Fast outflows quenching star formation at high redshift

Stefano Carniani
University of Florence

in collaboration with A. Marconi
Outflows

Evidence of outflows at high and low redshift but...

Evidence of AGN feedback?
Quasars $z \approx 2.4$

- A sample of 6 QSOs at $z = 2.3-2.5$
- SINFONI@VLT H-band
- Seeing limited resolution (0.5")
- $L_{\text{bol}} \approx 10^{46} - 10^{47}$ erg/s
- Broad [OIII]
 - (FWHM > 1000 km/s)
Kinematic analysis

- Spatially resolved [OIII] kinematical maps in 5/6 objects
- Velocity dispersion up to 900 km/s
- Outflow velocities 300-700 km/s
Ionized outflows
Ionized outflows

outflow model
Ionized outflows

Velocity maps confirm the presence of outflows

outflow model
Ionized outflows

Outflow rate

Molecular outflows in local AGN
(Cicone+14)

[OIII] outflows in Type 2 local AGN
(Harrison+14)

[OIII] outflows in z≈2.5 quasars

\[\dot{M} \approx \frac{M_{outflow} v_{out}}{R_{out}} \]

Physical properties of outflows
-> only ionized gas is traced
Faint narrow [OIII]

Presence of a faint narrow [OIII] around the QSO
Faint narrow [O III]

Subtract broad (> 1000 km/s) [O III] component -> Outflows
Faint narrow [OIII]

Subtract broad (> 1000 km/s) [OIII] component -> Outflows

Faint narrow (≈ 150 km/s) [OIII] component
Subtract broad (> 1000 km/s) [OIII] component → Outflows

Faint narrow (≈ 150 km/s) [OIII] component
Faint narrow [OIII]

Subtract broad (> 1000 km/s) [OIII] component -> Outflows

Faint narrow (≈ 150 km/s) [OIII] component -> Star formation?
Origin of narrow [OIII]?

K-band observations targeting Hα

SINFONI@VLT

Seeing limited resolution (0.6")
Origin of narrow [OIII]?

K-band observations targeting Hα

SINFONI@VLT

Seeing limited resolution (0.6")

Subtract broad Hα and outflow components
Origin of narrow [OIII]?
No [NII], upper limit on [NII]/Hα excludes AGN excitation → star formation!
Narrow Hα/[OIII] emission traces star formation and is anti-correlated with the presence of fast outflows!

Fast outflows “quench” star formation → feedback revealed!
Conclusions

- Ionized outflows sweep away gas in host galaxies
- Star formation is suppressed in the region affected by outflow processes
- Feedback mechanisms do not significantly depress star formation over the whole galaxy

Next Steps
- Improve outflow model to compare with our results
- Compare molecular and ionized outflows using future ALMA observations

SFR $\sim 180 M_\odot/yr$
SFR $\sim 100 M_\odot/yr$