Credit: Gemini Observatory/AURA, artwork by Lynette Cook

Observational evidences of AGN feedback

Chiara Feruglio (IRAM, Grenoble)

AGN11, Trieste September, 23 2014

Outline

1- Observational evidences of AGN feedback in action (not outflows!), near and far, review recent results

- 2- How they compare with model predictions
- **3- Open questions**
- 4- What is needed to progress

Why did galaxies during their evolution stop to form stars?

- Why did galaxies during their evolution stop to form stars?
- What are the mechanisms leading the transition from gas rich, star-forming, galaxies, to passive spheroids, deprived of most of their gas?

- Why did galaxies during their evolution stop to form stars?
- What are the mechanisms leading the transition from gas rich, star-forming, galaxies, to passive spheroids, deprived of most of their gas?
- Why black holes in galactic nuclei have masses proportional to spheroid masses?

- Why did galaxies during their evolution stop to form stars?
- What are the mechanisms leading the transition from gas rich, star-forming, galaxies, to passive spheroids, deprived of most of their gas?
- Why black holes in galactic nuclei have masses proportional to spheroid masses?

One of the main candidate for driving these transformations are **powerful winds and shocks** launched from accreting black holes in active galaxy nuclei (i.e. feedback)

SMBH and stellar growth correlated

-2 -3 -3 -4 -4 -5 -6 -7 -6 -7 -6 -7 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -7 -8 -7 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -9 -7 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -9 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -9 -10 -7 -8 -7 -8 -9 -10 -7 -8 -7 -8 -9 -10 -7 -8 -7 -8 -9 -10 -7 -8 -9 -10 -7 -7 -8 -9 -10 -7 -7 -8 -9 -10 -7 -7 -8 -7 -8 -9 -10 -7 -7 -8 -7 -7 -8 -9 -10 -7 -7 -8 -9 -10 -7 -7 -8 -7 -8 -9 -10 -7

tight correlation between M_{BH} and bulge properties (*e.g. Richstone+ 1998*) The BH mass density obtained integrating the AGN L.-F. and the CXB ~ that obtained from local bulges

How are they created: need to understand BH growth and feedback

Without AGN heating SAMs:

<u>Without AGN heating SAMs:</u> overpredict luminosities of massive galaxies by ~2 mags

<u>Without AGN heating SAMs:</u> overpredict luminosities of massive galaxies by ~2 mags and/or

<u>Without AGN heating SAMs:</u> overpredict luminosities of

massive galaxies by ~2 mags and/or

predict a number of massive blue galaxies higher than observed

Star-forming galaxy *main sequence*: a nearly linear relationship between stellar mass and SFR, flattening at the highest stellar masses and evolving with the redshift.

sSFR=SFR/M_{star}; t_{depl}=M_{gas}/SFR

Gas fraction=Mgas/Mstar

AGN feedback may be the driver for the decrease of the gas fraction and for the quenching of SFG at **logM**star>1.8

Gas fraction=Mgas/Mstar

AGN feedback may be the driver for the decrease of the gas fraction and for the quenching of SFG at **logM**star>1.8

sSFR=SFR/M_{star}; t_{depl}=M_{gas}/SFR

Gas fraction=Mgas/Mstar

AGN feedback may be the driver for the decrease of the gas fraction and for the quenching of SFG at **logM**star>1.8

sSFR=SFR/M_{star}; t_{depl}=M_{gas}/SFR

AGN Feedback & accretion mode

AGN Feedback & accretion mode

Quasar mode

- Major mergers
- Minor mergers
- Galaxy encounters
- Activity periods are strong, short and recurrent

AGN density decrease at z<2 is due to:

- decrease with time of galaxy merging rate
- Decrease with time of encounters rate
- Decrease with time of galactic cold gas left available for accretion

Feedback is driven by AGN radiation Somerville+2003 Menci+ 2003,2004,2006,2008

AGN Feedback & accretion mode

Quasar mode

- Major mergers
- Minor mergers
- Galaxy encounters
- Activity periods are strong, short and recurrent

AGN density decrease at z<2 is due to:

- decrease with time of galaxy merging rate
- Decrease with time of encounters rate
- Decrease with time of galactic cold gas left available for accretion

Feedback is driven by AGN radiation Somerville+2003 Menci+ 2003,2004,2006,2008

Radio mode

Low accretion-rate systems tend to be radiatively inefficient and jetdominated Feedback from low luminosity AGN dominated by kinetic energy

 Low level activity can be ~continuous

Croton+ 2006

- radio jets (relativistic)
- ultra fast outflows (UFO, moderately relativistic)
- ionized gas outflows (BAL, NAL, [OIII], [CII] v~1000-30000 km/s, massive)
- atomic gas outflows (absorption NaI, HI, v~100-1000 km/s)
- molecular outflows
- (OH, CO, HCN,
- v~200-2000 km/s,
- MASSIVE
- Sturm+2011,
- Spoon+2008,2011)

- radio jets (relativistic)
- ultra fast outflows (UFO, moderately relativistic)
- ionized gas outflows (BAL, NAL, [OIII], [CII] v~1000-30000 km/s, massive)
- atomic gas outflows (absorption NaI, HI, v~100-1000 km/s)
- molecular outflows

(OH, CO, HCN,

v~200-2000 km/s,

MASSIVE

Sturm+2011,

Spoon+2008,2011)

- radio jets (relativistic)
- ultra fast outflows (UFO, moderately relativistic)
- ionized gas outflows (BAL, NAL, [OIII], [CII] v~1000-30000 km/s, massive)
- atomic gas outflows (absorption NaI, HI, v~100-1000 km/s)
- molecular outflows
- (OH, CO, HCN,
- v~200-2000 km/s,
- MASSIVE
- Sturm+2011,
- Spoon+2008,2011)

- radio jets (relativistic)
- ultra fast outflows (UFO, moderately relativistic)
- ionized gas outflows (BAL, NAL, [OIII], [CII] v~1000-30000 km/s, massive)

F (mJy)

- atomic gas outflows (absorption NaI, HI, v~100-1000 km/s)
- molecular outflows
 (OH, CO, HCN,

v~200-2000 km/s,

MASSIVE

Sturm+2011,

Spoon+2008,2011)

FWHM

Mrk231

Rupke & Veilleux 2011, 2013

- radio jets (relativistic)
- ultra fast outflows (UFO, moderately relativistic)
- ionized gas outflows (BAL, NAL, [OIII], [CII] v~1000-30000 km/s, massive)
- atomic gas outflows (absorption NaI, HI, v~100-1000 km/s)
- molecular outflows
 (OH, CO, HCN,

v~200-2000 km/s,

MASSIVE

Sturm+2011,

Spoon+2008,2011)

- radio jets (relativistic)
- ultra fast outflows (UFO, moderately relativistic)
- ionized gas outflows (BAL, NAL, [OIII], [CII] v~1000-30000 km/s, massive)
- atomic gas outflows (absorptic v~100-1000 km/s)
- molecular outflows
 (OH, CO, HCN,

v~200-2000 km/s,

MASSIVE

Sturm+2011,

Spoon+2008,2011)

/lrk231

Rupke & Veilleux 2011, 2013

North

- radio jets (relativistic)
- ultra fast outflows (UFO, moderately relativistic)
- ionized gas outflows (BAL, NAL, [OIII], [CII]
 v~1000-30000 km/s, massive)
 Mrk231 HCN.HCO+

Radio-mode (jet driven) strong evidence of *feedback*, observed frequently

But quasar-mode *feedback* observations are still rare. both in single objects and statistical samples.

Tuesday, September 23, 2014

Power to excavate cavities proportional to X-ray luminosity

Power in cavities proportional to AGN radio luminosity

Power to excavate cavities proportional to X-ray luminosity

Power in cavities proportional to AGN radio luminosity

Only BCG in clusters with *low inner entropy* (short cooling time) have an active nucleus: **cold accretion!**

Power to excavate cavities proportional to X-ray luminosity

Power in cavities proportional to AGN radio luminosity

Only BCG in clusters with *low inner entropy* (short cooling time) have an active nucleus: **cold accretion!**

..and only BCG with low inner entropy are **actively forming stars!**

AGN feedback via nuclear extended (2-3 kpc) outflows widespread among massive z~2 SFG of the main sequence.

Mass outflow rates ~ 100 Msun/yr

Spatial offset between broad/ narrow Halpha => feedback

Genzel+2008 Forster Schreiber +2014 Genzel+2014

Cano-Diaz+2012

Cano-Diaz+2012

Brusa+2014, Cresci+2014 NEXT TALK

Mrk231

- * nearest QSO (z=0.042)
- * most luminous ULIRG in the local Universe L_{IR} =3.6 10¹² L \odot
- * >40% L_{bol} in SB activity
- late-state merger
- X-ray under-luminous AGN: Lx=10⁴³ erg/s
- BAL QSOs
- Expanding shells on Kpc scales

Dust enshrouded AGN/ star-forming galaxy

AGN feedback in Mrk 231

م م 2 0.02

_____ 10.01

0

-1000

-500

0

Velocity [Km/s]

500

1000

- Outflows observed in the ionized, neutral and molecular gas
- * \dot{M}_{out} [700 M_☉/yr] > SFR [200 M_☉/yr]
- Outflow Kinetic power ~ 6% AGN L_{bol} (as expected for a shock wave produced by radiation pressure onto the ISM)
- Outflow on > 0.6 kpc scale

-1000 -500

. L. . . . L. . . . L. . .

500 1000

0

Velocity [Km/s]

Flux [Jy]

0.1

0

Feruglio + 2014

High velocity components are not centered on AGN. Both blue and red are offset by ~ 200 pc in the same direction.

Mass outflow rateEkin rateDepletion time[Msun/yr][1044 ergs/s][Myr]

Stars older than ~1Myr in the central kpc? (Lipari+2009) To be verified by on going LBTI imaging on PAH to trace SF regions on 100 pc scale.

Mass outflow rateEkin rate[Msun/yr][1044 ergs/s]

Depletion time [Myr]

Stars older than ~1Myr in the central kpc? (Lipari+2009) To be verified by on going LBTI imaging on PAH to trace SF regions on 100 pc scale.

Radial profiles

Mass outflow rate [M_{Sun}/yr]

Ekin rate [10⁴⁴ ergs/s] Depletion time [Myr]

Mout/Mdisk

Feruglio+2014

AGN outflow depletion timescale << star-formation depletion timescale

Problem:

 t_{dep} << AGN timescale!!! \rightarrow

observations of outflows should be rare! They are ubiquitous instead...

Two possibilities:

1) Outflows are characteristic of a *short* phase during AGN evolution and samples are *biased* toward this phase (obscured AGN)

2) Outflows are *cyclic* phenomena. The ISM is first accelerated outward and heated. It then decelerates after cooling, raining back into the galactic disk: SF and accretion restarted

Remarkable correlation between AGN outflow rate and AGN bolometric luminosity: L_{bol}/M_{out} ~7.5×10⁴² erg/s / M_o/yr

AGN feedback models - I

AGN radiation launches a relativistic wind from very close in. The wind shocks against the surrounding gas and drives an outflow. If the mass of the black hole powering the AGN > 10^8 M_{\odot} , the wind shock can propagate to large distances.

The previously weak and cold, momentum-driven outflows become violent, energy-driven outflows, that can clear galaxies of their gas. *Energy conserving*.

Lapi, Menci & Cavaliere 2005, Blast wave model. King 2003, Zubovas&King 2014

Tuesday, September 23, 2014

AGN feedback models - II

Radiation pressure driven winds (momentum conserving):

If the outflow is momentum driven molecular gas may not reach escape velocity and falls back. $P_{out}/P_{AGN} < 1-3$.

SF would not be strongly inhibited (Gabor & Bournoud 2014)

Dusty shells may reach escape velocity (thousand km/s, Thompson+2014).

 $P_{out}/P_{AGN} < 10$

AGN outflow momentum rate >> AGN radiatiation momentum rate

Most outflows energy-conserving

(but uncertainties are LARGE)

What is feedback?

Do AGN outflows *clear* a galaxy from its gas

or

Do AGN outflows *regulate* the conversion of gas in stars, i.e. the SFR, by increasing the gas entropy?

FF,CF+2014

FF,CF+2014

higher the energy injected in the ISM higher the SFR and SFE!! and higher the SFE higher the Eddington ratio!!

FF,CF+2014

higher the energy injected in the ISM higher the SFR and SFE!! and higher the SFE higher the Eddington ratio!!

Open questions & developments

- Need to image more AGN-driven outflows : High resolution and high sensitivity maps to assess the morphology of the outflows and how they compare to quiescent gas
- Dense gas phase (HCN, CS, ...) outflows (stars born from dense clouds)

NOEMA / ALMA will tell

- Are outflows a short or a cyclic phase in AGN evolution?
- Desperately seeking more examples of quasar-mode feedback!
- * How does feedback work? Clearing or regulation?

Open questions & developments

Assess whether the outflow is driven or not by a shock, to understand the energy transport mechanism from nucleus to disk

Is the outflow energy-conserving? Is it powerful enough to heat/expel most molecular gas?

How:

X-ray and mm observations of outflows in the same source. ALMA/NOEMA observations of UFO sources.

Athena systematic observations of sources with molecular outflows.

Open questions & developments

Unified scheme for AGN outflows

Are UFOs the relativistic wind launched by AGN radiation ? How are UFOs related to the molecular flows? Systematic X-ray / mm studies are needed, Athena/ALMA ? Are ionised outflows and BALs co-spatial with molecular outflows? Or rather an evolutionary phase? (Zubovas & King 2013) Optical/NIR IFU observations of sources with UFOs and BALs can tell

