

locity of the warm phase, hvr,wi =
P

�w⇢wv · r̂/
P

�w⇢w
(Wagner & Bicknell 2011). The evolution of this quantity
and its outward only (positive) component are plotted

together with the total velocity dispersion, �tot, and the
(45�) line-of-sight velocity dispersion, �los,45, as a func-
tion of time in Fig. 4 a). We see that for the case of a
bulge-like cloud distribution (run B), the velocities of the
warm phase reach several 100 km s�1, and keep increas-
ing for the duration of the simulation. At late stages of
the evolution, the clouds are predominantly accelerated
outward (hvr,wi ⇡ hvr,w,outi), although their radial speed
never quite reaches the escape velocity of this system,
which is ⇠ 450 km s�1 at 0.5 kpc. The velocity disper-
sions, however, reach values beyond those predicted by
the M–� relation, which for the simulated galaxy using
the relations by Graham (2012) and a black hole mass of
6 ⇥ 107 M� is ⇠ 170 km s�1. The values of hvr,wi and �

are comparable to those found in analogous simulations
of AGN jet feedback (c.f. WBU12).
In run C, the feedback in terms of radially outward di-

rected cloud acceleration and cloud velocity dispersions
is noticeably less e�cient. The radial outflow velocity
peaks early (after 50 kyr) as bulk cloud material is pushed
out of the galactic disc and then drops throughout the
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ii)	
  How	
  are	
  the	
  energy	
  and	
  metals	
  accelerated	
  in	
  winds/ouWlows	
  
transferred	
  and	
  deposited	
  into	
  larger	
  galacRc	
  scales?	
  



Cosmic  feedback:   
the  impact  on  ga laxy  c lus te r  sca les  

How do jets from Active Galactic Nuclei dissipate their mechanical energy in the hot 
intracluster medium, and how does this regulate gas cooling and black hole fuelling? 

How do black holes grow and shape the Universe? 

3.7 3.8 3.9 4 4.1 4.3 4.4 4.5 4.6 4.7 4.8

60 arcsec  (22 kpc)

Croston, Sanders et al., 2013 arXiv1306.2323 

5” region 



Cosmic  feedback:  
b lack  ho le  and ga laxy  co-evo lu t ion  

How much black hole accretion occurs in the most obscured environments?  
How does this relate to the evolution of the host galaxy? 

 

How do black holes grow and shape the Universe? 

Obscured BH growth Disk instability 

Merger 

Ceverino et al. 2010 

Hopkins et al.2006 

Feedback phase 

Compton thick z=2 Blowout phase z=2 

Quiescent remnant 

Georgakakis, Carrera et al., 2013 arXiv1306.2328 



B lack  ho le  g rowth  in  the  ear ly  Un iverse  

What was the growth history of black holes in the epoch of reionization? 

 

How do black holes grow and shape the Universe? 

Aird, Comastri et al. 2013 arXiv1306.2325 





The  f i r s t  s ta r s  and b lack  ho les  
When did the first generation of stars explode to form the first seed black holes  

and disseminate the first metals in the Universe? 

How do black holes grow and shape the Universe? 

Jonker, O'Brien et al., 2013 arXiv1306.2336 

Gamma Ray Burst at z=7 





The  Athena Observato ry  

L2 orbit Ariane V 
Mass < 5100 kg 
Power 2500 W 
5 year mission 

X-ray Integral Field Unit: 
ΔE: 2.5 eV 
Field of View: 5 arcmin 
Operating temp: 50 mk 

Wide Field Imager: 
ΔE: 125 eV 
Field of View: 40 arcmin 
High countrate capability 

Silicon Pore Optics: 
2 m2 at 1 keV 
5 arcsec HEW 
Focal length: 12 m 
Sensitivity: 3 10-17 erg cm-2 s-1 

Rau et al. 2013 arXiv1307.1709 
Barret et al., 2013 arXiv:1308.6784 

Willingale  et al, 2013 
arXiv1308.6785 



100	
  x	
  ASTRO-­‐H	
  

1000	
  x	
  	
  
XMM-­‐Newton	
  

The  f i r s t  Deep Un iverse  X- ray  Observato ry  

Athena+ has vastly improved capabilities compared to current or planned facilities, and 
will provide transformational science on virtually all areas of astrophysics 

X-ray spectroscopy at the peak  
of the activity of the Universe 

Deep survey capability into the dark  
ages and epoch of reionization 

Line Sensitivity 

Survey Speed 



Techn ica l  Matu r i ty  

Enhanced: 
Angular resolution now 5”  
Fields of view increase x 4 
Effective area increase x 4  
(per instrument) 

Simplified: 
5 to 2 instruments 
Extendible to fixed OB 
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4.2 SUMMARY OF MAIN SCIENCE REQUIREMENTS  

Performance parameter Requirement Level 2 Science Goal 
Effective area at 1 keV* 2 m2 SG1.1 Finding early groups; SG4.1 Census of warm-hot baryons; 

SG4.2 Physical properties of the WHIM; SG5.1 High z AGN 
population; SG5.2 Probing the first generation of stars; SG6.1 
Complete census of AGN at the peak of activity of the Universe; 
SG6.2 Incidence of outflows in z=1-4 AGN; SG6.3 Mechanical 
energy of AGN outflows at z=1-4; SG6.4 Incidence of ultrafast 
outflows at z>1; SG8.1 AGN reverberation mapping 

Effective area at 6 keV*  0.25 m2 SG1.2 Matter assembly in clusters; SG5.2 Probing the first 
generation of stars; SG6.1 Complete census of AGN at the peak 
of activity of the Universe; SG7.1 AGN winds and outflows; 
SG8.2 Measuring SMBH spins; SG8.3 Measuring spins in GBH 

PSF HEW 
(at E<8 keV) 

5” on axis 
10” at 25’ radius  

SG1.1 Finding early groups; SG1.3 Non-gravitational heating 
processes; SG3.1 Jet energy dissipation in clusters; SG3.2 AGN 
ripples in clusters; SG3.4 Cumulative energy deposited by radio 
galaxies; SG5.1 High z AGN population; SG6.1 Complete 
census of AGN at the peak of activity of the Universe. 

X-IFU spectral resolution 2.5 eV SG1.2 Matter assembly in clusters; SG3.1 Jet energy dissipation 
on cluster scales; SG4.1 Census of warm-hot baryons; [SG3.3 X-
ray cooling cores; SG4.2 Physical properties of the WHIM; 
SG5.2 Probing the first generation of stars, 3 eV] 

X-IFU energy calibration 
accuracy (rms) 

0.4 eV SG1.2 Matter assembly in clusters; SG3.1 Jet energy dissipation 
on cluster scales 

X-IFU field of view 5’ diameter SG1.2 Matter assembly in clusters; SG3.3 X-ray cooling cores; 
SG2.1 Metal production and dispersal; SG3.1 Jet energy 
dissipation in clusters; SG5.2 Probing the first generation of 
stars. 

X-IFU low energy threshold 0.2 keV SG4.1 Census of warm-hot baryons; SG4.2 Physical properties 
of the WHIM; SG7.2 Interaction of winds with their 
environment 

X-IFU total optical blocking 
filter attenuation 

Factor 1012 at 
1200 Å 

SG4.1 Census of Warm-Hot baryons; SG7.1 AGN winds and 
outflows; SG7.2 Interaction of Winds with their environment 

WFI field of view 40’ x 40’  SG1.1 Finding early groups; SG1.3 Non-gravitational heating 
processes; SG2.1 Metal production and dispersal; SG3.2 AGN 
ripples in clusters; SG3.4 Cumulative energy deposited by radio 
galaxies; SG5.1 High z AGN population; SG6.1 Complete 
census of AGN at the peak of activity of the Universe. 

WFI spectral resolution at 6 keV 150 eV SG8.3 Measuring spins in GBH; SG8.4 reverberation mapping 
of X-ray binaries 

WFI count rate capability at 
80% throughput 

1 Crab2  SG8.3 Measuring spins in GBH; SG8.4 reverberation mapping 
of X-ray binaries 

Charged particle background, 
determined to within a few % 

<5 x 10-3 
cts/cm2/s/keV 

SG1.2 Matter assembly in clusters; SG1.3 Non-gravitational 
heating processes; SG2.1 Metal production and dispersal; SG6.1 
Complete census of AGN at the peak of activity of the Universe 

Reconstructed astrometric error 1” (3σ) SG5.1 High z AGN population; SG6.1 Complete census of 
AGN at the peak of activity of the Universe 

Absolute astrometric error 3” (3σ) SG3.1 Jet energy dissipation in clusters; SG3.4 Cumulative 
energy deposited by radio galaxies 

GRB trigger efficiency† 40% SG4.1 Census of warm-hot baryons; SG5.2 Probing the first 
generation of stars 

TOO reaction time < 4 hours SG4.1 Census of warm-hot baryons; SG5.2 Probing the first 
generation of stars 

Table 4.1: Key parameters and requirements for the Athena prime science goals. Those are achievable within 
a 5 year mission lifetime with a conservative 75% observing efficiency (see section 5.3). 

                                                        
* Requirements on the mirror effective area are given assuming the quantum efficiencies of the two Athena 
instruments, as quoted in Section 6.   
2 1 Crab corresponds to a flux of 2.4 x 10-9 ergs/s/cm2 (2-10 keV). 
† Fraction of the time a GRB trigger produces a successful X-IFU observation within the TOO reaction time. 

Core	
  of	
  the	
  mission	
  proposal	
  is:	
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80% throughput 
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Table 4.1: Key parameters and requirements for the Athena prime science goals. Those are achievable within 
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X-IFU total optical blocking 
filter attenuation 
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SG4.1 Census of Warm-Hot baryons; SG7.1 AGN winds and 
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processes; SG2.1 Metal production and dispersal; SG3.2 AGN 
ripples in clusters; SG3.4 Cumulative energy deposited by radio 
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census of AGN at the peak of activity of the Universe. 
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of X-ray binaries 

WFI count rate capability at 
80% throughput 

1 Crab2  SG8.3 Measuring spins in GBH; SG8.4 reverberation mapping 
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Charged particle background, 
determined to within a few % 

<5 x 10-3 
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SG1.2 Matter assembly in clusters; SG1.3 Non-gravitational 
heating processes; SG2.1 Metal production and dispersal; SG6.1 
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generation of stars 
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* Requirements on the mirror effective area are given assuming the quantum efficiencies of the two Athena 
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