The Hard X-Ray Luminosity Function of High-Redshift (z > 3) AGN

Fabio Vito Dipartimento di Fisica e Astronomia - Università di Bologna INAF-OABo

F. Vito, R.Gilli, C. Vignali, A. Comastri, M. Brusa, N. Cappelluti, K. Iwasawa; MNRAS accepted yesterday! (on astro-ph today)

Introduction

AGN Population Evolution

Ueda+14

High-Redshift AGN Population Evolution

Need for large, complete and reliable samples \Downarrow

- Deep (4 Ms CDF-S) and wide (XMM-COSMOS, Chandra-COSMOS, SXDS) X-ray surveys
- Multi-wavelength coverage.

AGN sample

141 X-ray (0.5 – 2 keV) detected AGN at
$$3 \le z < 5.1$$

- \sim 5 x Hiroi+12 sample
- \sim 2 x Civano+11 sample

using the most up-to-date redshift information and a careful and clean (e.g. no strong radio-loud AGN) selection in the 4 Ms CDFS (Vito+13), XMM-COSMOS (Brusa+10, Salvato+11, Civano+12), Chandra-COSMOS (Civano+12, Lilly+ in prep.) and SXDS (Hiroi+12) fields. Redshift completeness > 95%.

Spectral parameters

- Γ = 1.8 fixed
- *N_H* from uniform spectral analysis (CDFS, C-COSMOS) or HR (SXDS, Hiroi+12). Objects from X-COSMOS assumed unobscured.
- Intrinsic $L_{2-10 \rm \, keV}$ from spectral analysis (CDFS, C-COSMOS), literature (SXDS, Hiroi+12), or extrapolated from soft-band flux from catalogue (x-COSMOS, Cappelluti+09)

The Hard X-Ray Luminosity Function of High-Redshift (z > 3) AGN

└─ The Hard X-Ray Luminosity Function

▲ロ▶ ▲圖▶ ▲園▶ ▲園▶ ▲国 ● のへの

The Hard X-Ray Luminosity Function of High-Redshift (z > 3) AGN

└─ The Hard X-Ray Luminosity Function

Evolutionary models

└─ The Hard X-Ray Luminosity Function

Fit to unbinned data through a Maximum Likelihood procedure

MODEL	2DKS
PLE	0.05
PDE	0.38
ILDE	0.38
LADE	0.46
LDDE	0.42

 $2\mathrm{DKS} \gtrsim 0.20$ \downarrow model and data not significantly different

ж

The Hard X-Ray Luminosity Function

Correction for redshift incompleteness: $\Theta = \Theta(z, L_X, N_H)$

- 65 sources with no redshift information (but flux known)
- All of them assumed to be at 3 < z < 5.1
- Assumed same fraction of absorbed sources (at similar fluxes) and same redshift distribution of the sources with redshift

- The Hard X-Ray Luminosity Function

Fit to unbinned data after completeness correction

MODEL	2DKS		
PLE	0.20		
PDE	0.44		
ILDE	0.20		
LADE	0.23		
LDDE	0.27		

→ □ → → 三 → → 三 →

æ

- Obscured AGN fraction

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Space density

• $\Phi \propto (1+z)^p$ with $p = -6.00^{+0.84}_{-0.87}$ in agreement with Hiroi+12, but larger dataset and different method (Maximum Likelihood fit on unbinned data vs. χ^2 minimization)

We confirm the decline in the space density of luminous high-redshift AGN (factor of ~ 10 from z=3 to 5)

Sac

- Space density

 No evidence for the "up-sizing" (i.e. flatter space density for less luminous AGN at z > 3) suggested by Ueda+14

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

500

э

• Larger sample of $L_X < 10^{44}$ AGN needed to discriminate between PDE and LDDE

Conclusions

Conclusions

- Evolution of the HXLF at z > 3 dominated by a negative density term (PDE). More complex models mimic the behaviour of the PDE model. Larger samples of low-luminosity (L_X < 10⁴⁴) AGN needed to constrain a possible luminosity-dependent density evolution at high-z.
- Obscured ($logN_H > 23$) AGN fraction is 0.54 \pm 0.05. No evidence for an anti-correlation with luminosity, but evolution from z = 0!
- The space density of luminous AGN declines by a factor of \sim 10 from z=3 to 5
- No evident dependency of the decline slope on luminosity, but larger low-L samples are required

Future perspective

Larger samples of (low-luminosity) AGN thanks to the 7 Ms in CDFS (+ deep follow-up and/or proper photo-z)

- Conclusions

Fit parameters

MOD.	A	L*	γ_1	γ ₂	Plum	Pden	β	2DKS
PLE	0.65 + 0.06 - 0.06	$6.56^{+2.38}_{-2.22}$	$0.21^{+0.16}_{-0.20}$	2.58 + 0.75 - 0.60	$-3.73^{+0.77}_{-0.92}$	—	—	0.05
PDE	$1.10^{+0.11}_{-0.11}$	$5.26^{+1.06}_{-1.20}$	$0.22^{+0.13}_{-0.16}$	$3.79^{+1.08}_{-0.87}$		$-6.00^{+0.84}_{-0.87}$	_	0.38
ILDE	$1.13^{+0.11}_{-0.11}$	$5.13^{+1.32}_{-1.53}$	$0.21^{+0.13}_{-0.17}$	$3.75^{+1.10}_{-0.91}$	$0.13^{+0.94}_{-0.81}$	$-6.13^{+1.17}_{-1.23}$	—	0.38
LADE	$1.08^{+0.11}_{-0.11}$	$5.10^{+1.33}_{-1.54}$	$0.21^{+0.13}_{-0.18}$	$3.74^{+1.11}_{-0.91}$	$0.16^{+0.95}_{-0.82}$	$-0.57^{+0.11}_{-0.11}$	—	0.46
LDDE	$1.05\substack{+0.10\\-0.10}$	$5.24^{+1.05}_{-1.19}$	$0.28^{+0.16}_{-0.19}$	$3.87^{+1.08}_{-0.88}$	_	$-6.43^{+1.12}_{-1.17}$	$1.18^{+2.06}_{-2.00}$	0.42

- Conclusions

Binned HXLF

$$\phi = \frac{\Phi}{\mathrm{dlogL}} = \frac{\mathrm{d}^2 \mathrm{N}}{\mathrm{dV}\,\mathrm{dlogL}}$$
$$\Downarrow$$

Assuming ϕ does not vary in the Δz - $\Delta LogL$ bin (i.e. narrow Δz - $\Delta LogL$ bin)

 $\psi = \frac{1}{V(\Delta z, \Delta \log L)} = \frac{N(\Delta z, \Delta \log L)}{V(\Delta z, \Delta \log L)} = \frac{N(\Delta z, \Delta \log L)}{\int_{\Delta \log L} \Delta z} \frac{1}{\Omega \Theta \frac{\mathrm{d} V}{\mathrm{d} z} \mathrm{d} z \mathrm{d} \log L}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Conclusions

Binned HXLF: Page&Carrera2000 vs V_{MAX}

(Page&Carrera, 2000)

Likelihood estimator

$$\mathcal{L} = -2\sum_{i=1}^{N} \ln[\phi(z_i, L_i)] + 2\iint \phi(z, L)\Omega\Theta \frac{\mathrm{d}V}{\mathrm{d}z} \mathrm{d}z \mathrm{d}L$$
(Marshall+1983)

(ロ)、(型)、(E)、(E)、 E) のQ()