The PEP Survey: Infrared Properties of radio-selected AGN

NELLE GALASSIE PIÙ REMOTE

Formazione stellare batte buchi neri 6 a 4

MEDIA INAF NOTIZIARIO ON-LINE DELL'ISTITUTO NAZIONALE DI ASTROFISICA

Nei primi miliardi di anni dell'Universo, neanche i buchi neri supermassicci sono stati in grado di bloccare in modo efficiente il forsennato processo di formazione stellare presente nelle prime galassie. Questo lo scenario che emerge da uno studio a guida INAF in pubblicazione sulla rivista MNRAS di Marco Galliani

venerdì 30 maggio 2014 @ 13:14

Chare (161

Credits for image

IOCCHETTI NAF

ario, S.Berta, P.Santini PEP team

8+1 2

Scientific rationale and outline

Almost general consensus on AGN selected in various bands (from optical to X-ray) to be hosts of star-forming activity. <u>Question: does it also hold for radio-selected AGN</u> (generally expected to reside in "red and dead" galaxies)?

Aim: provide analysis of FIR properties of radio-selected AGN of *all* radio luminosities and at *all* redshifts.

Method: adopt criterion for selecting AGN based on <u>radio-luminosity alone</u> Apply it to the COSMOS-VLA sample of 1.4GHz-selected objects. FIR fluxes from the PACS Evolutionary Probe (PEP, P.I. D.Lutz) survey performed with the PACS instrument onboard Herschel.

COSMOS-VLA @ 1.4 GHz (Schinnerer+ 2004; 2007; Bondi+2008)

COSMOS-Herschel (Lutz+2011)

<u>The Origin of FIR emission in radio-selected AGN:</u> <u>criteria for AGN selection in radio surveys</u>

Radio data from VLA-VIRMOS (Bondi+ 2003). 1 deg² complete to 100µJy: 1054 sources

10-band photometry via VIDEO (Jarvis+2013) and CFHTLS (Ilbert+ 2006) for 942 sources (91%).

Photo-z with σ ~0.025 accuracy (σ ~0.10 for QSOs above z~0.22) + SED analysis of source type

From McAlpine+13 RLF z evolution of cross-point from SF-dominated to AGN-dominated sources: Log₁₀P_{cross}(z)=Log₁₀P_{0,cross}+z for z<1.8 Log₁₀P_{cross}=23.5 [W/Hz/sr] z>1.8 Log₁₀P_{0,cross} break of local RLF (Magliocchetti+2002; Mauch& Sadler 2007)

<u>The Origin of FIR emission in radio-selected AGN:</u> <u>VLA-COSMOS (radio+FIR) sample</u>

Radio data from VLA-COSMOS (Bondi+ 2008). 2 deg² complete to 60μ Jy: 2382 sources.

Redshifts from Ilbert+ 2013
1537 radio sources with z (65%)
independent of radio flux.

1026 sources (67%) SF. Majority SF F_{1.4GH}<0.4 mJy 482 sources (32%) AGN. Majority AGN F_{1.4GH}>0.4 mJy.

FIR fluxes from PEP Survey (Lutz+2011) down to ~4 mJy (@100 μ m $\frac{10}{2}$ $\frac{4^{\prime\prime}}{2}$) and 7 mJy (@ 160 μ m to 5").

FIR ids \rightarrow

-657 SF have counterpart in PEP catalogues. Dependent on RF. -175 (36%) AGN. No dependence on radio flux up to F~3 mJy.

<u>The Origin of FIR emission in radio-selected AGN:</u> <u>redshift distributions</u>

-F_{1.4GHz}>0.06 mJy \rightarrow P_{min}<P_{cnoss} [W/Hz/sr] for z<3.5 \rightarrow <u>VLA-COSMOS AGN sample</u> <u>complete</u> in radio for <u>all z<3.5</u>!

-NO dependence of FIR id success rate on z for AGN family -FIR-id AGN same (rescaled) N(z) distribution wit marked peaks @ z~1 and z~2.5 Id-rate of SF galaxies monotonically decreases with z (incomplete sample)

<u>The Origin of FIR emission in radio-selected AGN:</u> <u>information from stellar mass M</u>*

-FIR-id AGN smaller masses than whole radio-selected AGN population -Preferential mass scale $M_* \sim 10^{10}$ - $10^{11} M_{sun}$ maximizes chances for FIR emission -Only true for z<2

<u>The Origin of FIR emission in radio-selected AGN:</u> <u>information from radio luminosity P_{1,4GHz}</u>

- As expected fraction of FIR emitters decreases with increasing radio luminosities
- Drop shifts to higher radio luminosities at higher zs

<u>Powerful radio sources are more likely to be FIR emitters at earlier epochs</u>

<u>The Origin of FIR emission in radio-selected AGN:</u> <u>information from q₁₀₀ and q₁₆₀ for AGN and SF of given P</u>

The Origin of FIR emission in radio-selected AGN: information from q_{100} and q_{160} for AGN and SF of given P

SF follow Arp220 SED at all z and P. AGN FIR-to-radio approaches Arp220 at earlier epochs at *all* P. Analysis performed at fixed P \rightarrow <u>enhancement of FIR activity with z</u>

<u>The Origin of FIR emission in radio-selected AGN:</u> <u>information from FIR fluxes of AGN and SF of given P</u>

Irrespective of radio activity and z FIR emission in radio-selected AGN indistinguishable from that produced by star-forming galaxies → → FIR entirely due to star forming processes within AGN host

Complete catalogue (up to z=3.5) of 482 radio-selected AGN from COSMOS-VLA. 175 (i.e. 36%) with counterpart in the PEP survey either at 100 or at 160 μ m. No redshift dependence of FIR ids.

Probability for FIR emission strong function of P and z. More powerful sources more likely FIR emitters at higher z. P_{1.4GHz}~ 10²³-10²⁴ W/Hz/sr from ~10% at z<1 to ~60% at z=[2-3].

Above phenomenon due to enhancement of FIR activity with z in AGN of all P.

Typical mass $M_* \sim [10^{10}-10^{11}] M_{sun}$ for FIR emission (up to 60%, only for z<2). Why??

FIR emission in radio-selected AGN same origin of FIR emission in SF galaxies: SF activity within host galaxy.

100 -

CAUTION WHEN ASSOCIATING RADIO GALAXIES TO 'DEAD' ELLIPTICALS (RADIO MODE) AS STRONG FUNCTION OF REDSHIFT!!

SELECTION EFFECTS

Results refer to 36% of whole radio-selected AGN population. However, AGN sample complete at all z<3.5. Also, FIR ids independent of both radio flux and $z \rightarrow$ Fainter FIR fluxes will merely boost the number of radio-selected AGN with FIR ids while leaving conclusions unchanged.

AGN sample selected only on basis of radio emission. SF RLF much steeper than AGN RLF at all $z \rightarrow$ chances of contamination of AGN sample from SF galaxies above luminosity threshold very limited. NEW!! (from ongoing work: only 3 out of 175 based on optical-to-FIR SEDs)

Short answer: radio activity *does not* prevent star formation, especially at high z. Caution when associating radio sources to 'dead' ellipticals (radio mode) as strong function of z!

z=3

0.6

Powerful radio sources are more likely to be FIR emitters at earlier epochs FIR emission entirely due to star-forming processes

