University Federico II Naples Italy INFN Naples Italy

AGN optical variability in the VST surveys of the COSMOS and CDFS areas

Serena Falocco

26/09/2014

Authors

S. Falocco, D. De Cicco, M. Paolillo, G. Covone, G. Longo, F. Vagnetti, D. Trevese and the VST-VOICE-SUDARE team

Serena Falocco

1 Introduction

2 Approach and method of analysis

3 Results

4 Conclusions and future work

Variability of AGN

All AGN vary in different wavebands: this adds an excellent selection criterium, useful to:

- include highly variable sources in the current AGN census
- extend the demography of faint objects (e.g. Trevese+2008)
- if the sampling time is long enough (years), it is possible to reach a good completeness and low contamination (e.g. Sesar+2007)
- distinguish AGN from other astrophysical sources of similar colors

Introduction

2 Approach and method of analysis

3 Results

4 Conclusions and future work

Results

VST telescope

- VLT Survey Telescope (VST): 2.6 mt, 1 sq deg f.o.v. optical telescope equipped with 32 CCD OmegaCAM detector
- with one pointing it allows to cover entire fields such as COSMOS (1deg²)
- The dataset is part of: VST SUDARE: SUpernova Diversity And Rate Evolution (SUDARE, PI: E. Cappellaro) survey; VST Optical Imaging of the CDFS and ES1 (VOICE, PI: G. Covone) and the COSMOS extension (PI G. Pignata)
- r band every 3 days, g and i every 10 days for a total of ~30 epochs per field

Serena Falocco

COSMOS coverage (De Cicco et al. 2014 subm.)

Figure : Complete multi-band coverage. VST (one pointing) Chandra (Civano2012), XMM-Newton (Brusa+2010)

Serena Falocco

CDFS coverage (Falocco et al. 2014, close to subm.)

Figure : VST-CDFS1, VST-CDFS2, SWIRE (Londsdale+2004), SERVS (Maduit+2012), ECDFS (Hsu+2014)

Serena Falocco

Results

Variability selection

Figure : CDFS2 selection. Faint end: statistical uncertaintes; bright end: systematics

Serena Falocco

1 Introduction

2 Approach and method of analysis

3 Results

4 Conclusions and future work

Serena Falocco

Results

X/O (for COSMOS, De Cicco+2014)

Figure : X/Op. diagnostic (e.g. Mainieri+2002) XMM-Newton, Chandra.

Serena Falocco

Diagnostic z - k versus r - z (COSMOS, De Cicco+2014)

Figure : Cross: AGN; triangles: SN, boxes: new QSOs.

- extended sources; pointlike sources
- small points: VST master catalogue (background population)
- Background population: stars, galaxies and QSOs are visually segregated
- VST variable population: in the QSO region

Serena Falocco

r.-3.6 versus r-i diagnostic (for the CDFS, Falocco+2014)

Figure : Diamonds: SN, Crosses: X-ray detected sources (following slides)

- pointlike sources; extended sources
- small points: SERVS+SWIRE. Bigger symbols: VST variable objects
- Background population: stars, galaxies and QSOs are visually separated
- The majority of the variable sources are in the QSO area
- The power of this plot is to identify stars

Serena Falocco

IRAC diagnostic (for the CDFS, Falocco+2014)

Figure : Diamonds: SN, Crosses: X-ray detected sources (following slides)

- Background population (SERVS+SWIRE): stars, galaxies and QSOs visually separated
- contamination of Starbursts inside the AGN area (solid line)
- X-ray detected sources tipically inside the box of Lacy+2004
- redefined AGN area (dashed line) by Donley+2012:
 - includes most of X-ray sources
 - excludes most of extended sources
- galaxies powered or not by active nuclei (see next slide) are found inside or outside the wedge

Serena Falocco

IRAC diagnostic (simulations by Donley+2012)

Serena Falocco

SED and X-ray detections (CDFS, Falocco+2014)

- 15 sources with SED and X-ray information (Hsu et al. 2014)
- 12 have X-ray detections and AGN SED
- 3 not X-ray detected, have galactic SED and SN lightcurves

SED (Hsu, Salvato et al. 2014, subm.)

Serena Falocco

Introduction

2 Approach and method of analysis

3 Results

4 Conclusions and future work

Confirmation of the variable sources in COSMOS (83) and in CDFS (137)

In COSMOS:

- $80\pm4\%$ efficiency of detecting AGN
- $14\pm4\%$ contamination by SN

In CDFS:

- $\bullet~75{\pm}4\%$ efficiency of AGN selection
- $6\pm 2\%$ SN contamination
- $4\pm 2\%$ of contamination by stars

Serena Falocco

Purity and completeness

- purity: >85% in CDFS, 94% in COSMOS: this value increases with the quantity of information in the region
- \bullet completeness: $>\!22\%$ in CDFS, $>\!15\%$ in COSMOS: this value increases with the sampling time

For more details see the poster (by De Cicco et al.)

Future perspectives

- extension of the sampled time to reach higher efficiency and completeness
- application to future datasets (LSST)
- finding rare AGN (jet-powered, highly variable, low luminosity AGN, AGN with strong starbursts, LINERs, etc.)
- this is possible only if the timescale is extended

University Federico II Naples INFN Naples

AGN optical variability in the VST surveys of the COSMOS and CDFS areas

Serena Falocco

26/09/2014

Authors

S. Falocco, D. De Cicco, M. Paolillo, G. Covone, G. Longo, F. Vagnetti, D. Trevese and the VST-VOICE-SUDARE team

Serena Falocco