AGN demography and SED: from the X-ray to the optical

Vincenzo Mainieri

Context

- What are the links between black-hole growth and their host galaxies and large-scale environments?
- What is the detailed nature of AGN feedback and its effects on black-hole fuelling and star formation?

Context

GOAL: Link the physical properties of the central SMBH with those of its host galaxy

In order to achieve this goal there are some "preliminary" steps that we have to do:

- Detect "all" AGNs: the AGN population traces the cosmic SMBH growth history
- Disentangle AGN and galaxy emission ... characterize the properties of their host galaxies (e.g. SFR, M_{star})
- Characterize their evolution ... and compare it to that of their host galaxies

Tool: X-ray surveys

AGN demography

The AGN Luminosity Function as the main demographic quantity

(e.g. Maccacaro+91; Boyle+93; Miyaji+00; Wolf+03; Ueda+03; Hasinger+05; La Franca+05; Richards+06; Bongiorno+07; Della Ceca+08; Silverman+08; Aird+10; Assef+11; Fiore+12; Ueda+14)

AGN11: Where Black Holes and Galaxies meet, Trieste Sep 25, 2014

Co-moving space number density of C-thin AGN

The most luminous AGNs at the peak of their activity at higher redshift

The most massive galaxies assemble their mass at higher redshift.

F. Shankar & M. Hirschmann talks

Space density of high-z AGNs

XVP (2.8 Ms in COSMOS) PI Civano

Civano et al.; Marchesi et al. in prep

Cosmic evolution in BHM and λ

BHM "downsizing":
Stronger decrease of the space
density at the high MBH mass end
compared to lower BH masses

ERDF: at $z\sim2$ flattening for $\lambda<0.1$ compared to z=0 \rightarrow higher average λ

The obscured fraction of AGN

Demographic studies: N_{type2}/(N_{type1}+N_{type2})

e.g. Lawrence & Elvis 1982; Ueda+03; Steffen+03; Simpson 2005; Hasinger 2008; Bongiorno+10; Brusa+10; Burlon+11; Assef+13; Merloni+13

SED-based studies:

$$f_{
m obsc} \simeq rac{R}{1 + R(1-p)}$$

$$R=L_{IR}/L_{bo}$$

 L_{IR} = re-processed AGN emission

 $L_{bol} = AGN emission (opt-UV+X-ray)$

p= 1 (optically thin); p<<1 (optically thick)

e.g. Maiolino+07; Treister, Krolik & Dullemond 2008; Sazonov+12; Lusso+13; Roseboom+13

EW Fekα ("Iwasawa-Taniguchi effect")

See Bianchi+12 for a review

f_{obsc} vs Lx : demography

- 1300 AGNs in XMM-COSMOS
- Type-1 / Type-2 classification based on : optical spectra + SED or Xray spectra
- Rest-frame absorption corrected L[2-10 keV], trying to limit the bias of flux limited X-ray samples.

The fraction of optically obscured AGN decreases with luminosity

Obscured fraction vs L_{bol}: SED studies

- Correct L_{bol} for host galaxy/ reddening contamination
- Estimate f_{obsc} without assuming any bolometric correction

$$f_{
m obsc} \simeq rac{R}{1 + R(1 - p)}$$

p= 1 (optically thin)
p<<1 (optically thick)</pre>

Obscured fraction vs Lbol

Maiolino(2007) SED-based vs L5100Å f_{obsc}~L6.7µm/L5100Å

Simpson (2005)
Demographics vs L[OIII]

Lusso (2013)
Filled circles: thin regime
Empty circle: thick regime

SED-based studies also confirm a decrease of fobsc with luminosity

Obscured fraction vs L[2-10 keV]

X-ray & optical type 1 X-ray & optical type 2 X-ray type-1, no BL X-ray obscured, BLAGN

"True" Type-2 (e.g. Panessa & Bassani 2002, Nicastro+00, Nenkova+08, Elitzur & Ho +09), C-thick, BL diluted by galaxy light

X-ray & optical type 1 X-ray & optical type 2 X-ray type-1, no BL X-ray obscured, BLAGN

"True" Type-2 (e.g. Panessa & Bassani 2002, Nicastro+00, Nenkova+08, Elitzur & Ho +09), C-thick, BL diluted by galaxy light

X-ray & optical type 1 X-ray & optical type 2 X-ray type-1, no BL X-ray obscured, BLAGN

Obscured fraction vs z

Yes: La Franca+05; Treister & Urry+06; Hasinger+08; Trump+09; Iwasawa+12; Ueda+14 No: Ueda03; Dwelly & Page+06; Gilli+07

Maybe: e.g. Merloni+14 (at high Lx)

C-thick AGNs: X/[NeV]

Gilli+10, Mignoli+13

- X/[NeV] as a tool to select Cthick objects: [NeV] as a procy of the intrinsic emission
- 9/72 (13%) are good C-thick candidates (X/[NeV]<15)
- X-ray stacking + Monte-Carlo simulations indicate that the overall fraction of Compton-thick AGN is ≈43%

MIR >> expected Lx

SED decomposition

C-thick AGNs: X/[NeV] and MIR excess

C-thick AGNs: Chandra+AKARI

AKARI: 2-25 μm

30% of all AGN that have MID-IR SEDs purely explainable by AGN activity are Comptonthick AGN candidates.

C-thick AGNs: host galaxies properties.

The properties of the obscuring medium does not correlate with the host galaxy total SFR

Manuela Magliocchetti's talk

X-ray stacking

Obscured AGN at z>1.7: rest-frame 9-20 keV excess sources

Going above 10 keV: NuSTAR

NuSTAR+Chandra/XMM: $N_{H} \approx 6 \times 10^{23} \, \text{cm}^{-2}$ ~2–3 times higher than that previously found using Chandra or XMM data alone

Luca Zappacosta's talk

SED decomposition: AGN fraction

- ~1500 X-ray selected AGNs
- 54% spec-z, 46% photo-z
- ~600 unobscured, 900 obscured
- Wide and deep multi-wl coverage

"Specific accretion rate" (Aird+12)

- AGN fraction is independent of M_{star}
- Its normalization evolve as (1+z)⁴ (~ sSFR)

SED decomposition: k_{bol}

Summary

- Demographyc tools (LF, BHMF, ERDF) support the downsizing evolution of SMBHs
- AGN obscuring medium (pc and sub-pc) does not correlate with the host galaxy total SFR
- SED decomposition studies are fundamental to characterize the properties of the host galaxies (M_{star}, SFR) and those of the central SMBH (e.g. L_{bol})
- The obscured AGN fraction decreases as a function of luminosity → receding torus model?
- The obscured AGN fraction vs z: increasing at high-Lx (merger driven) but not at low-Lx (secular processes)?
- C-thick: combine deep X-ray observations with indirect evidence (e.g. IR, [OIII], [NeV])
- Z>3 space density: improvement from new medium square degree surveys (e.g. COSMOS Legacy Survey)
- Future X-ray surveys: NuSTAR (present), eROSITA, ATHENA → M. Brusa and M. Cappi talks

Thanks!