Far infrared emission lines in high redshift quasars

Simona Gallerani

Scuola Normale Superiore, Pisa

in collaboration with:

A. Ferrara, R. Maiolino, R. Neri

"Where Black Holes and Galaxies meet", Trieste, 23rd June 2014

Black hole mass in high redshift quasars

Black hole mass in high redshift quasars

Possible pathways for the formation of SMBH

(1) PopIII remnants

collapse of primordial stars

(M_{PonIII}≈100 M_{sun})

in DM minihalos

(M_{DM}≈10⁶ M_{sun})

(2) Compact nuclear star clusters

Star collisions can lead to the formation of VMSs in H₂-cooling halos (T_{vir}<10⁴ K) (3) Direct Collapse Black Holes

Primordial gas irradiated by LW radiation in atomic-cooling halos (T_{vir}>10⁴ K)

z≈20-30

z > 10

(e.g. Schneider et al. 2006; Clark et al. 2008; Devecchi et al. 2012)

Constraints on the possible pathways for the origin of SMBH seeds...

through rest frame FIR emission lines

Fine structure transitions from atomic species (C and N) and rotational lines from the carbon monoxide molecule (CO)

(e.g. [CII] $({}^{2}P_{3/2} {}^{-2}P_{1/2})$ @158 µm; [NII] $({}^{3}P_{1} {}^{-3}P_{0})$ @205 µm; CO (J-J-1) @ J × 115 GHz)

Fine structure transitions from atomic species (C and N) and rotational lines from the carbon monoxide molecule (CO)

(e.g. [CII] $({}^{2}P_{3/2} - {}^{2}P_{1/2})$ @158 µm; [NII] $({}^{3}P_{1} - {}^{3}P_{0})$ @205 µm; CO (J-J-1) @ J × 115 GHz)

- Major coolants of the inter-stellar medium in star forming galaxies
- The strongest emission lines in most galaxies (L_{ICIII} ~ 0.1-1% L_{FIR})

Fine structure transitions from atomic species (C and N) and rotational lines from the carbon monoxide molecule (CO)

(e.g. [CII] $({}^{2}P_{3/2} - {}^{2}P_{1/2})$ @158 µm; [NII] $({}^{3}P_{1} - {}^{3}P_{0})$ @205 µm; CO (J-J-1) @ J × 115 GHz)

- Major coolants of the inter-stellar medium in star forming galaxies
- The strongest emission lines in most galaxies (L_{ICIII} ~ 0.1-1% L_{FIR})
- Unaffected by dust extinction (r_{dust} ≤ 0.1 μm)
 Allow to detect dust obscured sources
 (e.g. Gallerani et al. 2012)

Black hole growth at early epochs may happen in dusty host galaxies (e.g. Treister et al. 2013; Valiante et al. 2014)

Fine structure transitions from atomic species (C and N) and rotational lines from the carbon monoxide molecule (CO)

(e.g. [CII] $({}^{2}P_{3/2} - {}^{2}P_{1/2})$ @158 µm; [NII] $({}^{3}P_{1} - {}^{3}P_{0})$ @205 µm; CO (J-J-1) @ J × 115 GHz)

- Major coolants of the inter-stellar medium in star forming galaxies
- The strongest emission lines in most galaxies
- Unaffected by dust extinction
- At z > 4 the [CII] emission line is redshifted into the mm

Thanks to current powerful millimeter facilities (e.g. APEX, PdBI, ALMA, NOEMA) they are considered promising tools to detect high-z star forming galaxies and characterize their ISM

The Plateau de Bure Interferometer

Technical properties:

WAVELENGTH COVERAGE $(0.8 \text{ mm} < \lambda < 3 \text{ mm})$

 $(0.8 \text{ mm} < \lambda < 3 \text{ mm})$ (370 GHz > v > 80 GHz)

ANGULAR RESOLUTION (0.35'' < R < 0.8'')

1" = 5.5 kpc @ z=6.4

Array of 6 antennas 15 m diameter → NOEMA 12 antennas (2018)

located at 2550 m altitude in the French Alps

> operated by IRAM (Grenoble)

The case of:

SDSS J1148 at z=6.4

SDSS J1148 + 5251: RECORDS HOLDER at z=6.4

-2000

-1000

0

Velocity (km/s)

1000

2000

SDSS J1148 + 5251: RECORDS HOLDER at z=6.4

CO observation in J1148

The molecular gas $M_{H2} \approx 2 \times 10^{10} M_{sun}$ is enclosed within a radius $R_{H2} \approx 2.5 \text{ kpc}$

(but see also the Valiante's talk)

CO observation in J1148

Strong emission serendipitously detected in J1148

6.2σ detection

Gallerani et al. (2014)

First detection of the CO(17-16) line at high-z!

Observed COSLED in J1148

The most excited CO rotational transition ever detected in such distant galaxies

Modelling the molecular clouds in J1148

Modelling the molecular clouds in J1148

... is perfectly consistent with the observed COSLED!

Modelling the molecular clouds in J1148

$$z \approx 6$$

$$M_{BH} \approx 10^{9} M_{sun}$$

$$M_{H2} \approx 10^{10} M_{sun}$$

$$r_{H2} \approx 2.5 \ kpc$$

$$z \approx 7$$

$$M_{BH} \approx 10^{6} M_{sun}$$

$$M_{H2} \approx 10^{7} M_{sun}$$

$$z \approx 6$$

$$M_{BH} \approx 10^{9} M_{sun}$$

$$M_{H2} \approx 10^{10} M_{sun}$$

$$r_{H2} \approx 2.5 \ kpc$$

$$z \approx 7$$

$$M_{BH} \approx 10^{6} M_{sun}$$

$$M_{H2} \approx 10^{7} M_{sun}$$

$$M_{BH} \sim 10^{7} M_{sun}$$

$$M_{BH} - \sigma \qquad v_{circ} \approx 80 \ km/s \Leftrightarrow r_{vir} \approx 10 \ kpc$$

$$\int_{\lambda = 0.04}^{30 \ 20} \frac{10^{10} \ redshift}{r_{H2}} = \frac{\lambda}{\sqrt{2}} r_{vir}$$

$$r_{H2} \approx 0.3 \ kpc$$
Gultekin et al. (2014)

$$z \approx 6$$

$$M_{BH} \approx 10^{9} M_{sun}$$

$$M_{H2} \approx 10^{10} M_{sun}$$

$$r_{H2} \approx 2.5 \ kpc$$

$$z \approx 7$$

$$M_{BH} \approx 10^{6} M_{sun}$$

$$M_{H2} \approx 10^{7} M_{sun}$$

$$r_{H2} \approx 0.3 \ kpc$$

Undetected/obscured

 $N_{H} \ge 10^{24} \, cm^{-2}$

In X-ray observations in $z \approx 6$ quasar the typical flux detection limit of is $\approx 10^{-15}$ erg s⁻¹ cm⁻² (Shemmer et al. 2006; Page et al. 2013)

SUMMARY

• First detection of the CO(17-16) emission line at z=6.4

Gallerani et al. (2014) arXiv1409.4413

Accepted for publication in MNRAS Letter

SUMMARY

- First detection of the CO(17-16) emission line at z=6.4
- Observed **COSLED** requires **strong contribution from XDRs**

SUMMARY

- First detection of the CO(17-16) emission line at z=6.4
- Observed **COSLED** requires **strong contribution from XDRs**
- X-ray vs millimeter detectability of high-z quasars

Gallerani et al. (2014) arXiv1409.4413

Accepted for publication in MNRAS Letter

CONCLUSION

- First detection of the CO(17-16) emission line at z=6.4
- COSLED fit requires **strong contribution from XDRs**
- X-ray vs millimeter detectability of high-z quasars

X-ray observations of SDSS J1148 at z=6.4

Predictions for X-ray observations

$$F_X^{soft} = 7 \times 10^{-15} [erg \ s^{-1} cm^{-2}] \qquad F_X^{hard} = 3 \times 10^{-14} [erg \ s^{-1} cm^{-2}]$$

80 ks of CHANDRA observing time will be used to check our predictions

PI: S. Gallerani

Col: E. Piconcelli; L. Zappacosta; A. Ferrara; R. Maiolino; R. Neri; C. Feruglio; F. Fiore