Herschel and Chandra reveal the interplay between SFR and AGN obscured activity at z=2

G. Rodighiero (University of Padova) M. Brusa (University of Bologna) E. Daddi (CEA – Saclay) M. Negrello (INAF-OAPD) C. Gruppioni (INAF-OABO) F.Pozzi (University of Bologna) A. Franceschini (University of Padova) A. Renzini (INAF-OABO) V. Strazzullo (CEA- Saclay)

Adopted Technique

- The only method to homogeneously sample the accretion rate or the (obscured+unobscured) AGN content as a function of the position in the stellar mass-SFR plane is the X-ray stacking analysis.
- Need to adopt as input a mass-complete and SFR-complete sample at a given redshift, to avoid any bias or partial view of the connection.

Sample selection: above/on/below the MS at 1.4<z<2.5 in the COSMOS field

X-ray stacking analysis to characterize Lx over the whole mass-SFR plane

First result

Lx/SFR as a function of stellar mass $Lx/SFR \alpha M^* 0.4$

Lx/SFR not mass invariant

Mullaney+12 found an Lx/LIR ratio consistent with a flat relation: $\stackrel{\circ}{MBH}/SFR=const ==> MBH/M*=const$

- From a flat MBH/SFR distribution Mullaney+12 deduce a constant MBH/M* ratio, which can be interpreted in the secular co-evolution of the galaxy-AGN processes that lead to the build up of the local MBH/MBulge relation.
- However, within the large error bars (due to the low statistics) they allow a factor 2 of uncertainty, which is safely consistent with the results of our slightly superlinear \hat{M}_{BH}/SFR vs M* relation.
- Our results also imply that the distribution of Eddington ratios is not invariant with mass, as suggested by Aird et al. (2012).

Second result

Comparison with hydrodynamic model predictions (Di Matteo+05, Hopkins+12)

- During a merger phase, standard models, including BH feedback, foresee an enhancement of Lx/SFR by order of magnitudes (mainly due to the shutdown of SFR).
- On the contrary, we find that during the starburst phase (above MS) Lx/SFR is basically similar to that of the Main Sequence (pre-merger) phase, or even lower.
- This means that the average excess IR luminosity of the starburst/merger phase overtakes the corresponding excess X-ray luminosity: i.e. *during a starburst Lx does not increase as much as SFR.*
- Models of AGN triggering in a burst phase followed by strong feedback need to be revised.

Comparison with hydrodynamic model predictions (Di Matteo+05, Hopkins+12)

- During a merger phase, standard models, including BH feedback, foresee an enhancement of Lx/SFR by order of magnitudes (mainly due to the shutdown of SFR).
- On the contrary, we find that during the starburst phase (above MS) Lx/SFR is basically similar to that of the Main Sequence (pre-merger) phase, or even lower.
- This means that the average excess IR luminosity of the starburst/merger phase overtakes the corresponding excess X-ray luminosity: i.e. *during a starburst Lx does not increase as much as SFR.*
- Models of AGN triggering in a burst phase followed by strong feedback need to be revised.

Comments and suggestions more than welcome!!

thanks