Blazars:

beams for astro & astroparticle physics

Fabrizio Tavecchio

INAF-OAB

Introduction

Current issues: location and dissipation

Structured jets: radiogalaxies & neutrinos

Extreme BL Lacs: UHECR, ALP & LIV

Blazars in a nutshell

SED dominated by the <u>relativistically boosted</u> non-thermal continuum emission of the jet.

$$L_{\rm obs} = L' \delta^4 \qquad \delta = \frac{1}{\Gamma(1 - \beta \cos \theta_{\rm v})}$$

Synchrotron and IC in Leptonic models.

Also hadronic scenarios (synchrotron or photo-meson emission)

Blazars: jet physics

Blazars: high-energy particle beams

Blazars: basic phenomenology

44

43

42

41

10

15

 $Log \nu$ [Hz]

Blazars occur in two flavors:

FSRQ: high power, thermal optical components

BL Lacs: low power, lack of important thermal comp.

Blazars: current discussions

Blazars: current discussions

Blazars: current discussions

BL Lacs: the one zone model

BL Lacs: the structured jet model

Structured jets

Structured jets

 \star The spine sees an enhanced U_{rad} coming from the layer

* Also the layer sees an enhanced Urad coming from the spine

The IC emission is enhanced w.r.t. to the one-zone model

Structured jets: radiogalaxies

FT et al. 2014

 $p + \gamma \to n + \pi^{+}$ $p + \gamma \to p + \pi^{0}$ $\pi^{+} \to \mu^{+} + \nu_{\mu} \to e^{+} + \bar{\nu_{e}} + \bar{\nu_{\mu}} + \nu_{\mu}$ $\pi^{0} \to 2\gamma$

Extreme BL Lacs

Extreme BL Lacs

after Costamante et al. 2001

Acceleration process? Why slowly variable?

Proton beams?

Proton beams?

Proton beams?

Misaligned EHBL: UHECR sources?

NO EHBL within the GZK radius (~100 Mpc)

Parent population (misaligned EHBL)? $L_{
m r} \lesssim 10^{40} \ {
m erg s}^{-1}$

Outlook

Blazar jets: emission region(s) dissipation/acceleration process(es) (magnetic, shock, turb.)

Structured jets: radiogalaxies neutrinos powerful jets (FRII)?

Extreme BL Lac: why are they so different? UHECR sources? parent population?

Cosmic opacity anomaly: ALP

e.g. De Angelis et al. 2011

Cosmic opacity anomaly: LIV

Modification of threshold for pair production at high E

LIV induces suppression of EBL-opacity

Cosmic opacity anomaly: LIV

Intermezzo

neutrino production in a nutshell

relativistic protons

pion decay

$$p + \gamma \to n + \pi^{+}$$

$$p + \gamma \to p + \pi^{0}$$

$$\pi^{+} \to \mu^{+} + \nu_{\mu} \to e^{+} + \bar{\nu_{e}} + \bar{\nu_{\mu}} + \nu_{\mu}$$

$$\pi^{0} \to 2\gamma$$

 $\sigma_{p\gamma} \simeq 3.4 \times 10^{-28} \,\mathrm{cm}^2$

Neutrinos from FSRQ?

Strong correlation expected!

Murase, Inoue & Dermer 2014

Padovani & Resconi 2014

Propagation: EBL absorption

Structured jets

