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Accretion disks: WEAK observational evidence of S-S disks
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Accretion disks: WEAK observational evidence of S-S disks

Results from microlensing:
Accretion disk systematically larger
than expected by a factor ~4-10.
(Blackburne et al. 2011, Dai et al. 2010...)

Variability due to local temperature
fluctuations

Dexter & Agol 2011
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Accretion disks: WEAK observational evidence of S-S disks
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Expected signatures of a
Total light standard thin disks
(F,~v'1/3) usually not seen
in quasar spectra
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BUT: in some cases
observed in polarized
light
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kishimoto et al. 2008



Accretion disks: WEAK observational evidence of S-S disks

Recently:

Wide band X-shooter
spectra: good fit with thin
disk models

(Courtesy of H. Netzer,
Capellupo et al. 2014, subm.)




(Active) Black holes: MASS

Reverberation mapping:

“Standard” approach: intensive monitoring with small
telescopes of ~50 local, bright sources: complete velocity —
resolved results 2> detailed models of BLR structure

New approach: multi-
object spectroscopy of
fainter objects (higher
surface density) with
bigger telescopes
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(Active) Black holes: SPIN
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(Active) Black holes: SPIN
Caveat: Spectral Complexity

.oft excess Fe Ka - | |
A
Warm absorption

Compton hump

©
e
(@)
=
3
=
=)

MCG—6-30-15|

5
Energy (keV)
Major issues: how to model soft excess, separate absorption and reflection
components?




(Active) Black holes: SPIN

Extension to high energies crucial for two reasons:
1) Unambiguous determination of the continuum level
2) Detection of hard X-ray excess due to beamed reflection
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Miniutti & Fabian 2004, Fabian 2012, Dauser et al. 2014



(Active) Black holes: SPIN

NGC 1365
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Walton et al., 2014



(Active) Black holes: SPIN

NGC 4151
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Keck et al. 2014, in prep.



(Active) Black holes: SPIN

My conclusion: spin measurements are robust in a
few cases, where a very high reflection component
implies nearly maximally rotating black holes.

All other cases still ambiguous



(Active) Black holes: SPIN

Other methods: TIME LAGS

Kara et al. 2013
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(Active) Black holes: SPIN

Other methods: tail of
disk emission in high
Lepp, lOW mass objects
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Ratio hard/soft

The X-ray source: size and physical properties

Size: a few R, from microlensing and X-ray occultations

Swift J2127

Covering fraction
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—> Eclipse by a BLR cloud, size of
the X-ray source: < 10 R,

Sanfrutos et al. 2013
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The X-ray source: size and physical properties

Coronal properties: temperature
3C 382

(Ballantyne et al. 2014)



The X-ray source: size and physical properties

Coronal properties: temperature
3C 382
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The relation between X-ray and UV emission
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The relation between X-ray and UV emission

Effects of variability

X-ray variability of
COSMOS quasars

Lanzuisi et al. 2014
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The relation between X-ray and UV emission
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The relation between X-ray and UV emission
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