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ABSTRACT
We present a new (semi-)analytical model for feedback in galaxy formation. The interstellar
medium (ISM) is modelled as a two-phase medium in pressure equilibrium, where the cold
phase is fragmented into clouds with a given mass spectrum. Cold gas infalls from an exter-
nal halo. Large clouds are continually formed by coagulation and destroyed by gravitational
collapse. Stars form in the collapsing clouds; the remnants of exploding Type II supernovae
(SNe) percolate into a single super-bubble (SB) that sweeps the ISM, heating the hot phase
(if the SB is adiabatic) or cooling it (in the snowplough stage, when the interior gas of the SB
has cooled). Different feedback regimes are obtained whenever SBs are stopped either in the
adiabatic or in the snowplough stage, either by pressure confinement or by blowout.

The resulting feedback regimes occur in well-defined regions of the space defined by vertical
scalelength and surface density of the structure. In the adiabatic blowout regime, the efficiency
of SNe in heating the ISM is rather low (∼5 per cent, with ∼80 per cent of the energy budget
injected into the external halo), and the outcoming ISM is self-regulated to a state that, in
conditions typical of our galaxy, is similar to that found in the Milky Way. Feedback is most
efficient in the adiabatic confinement regime, where star formation is hampered by the very
high thermal pressure and the resulting inefficient coagulation. In some significant regions of
the parameter space, confinement takes place in the snowplough stage; in this case, the hot
phase has a lower temperature and star formation is quicker. In some critical cases, found at
different densities in several regions of the parameter space, the hot phase is strongly depleted
and the cold phase percolates the whole volume, giving rise to a burst of star formation.

While the hot phase is allowed to leak out of the star-forming region, and may give rise to a
tenuous wind that escapes the potential well of a small galactic halo, strong galactic winds are
predicted to occur only in critical cases or in the snowplough confinement regime whenever
the SBs are able to percolate the volume.

This model provides a starting point for constructing a realistic grid of feedback solutions to
be used in galaxy formation codes, either semi-analytical or numerical. The predictive power of
this model extends to many properties of the ISM, so that most parameters can be constrained
by reproducing the main properties of the Milky Way.

Key words: ISM: bubbles – ISM: kinematics and dynamics – galaxies: formation – galaxies:
ISM.

1 I N T RO D U C T I O N

Galaxy formation is an open problem. This is due to the complexity
of the feedback processes that arise from the energetic activity of
massive or dying stars, taking place through winds, ionizing photons
and SN explosions (not to mention active galactic nuclei). These
feedback processes involve a large range of scales and masses, from
the subpicosecond scale of star formation to the �10-kpc scale of
galactic winds, and from 1 to 1012 M� or more.

�E-mail: monaco@ts.astro.it

It is useful at this stage to identify ranges of scales in which
different processes are dominant. On �1-kpc spatial and �106-M�
mass scales, the dominant processes such as shock heating of gas,
radiative cooling, disc formation, galaxy merging and tidal or ram-
pressure stripping are closely related to the dark matter halo hosting
the galaxy and to its hierarchical assembly. On scales ranging from
∼1 pc to ∼1 kpc, or from ∼1000 to ∼106 M�, cool gas reaches
suitable conditions for collapse and star formation, and the energy
input from massive stars – through winds, ultraviolet (UV) photons
and SNe – acts in shaping and sustaining the multiphase structure
of the ISM. At smaller scales star formation takes place; it is most
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likely driven and self-limited by magnetohydrodynamical (MHD)
turbulence. This division is obviously meant to be only a rough
approximation of reality.

Numerical simulations of whole galaxies are still limited to space
and mass resolutions not much smaller than ∼1 kpc and 106 M�
respectively (see, for example, Pearce et al. 2001; Governato et al.
2004; Lia, Portinari & Carraro 2002; Mathis et al. 2002; Recchi
et al. 2002; Steinmetz & Navarro 2002; Toft et al. 2002; Weinberg,
Hernquist & Katz 2002; Springel & Hernquist 2003; Tornatore et al.
2003). They can address effectively the processes dominant in the
large-scale range identified above, but the feedback processes acting
on intermediate and small scales are ‘subgrid’ physics and are treated
with simple heuristic models that require the introduction of free
parameters.

Current models of semi-analytical galaxy formation treat feed-
back at a similar, phenomenological level (see, for example, Cole
et al. 2000; Diaferio et al. 2001; Poli et al. 2001; Somerville,
Primack & Faber 2001; Hatton et al. 2003); they typically connect
the efficiency of feedback to the circular velocity of the dark matter
halo, with the aid of free parameters. Models of galaxy formation
that include a more detailed description of feedback have been pre-
sented, for example by Silk (1997, 2001), Ferrara & Tolstoy (2000),
Efstathiou (2000), Tan (2000), Lin & Murray (2000), Hirashita,
Burkert & Takeuchi (2001), Ferreras, Scannapieco & Silk (2002) or
Shu, Mo & Mao (2004). In this framework (semi-)analytical work
can give a very useful contribution in selecting the physical pro-
cesses that are most likely to contribute to feedback.

The focus of this paper is on modelling the intermediate range of
scales defined above, where the physics of the ISM is in process.
The standard picture of the ISM is that of a multiphase medium in
rough pressure equilibrium; the reference model is that of McKee
& Ostriker (1977), who considered a medium composed by cold,
spherical clouds with temperature and density Tc ∼ 100 K and n c ∼
10 cm−3, kept confined by a hot phase with Th ∼ 106 K and nh ∼
10−3 cm−3. A warm phase of Tw ∼ 104 K and nw ∼ 10−1 cm−3

was produced at the interface (see Appendix A for a full list of
the definitions of the symbols used throughout this paper). This
vision is partially confirmed by multiwavelength observations (see,
for example, Heiles 2001), although reality appears more complex,
suggesting the presence of at least five different phases.

This picture is challenged by the results of many simulation pro-
grams, aimed at the numerical modelling of the ISM (see, for ex-
ample, Mac Low et al. 1998; Ostriker, Gammie & Stone 1999;
Avila-Reese & Vazquez-Semadeni 2001; Kritsuk & Norman 2002;
see Mac Low 2002 and Vazquez-Semadeni 2002 for reviews). In
this context, the ISM is dominated by compressible, supersonic,
MHD turbulence. These groups are still struggling to tame the full
complexity of the problem, so that these simulations are not directly
aimed at or easily usable by modelling of galaxy formation. For our
purposes it is worth mentioning some results. The distributions of
temperature and density of the simulated gas particles show a wide
range of values without any strong multimodality, but some broad
peaks are anyway present. The distribution of pressure shows a much
more limited range of values. Structures defined as overdensities are
not static clouds but transient features of an overall fractal distribu-
tion (which is consistent with observations; see Chappell & Scalo
2001) that do not last more than a sound crossing time, unless they
are gravitationally bound. Thus, the ‘classical’ picture of the ISM
is not validated, but a model with multiple phases in rough pressure
equilibrium can still be used, although with care, as a useful first-
order approximation, able to catch some significant elements of the
dynamics of the ISM.

The motivation for the present work is to investigate the type of
physical processes that arise in galaxy formation, in order to provide
a grid of solutions for the behaviour of feedback in a wide range of
realistic cases, to be used in simulations or semi-analytical models
of galaxy formation. We restrict ourselves to a two-phase medium
in pressure equilibrium, composed by cold clouds embedded in a
diffuse hot phase. The dynamics of the ISM is at present assumed to
depend only on its ‘local’ properties, thus leaving out ‘large-scale’
events such as differential rotation, spiral arms, mergers, galactic
winds, and so on. These events will be introduced once the global
characteristics of the galaxy are specified.

This paper is the first of a series aimed at modelling feedback
in galaxy formation. It presents a minimal feedback model with
its main properties and results. Preliminary results were presented
by Monaco (2001, 2002). An upcoming paper will focus on the
destruction of collapsing, star-forming clouds (Monaco 2004, here-
after Paper II).

The paper is organized as follows. The nomenclature gives a list
of frequently used symbols. Section 2 describes the physical ingre-
dients of the model, Section 3 introduces the system of equations
used, and Section 4 gives the main solutions. Section 5 is devoted
to a discussion of the results, and Section 6 gives the conclusions.
Finally, three appendices give a list of frequently used symbols, a
determination of the time-scales of coagulation of cold clouds and
a study of the fate of SBs in the nh–L 38 plane.

2 F E E D BAC K B Y S T E P S

Feedback is assumed to take place through a chain of processes, as
follows.

(i) The densities and filling factors of the two phases are deter-
mined by pressure equilibrium.

(ii) The cooled or infalled gas fragments into clouds with a given
mass spectrum; this is truncated at low masses (which are easily
destroyed) and at high masses (which continually collapse).

(iii) Collapse is triggered in clouds larger than the Jeans mass;
we use a criterion valid for non-spherical clouds.

(iv) Collapsing clouds are continually created by coagulation.
(v) Stars form in collapsing clouds. Self-regulation of star forma-

tion by H II regions destroys the clouds before most SNe explode.
(vi) SN remnants (hereafter SNRs) soon percolate into a SB,

which sweeps the ISM. SBs heat the gas whenever they are in the
adiabatic stage, i.e when the interior gas has not had time to cool,
while they collapse (and thus cool) the hot phase into a thin cold
shell whenever they enter into the so-called snowplough stage.

(vii) SBs stop sweeping or collapsing the hot phase when they
remain pressure-confined or overtake the typical vertical scaleheight
of the system (blowout).

In the following we describe these steps in detail. All distances
are given in pc, masses in M�, times in yr, temperatures in K, gas
densities in cm−3, average densities in M� pc−3, surface densities
in M� pc−2, energies in 1051 erg, mechanical luminosities in 1038

erg s−1, mass flows in M� yr−1, and energy flows in 1051 erg yr−1.
Pressures are divided by the Boltzmann constant k and given in
K cm−3.

2.1 Pressure equilibrium

Let us consider a volume V filled with a two-phase medium, with
temperatures of hot and cold phases Th and Tc and densities nh and
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nc. The volume is assumed to be large enough to contain many star-
forming clouds. An external halo acts as a reservoir of gas, which
continually replenishes the cold component.1 Stars form from the
cold gas. The four components (cold and hot phases, stars and the
external halo) have masses M cold, M hot, M � and Mhalo. The total
mass of the system is fixed to M tot. The temperature of the cold gas
is kept fixed to 100 K, i.e roughly the position where the cooling
function of the gas drops, so that further cooling is inhibited unless
the cloud collapses and its density becomes very high. Let µh and
µc be the mean molecular weights of the two phases, f h and f c their
filling factors ( fh + fc = 1), ρ̄h = Mhot/V and ρ̄c = Mcold/V their
average densities and F h = M hot/(M cold + M hot) the fraction of hot
gas. Pressure equilibrium implies

nhTh = ncTc. (1)

From this we obtain

fc = 1

1 + (Fh/1 − Fh)(µc/µh)(Th/Tc)
, (2)

and, of course, fh = 1 − fc, nh = ρ̄h/ fhµhmp and nc = n̄c/ fcµcmp

(where mp is the proton mass). Finally, the dependence of the µh

and µc molecular weights on metallicity is taken into account.

2.2 Fragmentation of the cold phase

It is assumed that the cold phase fragments into clouds with a given
mass spectrum. As noted in the introduction, according to the turbu-
lent picture of the ISM the ‘clouds’ (i.e peaks of the fractal density
fields) are not stable entities but transient features of the medium.
We will assume in the following that the self-gravitating clouds
are reasonably stable (in the sense that they are not significantly
reshuffled by turbulence) within one or two dynamical times and
that the continuous reshuffling of the density field does not change
the statistics of clouds.

The mass spectrum of the so-defined clouds is assumed to be a
power law

Ncl(mcl) dmcl = N0(mcl/1 M�)−αcl dmcl, (3)

where N 0 is a normalization constant (with dimensions pc−3 M−1�),
fixed by requiring ρ̄c = ∫

Nclmcl dmcl (see below), and αcl is a free
parameter. This choice is the natural outcome of many different pro-
cesses, including turbulence. The parameter αcl can be constrained
both from theory and observations of the ISM (see, for example,
Solomon et al. 1987), and should vary between 1.5 and 2 (the latter
considered as a reference value), at least in self-regulated situations
such as the Milky Way. Notice that in this way a significant amount
of mass is located in high-mass clouds.

To the clouds we associate a typical radius acl defined simply as
m cl = 4π a3

clρ c/3, or

mcl = 0.104 µcnca
3
cl M�. (4)

This does not imply an assumption of sphericity of the clouds.
The mass function of clouds is truncated both at low and high

masses. At the high-mass end, the mass function is truncated by
gravitational collapse, because clouds that form stars are quickly
destroyed. The upper mass limit mu will be computed in Section 2.4.
At low masses, clouds are easily destroyed by a number of possible
processes, among which are thermo- and photo-evaporation. McKee
& Ostriker (1977) set the lower limit to a cl = a l = 0.5 pc. For µc ∼

1 The halo is assumed, for simplicity, to be completely decoupled from the
hot phase, although in realistic situations the two components will interact.

1.2 and n c ∼ 10 cm−3 this corresponds to m l ∼ 0.1 M�. We set the
lower mass limit to this value. This is surely a rough approximation,
as ml should be self-consistently determined by the dynamics of
the system, and is unlikely to be a constant. However, its actual
value does not have a strong impact on the results as long as m u �
m l, a condition that is verified by most solutions. None the less, it is
important to set ml to a non-vanishing value both to avoid divergence
in a few calculations (such as the normalization of the mass function
for αcl � 2) and to avoid contributions from clouds that most likely
do not exist.

The normalization constant of the mass function is

N0 (1 M�)αcl = ρ̄c

f (mu, m l)
. (5)

Here, the function f (m u, m l) is equal to (m−αcl+2
u − m−αcl+2

l )/
(−αcl + 2) if αcl 	= 2, otherwise f (m u, m l) = ln(m u/m l).

2.3 Critical mass for clouds

Massive clouds are destroyed by gravitational collapse. In the ab-
sence of magnetic fields and turbulence, the threshold mass for col-
lapse is fixed by the Bonnor–Ebert criterion (Ebert 1955; Bonnor
1956), and depends on an external pressure term Pext. If the external
pressure is fixed to the thermal one, the criterion is equivalent to the
classical Jeans mass. To generalize it to non-spherical clouds, we
follow Lombardi & Bertin (2001), who find

mJ 
 1.18
c4

s,c√
G3µ3

shape Pext


 20.3 T 3/2
c n−1/2

c µ−2
c µ

−3/2
shape M�. (6)

Here cs,c is the sound speed of the cold phase, the external pressure
is set to the thermal one and the parameter µshape is defined by the
authors as

µshape ≡ 12π

(
3

4π

)1/3
V 4/3

S2

×S2

(∫
∂V

|∇ξ u(sx)|−1 dS

∫
∂V

|∇ξ u(sx)| dS

)−1

. (7)

In this equation the integrals are performed on the surface ∂V (of
area S) of the volume V of the cloud; the function u is the cloud
density normalized to its maximum value u ≡ ρ/ρmax and s−1 is
a ‘Jeans length’ defined as s = √

4πGρmax/c2
s,c; x is the space

coordinate and ξ = sx. The parameter µshape is dimensionless, scale
invariant (i.e does not change for similarity transformations) and is
always smaller than unity. For a sphere µshape = 1, and the Jeans
(Bonnor–Ebert) criterion is recovered. In general, collapsing clouds
will be non-spherical, and this will correspond to an increase of the
threshold mass mJ. We treat µshape as a free parameter. It can be
considered as a product of two terms, µ1 and µ2, given in the first
and second lines of equation (7). Both terms are �1 and are unity
for a sphere; moreover, µ2 is unity when gravity is negligible. So, a
rough estimate can be obtained by considering µshape ∼ µ1.

This quantity is easily computed in the simple case of a rotational
ellipsoid with semi-axes a1 and a2 (with the third semi-axis a3 =
a2). If r = a2/a1 is the axial ratio, we find

µshape 
 1

g(r )2r 4/3
, (8)

where g(r ) = 1/2 + arcsin
√

1 − r 2/2r
√

1 − r 2 if r < 1 and g(r ) =
1/2 + log[(r + √

r 2 − 1)/(r − √
r 2 − 1)]/4r

√
r 2 − 1 if r > 1. In

this case µshape takes values ∼0.5 for axial ratios of order 1 : 5 (in
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both senses), while it is ∼0.2 for axial ratios 1 : 10. As this is likely to
be an overestimate of the actual value, we consider 0.2 as a reference
value for this parameter.

Magnetic fields and turbulence could in principle invalidate the
Bonnor–Ebert criterion by providing non-thermal support to the
cloud. Recent simulations (see, for example, Mac Low 2002) have
shown that turbulence cannot inhibit the collapse of critical clouds;
the Jeans criterion remains valid provided that the quadratic sum of
kinetic and sound speeds is used in place of the sound speed itself.
For a typical turbulent speed of several km s−1, the Jeans mass would
correspond to that relative to a temperature Tc of several 103 K.
The effect of turbulent motions can thus be roughly implemented
by assuming a very small value for µshape, of the order of 0.01.
Magnetic fields can halt the global collapse of the cloud but not
its fragmentation into stars, so their effect on the critical mass for
collapse is negligible.

Finally, in cases such as the sweeping of a spiral arm or during a
merger the Jeans criterion can be changed by explicitly introducing
a Pext term. This will correspond to a sudden decrease of the Jeans
mass, and then to a burst of star formation.

2.4 Coagulation of cold clouds

Clouds larger than the Jeans mass are continually created by kinetic
aggregation (coagulation) of smaller clouds. This is described with
the aid of the Smoluchowski equation (von Smoluchowski 1916). In
this we follow the approach of Cavaliere, Colafrancesco & Menci
(1991, 1992) – see also Menci et al. (2002) – who used this formalism
to describe the kinetic aggregation of dark matter haloes.

The details of the calculations are reported in Appendix B. In
brief, the coagulation of clouds is driven by a kernel:

K = ρ̄c

〈〈�coagvap〉v

〉
m

. (9)

Here � coag is the cross-section for interaction and vap is the approach
velocity, while the two averages are done over velocity and mass.
Notably, it is assumed that clouds, although transient, are stable for
one crossing time a clvap; this is reasonable as vap is typically larger
than the sound speed of the cold phase. Following Saslaw (1985)
the cross-section for the coagulation of two clouds (denoted by 1
and 2) is

�coag = π(a1 + a2)2

[
1 + 2G

(m1 + m2)

a1 + a2

1

v2
ap

]
. (10)

The first term corresponds to geometric interactions, the second to
resonant ones; this last term is effective when the approach veloc-
ity is not much larger than the internal velocity dispersion of the
clouds. In most cases considered here, the geometrical term results
dominant, so we will neglect resonant interactions in the following.
Notice that this cross-section is valid for spherical clouds; we do not
consider the effect of asphericity here, as it would be a further-order
correction with respect to that of the Jeans mass introduced above.

It is shown in Appendix B that the time-scale for coagulation is

tcoag =
(

4π

3

)2/3
1

π
ρ̄−1/3

c

ρc

ρ̄c

2/3 m1/3
J

〈vap〉v
. (11)

The typical mass scale of the mass function, identified with the upper
cut-off, grows as (1 + t/3t coag)3. For a Maxwellian distribution
of velocities with one-dimensional dispersion σ v we have 〈vap〉 =
1.30σ v.

The time at disposal for accretion is the time necessary to a Jeans
mass cloud to be destroyed. This will be related to the dynamical

time:

tdyn =
√

3π

32Gρc

 5.15 × 107 (µcnc)

−1/2 yr. (12)

As star formation is triggered roughly after tdyn, and early feed-
back from young stars destroys the cloud in a comparable time (see
below), we conservatively allow aggregation to go on for two dy-
namical times. Thus, the upper mass cut-off is set to

mu = mJ

(
1 + 2tdyn

3tcoag

)3

. (13)

The mass of the typical collapsing cloud is then

mcc =
∫ mu

mJ
mcl Ncl(mcl) dmcl∫ mu

mJ
Ncl(mcl) dmcl

, (14)

and the fraction of cold gas presently available for star formation is

fcoll =
∫ mu

mJ
mcl Ncl(mcl) dmcl

ρ̄c
. (15)

The total number of collapsing clouds is

ncc = fcoll
Mcold

mcc
. (16)

Coagulation is a physically motivated and reasonable mechanism
to explain the growth of cold clouds, but it has never been validated
(to the best of our knowledge) by simulations that include MHD
turbulence. Besides, it has been proposed that giant molecular clouds
form in the converging flows caused by the sweeping of spiral arms
(Ballesteros-Paredes, Vazquez-Semadeni & Scalo 1999), a process
that cannot be introduced without a proper modelling of the disc.

A consequence of the assumptions done is that cooling alone is
not going to produce clouds larger than the Jeans mass; they are
produced only by coagulation of smaller clouds. This is contrary to
the naive expectancy of a mass function of clouds which is truncated
below by the Jeans mass in the case of a cooling flow, as only
fluctuations larger than the Jeans mass can grow. This is not what
is observed in the case of thermal instability in turbulent media,
where (without thermal conduction and UV heating) structures of all
masses are observed down to the resolution limit (see, for example,
Kritsuk & Norman 2002). On the other hand, it is possible that
giant clouds, much larger than the Jeans mass, form in the cooling
flows that take place at the centres of cosmological haloes. This is
neglected here, but can be modelled by introducing a further mass
scale in the mass function.

2.5 Star formation and early feedback

Collapsing clouds can reach high enough densities to trigger the for-
mation of H2 and further cool to ∼10 K. After one dynamical time
(equation 12) star formation starts inside the ‘molecular’ cloud. An
important point is that early feedback from massive stars can destroy
the collapsed cloud before the bulk of Type II SNe has explodedx. It
has been shown (Franco, Shore & Tenorio-Tagle 1994; Williams &
McKee 1997; Matzner 2002) that H II regions are a source of turbu-
lence, and their energy input is sufficient to destroy the star-forming
clouds, pre-heating them at �104 K. A similar role is played by
stellar winds, that are typically trapped inside H II regions (McKee,
van Buren & Lazareff 1984). Matzner (2002) computed the amount
of turbulence driven into the star-forming cloud by expanding H II

regions. Under the assumption that the rate of injection of turbu-
lence equates the decay rate estimated from N-body simulations, he
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predicted that the cloud would be destroyed in ∼2 × 107 yr, i.e about
one dynamical time of the uncollapsed cloud (equation 12 with n c ∼
10 cm−3), with a resulting efficiency of star formation f � (i.e the
fraction of the cloud that goes into formed stars) of ∼5–10 per cent.
This is in rough agreement with both observations of molecular
clouds and estimates from globular clusters ( f � ∼ 1–10 per cent;
see, for example, Elmegreen 2000, 2002).

The ability of the energy from SNe to emerge from the destroyed
cloud, possibly the most delicate step in the whole chain of feedback
events, is addressed in Paper II; here we give only a very short sum-
mary of the results. When SNe start to explode, the cloud is already
in the process of being destroyed, so that a significant fraction of
mass is in a warm, diffuse phase. SNRs propagating in this dense
environment soon radiate their thermal energy (see Section 2.6 for
more details). In this case, the mass internal to the blast collapses
into a thin, dense shell that fragments as soon as the blast is con-
fined by kinetic pressure. So, the net effect of the first SN is that of
collapsing again the diffuse material heated up by the H II regions.
After a few SNe, most gas is recollapsed into cold clouds with a low
filling factor, while the diffuse component has such a low density
that SNRs emerge from the cloud before cooling. From this point,
all the energy from SNe is used to drive the SB. When many tens
of SNe explode in a single cloud, most energy (90–95 per cent) is
used to drive the SB, while for very small clouds, where only a few
SNe explode, the first SN is able to destroy the cloud, losing most
of its energy in the process, while the other SNe (if any) will pump
energy into the ISM with a likely high efficiency. Eventually, only
∼10 per cent of the initial cloud is found in diffuse, hot gas with
temperature of the order of 106 K; lower values are expected if the
cloud is particularly dense.

For this version of the feedback model we decide to give a mini-
mal, heuristic description of this process, in order to keep the model
simpler. Each SN releases 1051 E 51 erg in the ISM.2 We assume that
all the energy is available for driving the SB; in the case of very
small collapsing clouds a lower effective value of E51 will be plau-
sible. We assume that a fraction f evap of the cloud is evaporated to a
temperature Tevap, while the rest (amounting to a fraction 1 − f � −
f evap) is recollapsed into cold clouds. Of course, f evap + f � � 1.
We use as reference values E 51 = 1, f evap = 0.1 and Tevap = 106 K,
with the warning that in the case of very dense clouds f evap will
likely be lower (see Paper II).

Finally, the contribution of a single collapsing cloud to the global
star formation rate is

ṁsf = f�
mcc

tdyn
. (17)

2.6 Super-bubbles

SNRs associated with massive stars in a star-forming cloud will
soon percolate into a single hot bubble. As a consequence, all the
SNe exploding in a cloud will drive a single SB into the ISM (see,
for example, Mac Low & McCray 1988).

Stars are formed with a given initial mass function (IMF) that
must be specified. For the model, the only information needed is
the mass of stars formed for each SN, M �,sn. We associate one SN
to each >8-M� star; if the (differential) IMF has a slope −(α imf

+ 1) and the lifetime of a star goes as its mass raised to −α life, the
rate of SN explosion goes as t (αimf−αlife)/αlife . For standard choices of
α imf = 1.35 and α life ∼ 2.5–3 the exponent takes a value of ∼ −0.5.

2 Observations suggest values of E51 in the range of 1–10.

In other words, the rate of SN explosion depends weakly on time,
and is approximated as constant. Denoting by t life the difference
between the lifetime of an 8-M� star and that of the largest star, the
number of SNe that explode in a collapsing cloud and the resulting
rate are

Nsn = f�
mcc

M�,sn
, (18)

Rsn = f�
mcc

tlife M�,sn
. (19)

The mechanical luminosity of the SB is then L mech = L 38 × 1038

erg s−1, where

L38 = 1013 Rsn E51

1 yr
. (20)

In the presence of a two-phase medium, the SB expands into the
more diffuse, more pervasive hot phase; cold clouds will pierce
the blast, but this will promptly reform after the cloud has been
overtaken (McKee & Ostriker 1977; Mac Low & McCray 1988;
Ostriker & McKee 1988).

The evolution of the SB is described following the model of
Weaver et al. (1977); see also Ostriker & McKee (1988). In the
beginning the SB is adiabatic, because the shocked ISM has not had
time to cool. In this case

R(ad)
sb (t) = 81.3

(
L38

µhnh

)1/5

t3/5
6 pc, (21)

where t 6 = t/106 yr. Table 1 reports the main properties of the SB
expanding in the hot phase.

In the adiabatic stage, the hot phase is shock-heated by the blast.
Of the initial energy of the SN, 73.7 per cent is thermal and 26.3 per
cent is kinetic. This stage ends when the post-shock mass elements
cool, i.e when t (ad)

cool(t) = t . The cooling time is computed as

tcool = 3kT /nh�(T ) (22)

and is evaluated at T (ad)
sb (given in Table 1) and 4nh (due to the shock

jump condition). For the cooling function, we use the approximation
proposed, for example, by Cioffi, McKee & Bertschinger (1988)

� = 1.6 × 10−19 ζmT −1/2
h , (23)

where ζ m ≡ Z hot/Z� is the metallicity of the hot gas in solar units.
This formula is relatively accurate in the range 105 � Th � 106.5. A
more realistic cooling function would be desirable, but would make
analytical estimates unfeasible. The time of shell formation is then

tpds = 2.33 × 104 L3/11
38 µ

9/22
h n−8/11

h ζ−5/11
m yr. (24)

We call Rpds the radius of the SB at tpds. After this moment the
swept mass collapses into a thin cold shell. This shell acts like a
snowplough, making the swept ISM collapse into it. For simplicity,
the cold clouds are assumed as before to pierce the shell without any
effect. Some of the hot gas will anyway remain inside the bubble,
pushing the snowplough with its pressure; this stage is called the
pressure driven snowplough (PDS). We use the solution of Weaver
et al. (1977) – see also Castor, McCray & Weaver (1975) – that
includes thermal conduction at the interface between the gas and
the cold shell, a mechanism that releases more hot gas from the
shell into the interior. They obtain

R(pds)
sb (t) = 70.2

(
L38

µhnh

)1/5

t3/5
6 pc, (25)

Notice that the time dependence is the same as above, due to the
presence of an increasing amount of hot interior gas. This gas is,
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Table 1. Main properties of SBs.

Adiabatic stage

Radius R(ad)
sb (t) = 81.3(L 38/µhnh)1/5t3/5

6 pc

Shock speed v
(ad)
sb (t) = 47.7(L 38/µhnh)1/5t−2/5

6 km s−1

Average temperature T̄ (ad)
sb (t) = 1.79 × 105 L2/5

38 µ
3/5
h n−2/5

h t−4/5
6 K

Post-shock temperature T (ad)
sb (t) = 5.4 × 104 L2/5

38 µ
3/5
h n−2/5

h t−4/5
6 K

Post-shock pressure P (ad)
sb (t)/k = 2.16 × 105 L2/5

38 (µhnh)3/5t−4/5
6 K cm−3

Cooling time t (ad)
cool(t) = 255 L3/5

38 µ
9/10
h n−8/5

h ζ−1
m t−6/5

6 yr

Swept mass M sw(t) = 5.53 × 104 L3/5
38 (µhnh)2/5t9/5

6 M�
Internal mass M int(t) = M sw

PDS stage

Radius R(pds)
sb (t) = 70.2(L 38/µhnh)1/5t3/5

6 pc

Shock speed v
(pds)
sb (t) = 41.2(L 38/µhnh)1/5t−2/5

6 km s−1

Post-shock pressure P (ad)
sb (t)/k = 1.60 × 105 L2/5

38 (µhnh)3/5t−4/5
6 K cm−3

Swept mass M sw(t) = 3.56 × 104 L3/5
38 (µhnh)2/5t9/5

6 M�
Internal mass M int(t) = M sw [1 − (t/t pds)−3.2]

however, negligible with respect to the swept mass, and is so diluted
that further cooling is inhibited. A more standard choice for the
evolution of the SB in the PDS stage would be (see, for example,
Koo & McKee 1992) R(pds)

sb ∝ t4/7; the exponent decreases only by
5 per cent with respect to Weaver et al. (1977). Table 1 reports the
main characteristics of the SBs in this stage.

To ease numerical integration, we interpolate between the adia-
batic and PDS stages assuming that after tpds the blast radius evolves
as R sb ∝ t0.2 and the velocity as v sb ∝ t−2 until the PDS solutions
are met.

In the PDS stage, the amount of ISM swept by the SB that is
collapsed into the shell is estimated as the fraction of the internal
material for which (in the adiabatic solution) t cool(r ; t) < t . Assum-
ing a power-law profile for density and temperature of the gas just
inside the adiabatic blast, in the pressure-gradient approximation
of Ostriker & McKee (1988) we obtain T ∝ (r/R sb)0.5 and ρ ∝
(r/R sb)9. From these relations we obtain that the internal mass (not
yet collapsed into the shell) is related to the swept mass as

Mint = Msw(t/tpds)
−3.2. (26)

This is valid of course for t > t pds. For simplicity, we assume that
the thermal energy of the SB is lost at the same rate

E (th)
sb = 0.737 Rsnt

[
1 − (t/tpds)

−3.2
]
, (27)

while the kinetic energy is kept at E (kin)
sb = 0.263R snt .

The explosion of the last SN marks the exhaustion of energy
injection into the SB, so the evolution after this event should follow
that of a SNR. We observe that SBs are stopped by thermal pressure
or by blowout (see below) before exhaustion in virtually all cases,
so an accurate modelling of this stage is immaterial. In any case, we
assume that after the last SN has exploded the blast always evolves
like the adiabatic Sedov solution for a SNR, R sb ∝ t2/5.

A note of caution is necessary on the application of these solutions
for the evolution of the SB. They are valid if the hot phase is uniform,
the cold phase negligible, and if the mass of the ‘wind’ that drives the
SB is negligible with respect to the swept mass. This last condition
is violated in most actual cases as soon as a significant fraction
of the collapsing cloud is evaporated. On the other hand, the other

conditions are also violated: the ISM is structured, and events such
as thermo-evaporation of clouds, dragging of clouds by the internal
gas, turbulent and magnetic pressure and cosmic rays are likely
to influence significantly the dynamics of the SB. Some of these
effects can be modelled analytically (see Ostriker & McKee 1988),
but at the cost of more uncertainties and dangerous assumptions. We
decide to rely on the simple solutions given above, with the caveat
that all numbers must be considered as useful order-of-magnitude
estimates.

None the less, we have tried to include thermo-evaporation of
the cold phase by the expanding SB, so as to quantify the mass
flow implied. Following the approach of McKee & Ostriker (1977)
and the generalization of Ostriker & McKee (1988) to SBs, we
find that the thermo-evaporated ISM is generally much less massive
than the evaporated gas from the star-forming cloud, so the inclu-
sion of thermo-evaporation, while introducing further uncertainties,
does not affect strongly the results presented here. We will neglect
thermo-evaporation in the following.

2.7 The fate of SBs

An SB can end in two ways: (i) being confined by external pressure;
(ii) blowing out of the system.

Case (i) takes place at time tconf when the shock speed is equal to
the external, thermal one

vsb(tconf) = cs,h = 91.2(Th,6/µh)1/2, (28)

where Th,6 = Th/106 K. As the blast propagates into the low-density
hot phase, kinetic pressure is always negligible. The time and ra-
dius at which confinement takes place are given in Table C1 of
Appendix C. After confinement, the blast (in the adiabatic stage)
dissolves in the hot phase or the shell (in the PDS stage) fragments
because of Rayleigh–Taylor instabilities. This allows the hot phase
to mix with the interior hot gas. However, as long as t conf < t life

many SNe explode after confinement. This will correspond to the
creation of secondary bubbles; the medium in which they expand
will depend on the velocity with which the interior gas mixes with
the external one. In the adiabatic confinement case, it is easy to see
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that secondary bubbles will be confined in the adiabatic stage as
well, so all the energy from SNe will be released to the hot phase;
in this case feedback is mostly efficient. In the case of confinement
in the PDS stage, the situation is more complicated. If interior and
external hot gas mix very quickly, the secondary bubbles will ex-
pand in the same medium and will then create secondary shells, but
if mixing is slow the energy of the remaining SNe will be pumped
efficiently into the hot, rarefied internal gas. To address this case,
we assume that the energy of the SNe exploding after confinement
is released to the hot phase either entirely, f pds = 1, or by a fraction
f pds = 0.737[1 − (t conf/t pds)−3.2] + 0.263, that takes into account
that thermal energy is dissipated according to equation (27). The
two cases should bracket the true solution.

Case (ii), the blowout of the SB, takes place when the SB overtakes
the vertical scaleheight H eff of the system, defined as (Mac Low &
McCray 1988; Koo & McKee 1992)

Heff ≡ 1

ρ0

∫ ∞

0

ρh(z) dz, (29)

where z is the vertical direction (that for which H eff is minimal)
and ρ 0 = ρ h(z = 0). The blowout condition is obviously R sb =
H eff, and the blowout time is reported in Table C1. This condition
is true if all SBs are centred at z = 0. Coagulation naturally leads to
mass segregation, and this is in line with the observational evidence
that molecular clouds show a smaller vertical scalelength than H I.
However, typical blowing-out SBs will be away from the midplane
and will blow out only from one side, with a result that is not vastly
different from a bipolar blowout. Moreover, off-plane SBs will blow
out more easily and intermediate configurations, with midplane SBs
being pressure-confined and external SBs blowing out, will be pos-
sible. In order to keep the model as simple as possible, we consider
only midplane SBs; the H eff vertical scalelength will then be under-
stood as the difference between the H I and H2 scalelengths.

The SB does not stop immediately after blowout, as the rarefac-
tion wave that follows blowout must have time to reach the blast
travelling in the horizontal direction. We then allow for a sound
crossing time before stopping the SB. If α2 is the mean effective
Mach number of the blast (the square ratio between the blast speed
and the average internal sound speed) and R sb(t) ∝ tη, the sound
crossing time of an adiabatic bubble is

tcross = α

η
tbo. (30)

For adiabatic and PDS blasts, α2 = 1.61 and 1.18 (Weaver et al.
1977; Ostriker & McKee 1988). The final radius Rbo′ and time
t bo′ (≡ t bo + t cross) at blowout are reported in Table C1. Between
tbo and t bo′ the SB can enter the PDS stage (if it hasn’t yet) or be
confined by pressure.

The final time tfin and radius Rfin are defined respectively as the
smallest between t bo′ and tconf, and between Rbo′ and Rconf. Ap-
pendix C reports on a study of the final state of SBs (confinement or
blowout in adiabatic or PDS stage) in the plane defined by the two
variables nh and L38.

At the blowout part of the hot interior, gas of the SB escapes to
the halo. To compute the fraction of hot blown-out gas we adopt the
following simple geometrical model (Fig. 1). The ISM swept by a
SB of radius Rfin blows out from the two polar cups defined by the
intersection of the sphere and the two horizontal planes at distance
H eff from the centre. The swept gas receives momentum from the
blast in the radial direction, so the blowing-out gas is that contained
in a double cone with the opening angle θ of the polar cups; we have
cos θ = H eff/Rfin. Neglecting the ISM contained in the polar cups

Figure 1. Geometrical model for blowout. The SB starts blowing out when
its radius is equal to Heff, but continues to expand for one sound crossing
time, finally reaching the radius Rfin. The two polar cups (diagonal-shaded
regions), defined by the intersection of the final SB and the two planes at
Heff, are assumed to be devoid of matter. All the matter present in the double
cone (vertical-shaded regions) with an aperture equal to that of the polar
cups receives a radial momentum that allows it to blow out into the halo.

(that are outside the volume V), the fraction of swept ISM that is
blown out is

fbo =
{

1
2

[
Heff/Rfin − (Heff/Rfin)3

]
if Rfin > Heff

0 if Rfin < Heff.
(31)

This is valid both for adiabatic and PDS blowout. Consistently, the
absence of ISM in the two polar cups is considered when computing
the swept mass. With this simple model, which contains no free
parameters, the fraction f bo ranges from 0 to ∼0.2; this is roughly
consistent with Mac Low & McCray (1988) and Mac Low, McCray
& Norman (1989), who report that most of the internal hot gas
remains in the disc. It is anyway interesting to allow for higher f bo

values; this is done by forcing the maximum of equation (31) to be
f bo,max, which is taken as a free parameter.

A note on definitions follows. In a cosmological context, the term
blowout is used for the gas that is expelled from a galactic halo; we
use it for the expulsion of gas from the ‘galaxy’, i.e from the region
where stars and ISM are present, but our blown-out gas is destined by
construction to remain in the halo. As already mentioned above, this
oversimplification is introduced to avoid modelling of the external
halo. As we know the temperature, density and escape velocity of the
blown-out gas, modelling of galactic winds is readily feasible once
the global properties of the hosting dark matter halo are specified.

The energy of the SNe exploding after t bo′ is assumed to be fun-
nelled out into the halo. None the less, the restored mass, responsible
for chemical enrichment, is for simplicity blown out with the same
efficiency (f bo) as the rest of the mass, leading to a possible un-
derestimate of the metals ejected into the halo. We will see in the
following that the ejection of metals in the halo is anyway rather
efficient even with this assumption (see also de Young & Gallagher
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1990; Ferrara & Tolstoy 2000). We leave a refinement on this point
to further work.

The porosity Qsb of the SBs is defined as the fraction of volume
occupied by expanding blasts. This is a very important quantity, as
when it is unity it indicates that the blasts percolate the volume and
create a super-SB. The computation of Qsb depends on the time at
which SBs stop to expand into the ISM. In the case of blowout, the
blast halts at t bo′ and the energy of further SNe is funnelled out of the
volume V into the halo. On the contrary, in the case of confinement
secondary blasts form after tfin, whose energy is still injected into
the ISM. To take this into account, we compute Qsb as

Qsb = Ncc

tdynV

4

3
π

∫ tporo

0

R3
sb(t) dt, (32)

where t poro = t fin in case of blowout, or t life in case of confinement;
in the latter case Rsb is kept constant to Rfin after tfin. Regarding
the adiabatic blowout regime, it is clear that if SBs remain identifi-
able after tporo, then a value of Qsb inferred from observations will
be higher than that given by equation (32). However, recognizable
bubbles do not play the same dynamical role as expanding blasts.

3 T H E S Y S T E M O F E QUAT I O N S

3.1 Mass flows

Fig. 2 shows all the mass flows between the four components that
are taken into account in this model.

Cold gas is continually infalling from the halo. This is modelled
simply as follows

Ṁinf = Mhalo

tinf
, (33)

where t inf is a parameter of the system.
The hot phase cools at the rate tcool; if it were completely homoge-

neous it would remain globally hot. In realistic cases, the hot phase

Figure 2. Mass flows between the four components described in the
model. Arrows denote the flows connected to infall (Ṁinf), star forma-
tion (Ṁsf), restoration (Ṁrest), cooling (Ṁcool), evaporation (Ṁevap), snow-
ploughs (Ṁsnpl), leak-out (Ṁleak) and the rate at which the hot phase is
engulfed by SBs (Ṁint). Blowout takes mass by a fraction f bo from the
internal, evaporation, snowplough and restoration mass flows.

will show a rather broad range of densities and local cooling times,
so that a fraction of the gas will be able to cool to low temperature.
A modelling of this fraction would require detailed knowledge of
the density distribution of the hot phase; we prefer to leave it as a
free parameter, f cool, with 0.1 as a tentative reference value. The
cooling mass flux is then

Ṁcool = fcool
Mhot

tcool
, (34)

where t cool(Th) is computed from equation (22) and with the simple
cooling function given by equation (23).

While the cold phase is easily confined by a modest gravitational
well, the hot phase is generally able to leak out of the volume V to
the halo. The time-scale connected to this leak-out is

tleak =
√

3/d
Heff

cs,h
, (35)

where cs,h is the sound speed of the hot phase and d is unity if leak-
out is in one preferential direction, 3 if it is spherically symmetric. In
the following, we consider for simplicity leak-out in one direction;
we have verified that the results are not sensitive to the value of d.
The mass-loss rate is then

Ṁleak = Mhot

tleak
. (36)

This term should be revised if some external hot halo gas hampers
leak-out.

Cool gas transforms into stars at the rate

Ṁsf = f� fcoll
Mcold

tdyn
. (37)

This is easily obtained by multiplying the contribution of a single
cloud (equation 17) by the total number of collapsing clouds N cc

(equation 16). It can be written also as Ṁsf = Mcold/tsf, where

tsf = tdyn/ f� fcoll. (38)

A fraction f rest is instantaneously restored to the hot phase:

Ṁrest = frest Ṁsf. (39)

This flux is responsible for chemical enrichment; we notice that this
equation implies instantaneous recycling.

The rate at which the mass of collapsing clouds is evaporated
back to the hot phase is

Ṁevap = fevap fcoll
Mcold

tdyn
. (40)

It follows that Ṁevap = fevap Ṁsf/ f�.
At the final time tfin, each SB has swept a mass M sw(t fin), of which

a part M int(t fin) (see Table 1 and equation 26) is in hot internal gas
and the rest is in the snowplough. The rate at which the hot phase
becomes internal mass of a SB is

Ṁint = Ncc
Mint(tfin)

tdyn
, (41)

while the rate at which it becomes a snowplough is

Ṁsnpl = Ncc
Msw(tfin) − Mint(tfin)

tdyn
. (42)

We recall that a fraction f bo (equation 31) of the swept material (both
hot and cooled) and of the restored and evaporated mass is blown
out to the halo. Defining Ṁbo = fbo(Ṁevap + Ṁrest + Ṁint + Ṁsnpl),
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the system of equations that describes the mass flows is

Ṁcold = Ṁinf + Ṁcool − Ṁsf − Ṁevap + (1 − fbo)Ṁsnpl

Ṁhot = −Ṁcool − Ṁsnpl − Ṁleak − fbo Ṁint

+ (1 − fbo)(Ṁevap + Ṁrest)

Ṁ� = Ṁsf − Ṁrest

Ṁhalo = −Ṁinf + Ṁleak + Ṁbo. (43)

Mass conservation is guaranteed by the condition Ṁhot + Ṁcold +
Ṁ� + Ṁhalo = 0.

3.2 Energy flows

A similar set of equations can be written for the energy flows. Here
we concentrate only on the energy Ehot of the hot component, which
determines Th. The total energy released by SNe is

Ėsn = Ncc
E51 Nsn

tdyn
. (44)

The rates of energy loss by cooling, snowplough, blowout and leak-
out are respectively:

Ėcool = Ehot

tcool
(45)

Ėsnpl = ṀsnplTh
3

2

k

µhmp
, (46)

Ėbo = fbo ṀintTh
3

2

k

µhmp
, (47)

Ėleak = Ehot

tleak
. (48)

Regarding the energy budget of the SB (equation 27), while thermal
energy is obviously given to the ISM, kinetic energy is transformed
into turbulence and then partially thermalized. We have verified that
including or excluding kinetic energy from the energy budget does
not change appreciably the dynamics of the system. At present, we
decide to give it to the ISM, and more refined modelling of the decay
of turbulence will be presented elsewhere.

In the blowout regime, the ISM receives a fraction (1 − f bo) of
the energy of the SB (thermal, equation 27 evaluated at tfin,3 plus
kinetic) and of the energy connected to the evaporated mass (that
comes from the first SN exploding in the cloud):

Ėfb = (1 − fbo)

×
[

Ncc
E (th)

sb + E (kin)
sb

tdyn
+ ṀevapTevap

3

2

k

µhmp

]
. (49)

In the adiabatic confinement case, all energy from SNe is given to
the ISM:

Ėfb = Ėsn. (50)

In this case the energy of the evaporated cloud is already included in
the total SN budget. Finally, in the case of PDS confinement the ISM
receives the thermal and kinetic energy of the SB. As mentioned in
Section 2.7, the energy E rest associated with SNe exploding after
tfin is given either by a fraction f pds = 0.737[1 − (t fin/t pds)−3.2] +
0.263 (the case of fast mixing, where secondary bubbles share the
same fate as the principal one; see Section 2.6) or entirely, f pds =

3 When tfin is short we force R snt fin to be at least unity.

1 (the case of slow mixing, where the remaining energy is pumped
into the rarefied interior of the bubble):

Ėfb = Ncc
1

tdyn

[
E (th)

sb + E (kin)
sb + fpds Erest

]
. (51)

Given the uncertainty connected to the modelling of E rest, we con-
sider it worthless to include a detailed treatment of the energy from
the evaporated cloud in this case.

The equation for the evolution of Ehot is

Ėhot = −Ėcool − Ėleak + Ėfb − Ėbo − Ėsnpl. (52)

The efficiency of feedback f E is defined as the thermal energy gained
(or lost) by the ISM (by the hot phase) at the end of the feedback
process, divided by the energy injected by SNe. Cooling and leak-
out are not directly associated with the action of SBs, while energy
losses by blowout and snowplough act in decreasing the thermal
energy of the ISM by depleting the hot phase. We then define f E as

fE = Ėfb − Ėbo − Ėsnpl

Ėsn
. (53)

It is very important to notice that this quantity is not constrained to
be positive. In particular situations, the depleting action of blowouts
and snowploughs can overtake energy injection; in this case, the net
effect of SN explosions is a loss of thermal energy more than a gain.

3.3 Metal flows

For each generation of stars, a fraction y of the restored mass is
composed by new metals that are continually injected into the ISM.
We call M Z

i (where i = hot, cold, � or halo) the mass of metals in
the various components, and Z i = M Z

i /M i their metallicities. In the
instantaneous recycling approximation, the system of equations for
the metals is

Ṁ Z
hot = −Zhot(Ṁcool + Ṁsnpl + Ṁleak + fbo Ṁint)

+ (1 − fbo)[Zcold Ṁevap + (Zcold + y)Ṁrest]

Ṁ Z
cold = Zhot

[
Ṁcool + (1 − fbo)Ṁsnpl

] + Zhalo Ṁinf

− Zcold(Ṁevap + Ṁsf)

Ṁ Z
� = Zcold(Ṁsf − Ṁrest)

Ṁ Z
halo = −Zhalo Ṁinf + Zhot[Ṁleak + fbo(Ṁint + Ṁsnpl)]

+ fbo[Zcold Ṁevap + (Zcold + y)Ṁrest]. (54)

In this case, mass is not conserved, the source term being yṀrest. In
these equations, it is implicitly assumed that metals are efficiently
mixed within each component. This assumption is reasonable for the
hot and cold phases, but is clearly wrong for stars. In other words,
Z � is the average metallicity of stars but not that of the last gener-
ation, which contributes to enrichment. As a consequence, we use
Z cold for the metallicity of the newborn stars, while the actual dis-
tribution of metallicity of stars can easily be obtained by computing
the evolution Zcold Ṁ� over time. Mixing of metals within the halo
is another delicate assumption; if gas is blown out in form of cold
clouds, then mixing may be inefficient. A more refined modelling
will be required in realistic cases.

3.4 Parameters

It is useful at this point to sum up the parameters introduced in
the model. Some of them are connected to the theory of stellar
evolution or with the choice of the IMF; we do not regard them as
free parameters of the model. In this paper we fix their values as
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follows: M �,sn = 120 M�, f rest = 0.2, t life = 2.7 × 107 yr and y =
0.04.

The following quantities have been introduced in the various steps
of the feedback model, and should be regarded as free parameters:
αcl, µshape, E 51, f�, fevap, Tevap and fcool. It is worth recalling that
fevap and Tevap will be determined in Paper II, and that Tevap plays
no role if SBs are pressure-confined. Other parameters are fbo,max,
if blowout is required to be more efficient than the simple geomet-
rical model of equation (31), and fpds, which regulates the injection
of energy after PDS and is relevant only in case of PDS confine-
ment. The parameters Tc and ml are presently kept constant (we
have verified that the solutions do not change much for reasonable
changes in these parameters). This parameter space is to be con-
sidered as minimal; all the computations presented above are only
useful order-of-magnitude estimates, so many quantities could in
principle be fine-tuned (with the aid of new parameters) to repro-
duce, for instance, the results of detailed simulations.

Finally, the total mass M tot, the volume V (or equivalently the
total density ρ tot = M tot/V or surface density � tot = 2H effρ tot), the
infall time t inf, the vertical scaleheight H eff, the velocity dispersion of
clouds σ v and the geometry of leak-out d (fixed to 1 in the following)
are the parameters connected to the system in which feedback acts.
These parameters are obviously determined by the characteristics
of the galaxy. In particular, the galaxy–halo system will never be a
‘closed box’ as naively assumed here, so M tot will not be a constant.
ρ tot will be fixed by the gravitational well of the dark matter halo and
the amount of angular momentum retained by the gas. σ v will be
determined by gravitational infall, dissipation and re-acceleration
by blasts. H eff will be determined by σ v and the surface density of
the galaxy. t inf will be determined by the cooling and infall times of
the dark matter halo. To avoid the modelling of the galaxy at this
stage, for simplicity we consider these parameters as independent.
The regions of this parameter space relevant to galaxies will be
determined once their large-scale structure is fixed.

4 R E S U LT S

The system of equations (43), (52) and (54) has been integrated with
a standard Runge–Kutta algorithm with adaptive step size (Press
et al. 1992). The adaptive step size is computed considering only the
equations for the mass and energy flows. As mentioned above, the
numerical integration is often delicate, especially when the system
switches from one regime to another. For this reason it is important
to interpolate smoothly between different regimes.

In the following we fix the total mass of the system to 1011 M�.
All the results can be simply rescaled to any total mass, as long
as the mass allows for the presence of at least one collapsing cloud
in the volume. The initial conditions are set by putting most gas into
the halo, which is both physically reasonable and computationally
convenient. The volume V is anyway filled with a small amount of
mass in both cold and hot gas and a tiny amount of stars. This sets
the system into a physically acceptable transient regime, allowing
a smooth integration. We have verified that, in general, the precise
choice of these initial conditions does not influence the result as long
as the system starts in a way which is not pathological. Moreover,
we set all primordial metallicities to 10−4. We specify the density
of the system through the quantity ρ tot = M tot/V , i.e the density
that the system would have if all the mass were in the volume V and
not in the halo. Clearly, the actual density of the ISM will always
be smaller than ρ tot. For an easier comparison to astrophysical data,
we show results in terms of the surface density � tot = 2ρ tot H eff.

4.1 Feedback regimes for a reference choice of parameters

We choose a reference set of parameters by fixing them to the typical
(or tentative) values quoted above in the text: αcl = 2, E 51 = 1, f� =
0.1, fcool = 0.1, µshape = 0.2, fevap = 0.1 and Tevap = 106 K. For this
set of parameters, we run the system of equations for a grid of values
in the H eff–ρ tot (or equivalently H eff–� tot) plane, with a time-scale
of infall t inf = 109 yr, which is suggested for the Milky Way by
galaxy evolution models (see, for example, Chiappini, Matteucci &
Romano 2001), and a velocity dispersion of clouds σ v = 10 km s−1,
typical of spiral discs. We stop the integration at three infall times,
and check the actual regime of feedback. We have verified that the
feedback regime may change with time, but in most cases it does
not change from 1 to 3t inf.

Fig. 3(a) reports the regions in the H eff–� tot plane in which var-
ious feedback regimes are found. At low � tot and H eff values, the
SBs are able to blow out, and when they do they are always in the
adiabatic stage. For increasing H eff it is more and more difficult to
blow out, so that SBs are kept confined by the external pressure in
the adiabatic stage. The two regimes are roughly separated by the
relation shown in the figure:

�tot = 8

(
Heff

1000 pc

)−0.8

M� pc−2. (55)

At densities lower than this limit by roughly two orders of magni-
tude, the system enters a critical behaviour, where the hot phase is
strongly depleted and the filling factor of the cold phase becomes
high. This regime will be described in Section 4.3. At very high
surface densities, PDS confinement is met; this will be discussed
later.

If the vertical scalelength of a disc is set by dynamical equilibrium
then H eff =σ 2

v/π G� tot. Galaxy discs will then lie on the continuous
lines shown in Fig. 3 for σ v = 5, 10 and 50 km s−1.4 Discs with
the canonical of σ v = 7 km s−1 will be in the adiabatic blowout
regime, except possibly in the inner parts (where they blend with
bulges), while discs with σ v > 10 km s−1 will be in the adiabatic
confinement regime. Bright spheroidal galaxies roughly follow a
relation of the kind R e = 22(M tot/1012 M�)0.6 kpc (proposed by
Chiosi & Carraro 2002), which can be extrapolated to meet the
locus of globular clusters. Identifying the effective radius Re with
H eff, this relation is shown in the H eff–� tot plane as a dashed line. It
is clear that feedback in a spheroid will typically be in the adiabatic
confinement regime.

4.2 Some examples

We show here examples of the evolution of the system in various
regimes. In particular, we show the evolution, up to 10 Gyr, of masses
and metals of the four components, mass and energy flows, ISM and
cloud properties. The evaporation and restoration rates, Ṁevap and
Ṁrest, are not shown in the figures as they are simply proportional
to (and smaller than) the star formation rate Ṁsf.

Fig. 4 shows a Milky-Way-like system in the adiabatic blowout
regime, with (H eff, ρ tot) = (100 pc, 0.1 M� pc−3) or � tot =
20 M� pc−2 (it is denoted as MW in Fig. 3). Gas cools but does not
transform promptly into stars; in fact, it is continually recycled into
collapsing clouds. The final M cold/M � ratio is ∼0.1. The hot phase

4 Here we have assumed that the vertical scalelength of the molecular clouds
is H eff/2, which amounts to halving Heff to take into account the easier
blowout of SBs that are off the midplane; see the discussion in Section 2.7.
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Figure 3. Feedback regimes in the H eff–� tot plane after three infall times. Filled circles, stars and crosses denote adiabatic confinement, adiabatic blowout
and PDS confinement, respectively. Critical cases are marked by circles. Thin lines separate regions with different regimes (see equation 55), thick continuous
lines show the position of spiral discs with (starting from the lowest) σ v = 5, 10 or 50 km s−1, while the thick dashed line shows the average position of bulges.
The labels MW and EL are relative to the examples shown in the text. (a) Reference choice of parameters; (b) E 51 = 0.3 and fevap = 0.05.

regulates to a fraction F h ∼ 2 × 10−4. The halo gas is continually
recycled by infall, blowout and leak-out. Regarding metals, the hot
phase is promptly enriched to nearly solar values, followed by the
halo gas, which receives the blown-out and leaked-out metals; the
final metallicity of the cold gas is solar, those of hot and halo com-
ponents are 60 per cent higher. The star formation rate Ṁsf after a
rise of ∼1 Gyr decreases exponentially from ∼20 to ∼3 M� yr−1

in ∼9 Gyr; the average value of the star formation rate is ∼10 M�
yr−1. The infall rate Ṁinf after ∼2 Gyr regulates to slightly higher
values, while the leak-out rate Ṁleak is very similar to the star forma-
tion rate. Notably, leak-out dominates over blowout, and the cooling
term Ṁcool is very low. The energy equation is characterized by the
near equality of the two main flows, Ėfb and Ėleak; this is reflected
in the very stable value of Th ∼ 106 K. The ISM is self-regulated
and weakly varying over many infall times; its properties are nh ∼
10−3 cm−3, n c ∼ 10 cm−3, P/k ∼ 103 K cm−3, and change by a
factor ∼5 from 1 to 10 Gyr. The porosity Qsb is low, indicating that
active bubbles (i.e expanding blasts) do not dominate the volume.
However, if we assume that SBs are recognizable for a time t life (see
Section 2.7), the porosity of ‘observed’ SBs results as high as ∼1
at a few Gyr and ∼0.1 at the end of the integration; this implies
an apparently bubble-dominated ISM. The filling factor fc of the
cold phase is ∼0.1, while the fraction fcoll of cold gas in collaps-
ing clouds is slightly lower. The population of collapsing clouds is
also rather stable, with masses in the range of roughly a factor of
2 around m cc ∼ 105 M�. The coagulation time tcoag is higher than
the dynamical time tdyn by a factor of a few, and is ∼5 × 107 yr,
not very different from the dynamical time of the Milky Way disc.
Finally, both the number of clouds and the number of SNe per cloud
are high enough to justify the assumptions of the model.

Fig. 5 shows an example of adiabatic confinement (EL) that lies
near the elliptical line (Fig. 3), with (H eff, ρ tot) = (3 kpc, 0.3 M�
pc−3) or � tot = 1800 M� pc−2. In this case, despite the higher
density, gas is consumed more slowly than the previous case, and
the final fraction of M cold/M � is still ∼0.5. The fraction of hot to cold
gas is F h ∼10−3. The pattern of chemical enrichment is similar to the
previous cases, although metallicities are lower at the final time (due

to the lower amount of gas consumed). Mass flows peak to slightly
lower values, and decrease less steeply at later times. Again, star
formation regulates nearly to the infall rate after a few infall times,
and leak-out is only slightly lower. Blowout is obviously absent and
cooling is again negligible. As before, feedback and leak-out energy
flows nearly compensate each other. The ISM is characterized by
high pressure (P/k ∼ 105 K cm−3), density of both phases (n c ∼
103 cm−3, nh ∼ 10−2 cm−3), temperature of the hot phase (Th ∼
1.5 × 107) and a correspondingly lower filling factor of the cold
phase (∼ 2 × 10−3). Collapsing clouds are very small (m cc ∼ 3 ×
103 M�), and this is due to the very high density of the cold phase
with the consequent low Jeans mass. Besides, the range of collapsing
masses is tiny due to the low dynamical time and the consequent
inefficient coagulation. This is reflected in a low fraction of cold
mass in collapsing clouds ( fcoll ∼ 10−3) and a low porosity of active
SBs.

This example is useful to understand the change in the behaviour
of the system from the adiabatic blowout to the adiabatic confine-
ment regimes, but clearly a spheroid forms on shorter time-scales
than 1 Gyr, and this leads (within the same physical time) to a consis-
tently more rapid star formation, higher star formation rates, higher
enrichment, higher pressure and densities of ISM, slightly smaller
collapsing clouds. However, the temperature of the hot phase and
the filling factor and porosity of the cold phase are rather insensitive
to the infall time. A similar trend is observed when the density is
increased at fixed H eff.

The very low number of SNe per cloud in the adiabatic confine-
ment case highlights a limit of applicability of the model in this
case. However, it is easy to check that in the adiabatic confinement
regime all terms in the system of equations (43), (52) and (54) are
independent of the actual size of SBs. The thermal energy of the first
blast will be radiated away before the SNR manages to destroy the
star-forming cloud, so a lower effective value of E51 will be reason-
ably used. The high value of the density of the cold phase highlights
another problem. The reason why cold gas is not promptly con-
sumed into stars is that it waits to be included in collapsing clouds.
However, for such high nc values the assumption that gravitational
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Figure 4. Evolution of the system for the MW adiabatic blowout example with (H eff, ρ tot) = (100 pc, 0.1 M� pc−3), � tot = 20 M� pc−2. The panels show
the main properties of the systems, the quantities and their units are given in the labels. Time is linear, and all the quantities given in ordinate are logarithmic.
In the lower panels of mass and energy flows, the Ṁsf and Ṁleak curves and the Ėfb and Ėleak curves are very similar and hardly distinguishable.

collapse is required to trigger the formation of H2 is probably wrong,
and star formation is likely to be spread throughout the cold phase.
This can be reproduced simply by forcing fcoll to be unity; in this
case the evolution of the system becomes trivial, the main mass
flows (Ṁsf, Ṁinf, Ṁleak and Ṁevap) all become proportional to each
other and decay exponentially over one infall time.

As shown in Appendix C (Fig. C2), to reach the PDS stage at
Th = 106 K it is necessary to have rather high densities nh and
relatively high mechanical luminosities L38; the constraint tightens
considerably at higher temperature. At high densities the Jeans mass
is rather low, then L38 values are much smaller than unity, so that SBs
are mostly kept confined in the adiabatic stage. Higher mechanical
luminosities could be achieved by increasing E51, but this implies
also a higher Th. As shown in Table C1, the ratio between tpds and
tconf is proportional to L−5/22

38 T 5/4
h . As a consequence, the advantage

in decreasing L38 is overcompensated by the increase in Th; with the

result that PDS confinement is more easily achieved by lowering
E51. We recall that for small clouds an effective lower E51 value is
reasonably obtained because the thermal energy of the first blast is
lost before the blast gets out of the collapsing cloud. Moreover, for
such dense clouds a lower value of fevap is likely (Paper II). Fig. 3(b)
shows the regimes in the H eff –� tot plane for E 51 = 0.3 and fevap =
0.05. While the limit between adiabatic blowout and confinement
(Fig. 3a) is unchanged (and critical cases are found at densities
higher by a factor of 3), at densities roughly higher than

�tot = 2500 (Heff/1000 pc)−0.8 M� pc−2 (56)

PDS confinement is achieved. The reason why it takes place pref-
erentially at high H eff values is because leak-out is inefficient in
depleting the hot phase and thus nh is higher. PDS confinement so-
lutions are found also in Fig. 3(a), although at very high surface
densities.
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Figure 5. As in Fig. 4, for the EL adiabatic confinement example with (H eff, ρ tot) = (3 kpc, 0.3 M� pc−3) or � tot = 1800 M� pc−2.

The evolution of the system depends sensitively on how the energy
of SNe exploding after tfin is given to the ISM. If mixing of hot phase
and hot SB gas is slow, energy is pumped efficiently into the hot
rarefied medium of the stalled bubble; this corresponds to fpds =
1. Fig. 6 shows again the EL example of Fig. 5 in this case. PDS
confinement starts after a period of ∼1.5 infall times of adiabatic
confinement. Because of the sudden lower injection of energy into
the ISM, Th decreases by nearly an order of magnitude at the start of
PDS confinement. This cooling has the effect of increasing tpds. The
system then self-regulates to a configuration in which SBs stop just
after PDS, so that the shell never acquires much mass. Pressure and
densities are still high, but the filling factor of the cold phase is as
high as ∼10−2. As a consequence, collapsing clouds are bigger and
fcoll is higher. At the onset of PDS confinement, the star formation
rate jumps to a value of ∼30 M� yr−1, and then decreases slowly.
Because of the lower Th, the fraction of hot gas is slightly high:
F h ∼ 10−3. In this regime, cooling is more important than leak-out
in terms of both mass and energy flows; we have verified that this is

always the case for high H eff and � tot values. On the other hand, the
snowplough flows are small (they are below the range of the energy
flux panel), indicating that the most relevant effect of PDS is on
the structure of the ISM more than on the mass flows. Notably, the
porosity of the SBs increases by more than an order of magnitude.
At ∼6 Gyr, the ISM amounts roughly to 40 per cent of the total
mass, and the solution switches back to adiabatic confinement.

For smaller infall times or higher densities, the PDS regime is
triggered at an earlier time. Again, we have consistently higher star
formation rates, metallicities, pressure and densities of the ISM,
while Th, fcoll and Qsb are hardly affected.

Fig. 7(a) shows the efficiencies of feedback fE (equation 53) in the
examples discussed above. Unity values are obtained in the adiabatic
confinement regime, while in the PDS confinement example the
efficiency is just a few per cent below unity (as apparent in panel c,
smaller values such as 0.5 are obtained at higher densities or lower
infall times). In the adiabatic blowout regime, most energy is lost to
the halo and the efficiency is slightly lower than 0.1. Another way
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Figure 6. As in Fig. 4, for the EL PDS confinement example (E 51 = 0.3, fevap = 0.05, fpds = 1).

to quantify the efficiency of feedback is through its effect on star
formation. We quantify it by the ratio between the star formation
time tsf (equation 38) and the infall time t inf. As shown in Fig. 7(b), a
higher efficiency corresponds to a longer star formation time-scale,
but the correspondence is only qualitative. For instance, the EL
PDS and adiabatic confinement cases have very similar feedback
efficiencies but, due to the different ISM structure, star formation
time-scales that differ by more than a factor of 2.

It must be kept in mind that fE refers to the efficiency with which
the energy of SNe is given to the ISM. In the case of adiabatic
blowout, while ∼5–10 of the energy is given to the ISM, ∼5 per
cent is lost in the destruction of the star-forming cloud (see Paper
II), and a comparable amount is likely lost in the acceleration of the
bubble at blowout. The remaining ∼80 per cent of the budget will
be available to heat up the halo gas.

Figs 7(c) and (d) show fE and t sf/t inf at three infall times (3 Gyr,
or at the final time in critical cases) for the grid of models shown in
Fig. 3(a). The efficiency of feedback fE jumps from a value of 0.05–
0.1 in the adiabatic blowout cases to 1 in the adiabatic confinement

cases and then down to ∼0.3 in the PDS confinement cases. The
star formation time-scale tsf is roughly fit by a relation:

tsf = 25 tinf

(
�tot

1 M� pc−2

)−0.3 (
Heff

1 kpc

)0.5

. (57)

Critical and PDS confinement cases fall out of this relation.
In spiral galaxies, the star formation rate is well correlated with

the amount of cold gas, following the so-called Schmidt (1959) law,
quantified by Kennicut (1989) as � sf = (2.5 ± 0.7) × 10−4�1.4±0.15

cold

M� yr−1 kpc−2 (where � cold is the surface density of cold gas in
M� pc−2). Fig. 7(e) shows the predictions of this relation for the
same grid of models at 3 Gyr, compared to the Kennicut relation.
While the slope is accurately reproduced, the normalization depends
on H eff, and is well reproduced for H eff ∼ 50–100 pc. Bright spirals
are known to have roughly constant surface densities and velocity
dispersion of clouds, so the average value of H eff is also constant
and of the order of its value in the solar neighbourhood. So, the
predictions of this model satisfy the Schmidt–Kennicut law also in
its normalization. We have verified that this agreement holds in a
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Figure 7. (a) Efficiency of feedback fE as a function of time for the examples MW and EL with adiabatic or PDS (self-regulated or critical) confinement.
(b) Star formation time-scales (in units of the infall time) for the four cases of (a). (c) fE at three infall times (or at the onset of critical behaviour) for the cases
shown in Fig. 3(a) (with the standard choice of parameters); triangles, crosses, stars, circles and asterisks are relative to H eff = 10, 30, 100, 300 and 1000 pc;
larger points denote the adiabatic blowout regime. (d) Relation between star formation time-scale and surface density; symbols as above. (e) Prediction of the
Schmidt law versus the observational relation of Kennicut (1989); symbols as above.

very broad range of cases and at all times. This implies that this is
a robust prediction of the model, but cannot be used to fine-tune the
parameters. The Schmidt–Kennicut law is naturally obtained if star
formation depends on the mass of the cold gas divided by its dynam-
ical time. In our case (equation 37) the relation is not built-in, due
to the presence of the fcoll fraction and to the fact that the dynamical
time is computed on the actual and not average density of the cold
phase. The Schmidt-like law then follows from the approximate
constancy of fcoll and fc.

Finally, the Schmidt–Kennicut law is not followed in the external
regions of spiral galaxies, where star formation is quenched. This is
not predicted by the present model. However, such star formation
edges are usually thought to be an effect of differential rotation or,
according to Schaye (2004), of photo-heating by the cosmological

UV background. Neither process is included here, so this disagree-
ment is expected and is not considered as a worry.

4.3 Critical examples

As long as the system of equations described in Section 3 holds,
the physical system is self-regulated; as we have seen, equilibrium
solutions are found in which the ISM is relatively stable for many
infall times. However, there are critical cases where the conditions
for the existence of a two-phase medium are violated and the system
of equations does not hold any more.

At densities roughly two orders of magnitude lower than the limit
shown by equation (55), the system enters a critical regime, where
the hot phase is strongly depleted and the filling factor of the cold
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phase fc is larger than that of the hot phase fh, violating the assump-
tion of a cold phase fragmented into well-separated clouds. The
cases where this occurs are highlighted by a circle in Fig. 3. The
reason for this behaviour is simple: at such low densities star for-
mation is very weak, while for a thin structure leak-out is strong, so
the hot phase cannot be sustained. This is not very informative, as
such low-density thin systems, if they exist, would be kept ionized
by the cosmological UV background, so star formation would never
start.

A similar phenomenon occurs in other cases for different reason-
able choices of the parameters, with the difference that high values
of fc are obtained not from the start but after some time. If we allow
fbo,max to be as large as 0.8, the blowout mass flux is much stronger
and dominates over leak-out. For � tot ∼ 200–1000 M� pc−2, when
H eff increases above ∼1 kpc the system does not go into the adia-
batic confinement regime; SBs become bigger and blowout becomes
stronger, severely depleting the hot phase. Pressure and densities are
low, collapsing clouds are very massive (up to 106 M�) and Qsb is
high (even higher than unity). The hot phase is so strongly depleted

Figure 8. As in Fig. 6, but with fpds = 0.737[1 − (t fin/t pds)−3.2] + 0.263.

that eventually, after roughly one infall time, fh < fc. When the
cold phase percolates the volume, the most likely outcome is col-
lapse (the total mass of cold gas is surely larger than mJ) and a
sudden burst of star formation without any obvious external trigger.
In other words, star formation would switch from a ‘candle’-like to
a ‘bomb’-like solution. For a dynamical time t dyn ∼ 5 × 107 yr (in
this case n c ∼ 1 cm−3) and for an efficiency f� ∼ 0.1, 1010 M� of
cold gas would give rise to a starburst of tens of M� yr−1.

Another example of critical behaviour is found when a high-
density system enters the PDS confinement regime (see Section 4.2).
If the mixing of hot phase and hot internal gas is fast, then more ther-
mal energy is lost to radiation and fpds = 0.737[1 − ( ffin/t pds)−3.2] +
0.263 (equation 51). In this case, when PDS confinement is triggered
Th decreases dramatically, and the hot phase collapses in a very short
time. Fig. 8 shows the evolution of the same example of Fig. 6 for
this choice of fpds. The collapse of the hot phase takes place at the
start of PDS, after 1.5 infall times (1.5 Gyr). The cold gas will
be promptly consumed into stars; for a conservative value of f� =
0.1, this will give rise to a brief star formation episode with Ṁsf in
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excess of 100 M� yr−1. The porosity of SBs takes values larger than
unity at PDS, indicating the formation of a unique super-SB that will
plausibly remove all the ISM not consumed by star formation. This
super-wind will interact with the external halo gas, so that further
infall will be halted for some time.

The actuality of these critical solutions is uncertain, as they could
be due to some of the simplifications introduced. In low-density
cases, magnetic fields or turbulence could keep the cold medium
fragmented even in the presence of low thermal pressure, or the hot
phase could be replenished by mass flows neglected here, while in
high-density cases the existence of critical solutions depends sen-
sitively on the way the energy of SNe exploding after the SB stalls
is given to the ISM. In any case, the idea of a critical ISM deserves
further investigations.

4.4 Probing the parameter space

In the following we give a brief account of the effects of changing
the various parameters within reasonable limits.

The value of σ v enters formally in the coagulation time (equa-
tion 11), so a hypothetical increase of σ v at fixed H eff and � tot is
reflected in a decrease of the coagulation time, and an increase of the
largest collapsing mass mu (equation 13), with a corresponding in-
crease of the collapsing mass mcc (equation 14), the fraction of cold
gas available for collapse fcoll (equation 15) and a resulting higher
(and more quickly decreasing) star formation rate (equation 37).
However, the collapsing mass mcc is set mostly by the Jeans mass,
so the results are rather insensitive to the precise value of σ v. Of
course, in real systems a change in σ v would imply a change in H eff

or � tot, with the known effects.
Decreasing t inf results in a correspondingly stronger star forma-

tion rate, and in a faster recycle of materials, while increasing it
has an opposite effect. Again, the feedback regimes do not change
much; with fast infall, adiabatic confinement is reached at slightly
lower densities.

The effect of decreasing αcl is that of moving mass to the high-
mass end of the mass function of cloud, and thus to increase fcoll

and Ṁsf. An increase of the star formation rate is obtained also
by increasing f� (equation 37). However, the two cases are rather
different in terms of cold gas: with low f� and αcl values, the cold
gas is reprocessed by collapse many times, while with high values it
is locked in the small clouds until it is processed by star formation.
On the feedback regimes, lowering αcl or f� has the effect of moving
the limit for adiabatic blowout at lower densities, especially at low
H eff values, and vice versa for an increase of αcl or f�.

An increase of µshape to unity lowers the Jeans mass (equation 6),
making blowout more difficult; also, a lower number of SNe per
cloud in the adiabatic confinement case is obtained. The opposite
occurs for a decrease of µshape, which is justified if collapsing clouds
are supported by kinetic or magnetic pressure. For µshape = 0.05,
adiabatic blowout is easily reached at densities higher by an order
of magnitude than the limit given in equation (55).

As mentioned above, a low value of E51 leads to lower Th, lower
pressure and a corresponding increase of the Jeans mass; moreover,
PDS confinement is found at high H eff and � tot values. Increasing
E51 leads to an increase of Th, that for E 51 = 10 can reach extremely
high and unlikely values. The limit between the adiabatic blowout
and confinement regimes does not depend much on E51.

As cooling is a relatively modest mass flux, the results do not
depend sensitively on the parameter fcool, with the exception that
PDS confinement is reached more easily for E 51 = 1 whenever
fcool � 1.

The parameters fevap and Tevap mostly affect the adiabatic blowout
regime; in particular, Tevap influences strongly the resulting Th. A low
value of fevap increases the number of critical blowout cases, until
Tevap is increased to compensate for the lack of evaporated mass.
If both parameters are increased, the limit for adiabatic blowout
lowers. Finally, with a high fevap value PDS confinement is reached
at high densities even for E 51 = 1.

4.5 On the vertical scaleheight of the hot phase

The assumption of one single vertical scaleheight for both cold and
hot phases is clearly oversimplistic. It can be relaxed by assuming
two different scaleheights, but in the absence of further constraints
this new degree of freedom would not contribute significantly to the
understanding of the problem. Anyway, the assumption is sensible
as the hot gas is continually replenished within H eff. The hot gas
that leaks out into the halo is likely to settle in a low-density layer
that surrounds the galaxy. Such a layer is observed in the Milky
Way (see, for example, Jenkins 2002) as well as in nearby galaxies
(see, for example, Ferguson et al. 1995; Fraternali et al. 2002). The
presence of a sufficiently steep decreasing density gradient at H eff

is enough to guarantee that this layer does not hamper the blowout
of SBs. Indeed, the interaction of blown-out gas and such a layer
could be at the origin of the observed correlation of X-ray and Hα

fluxes in nearby starburst galaxies (Strickland et al. 2002).
We can estimate the thickness of this layer, which we call Hh, as

follows. We assume that the expansion of the leaked-out gas stops
after one cooling time. For a gas in adiabatic expansion we have n′

h =
nh H eff/H h, T′

h = Th(H eff/H h)γ−1 and c′
s,h = cs,h(H eff/H h)(γ−1)/2,

where the prime indicates the quantities relative to the gas layer and
γ is the adiabatic index, assumed to be 5/3. It is easy to see that,
for the cooling function given in equation (23) the cooling time
is constant with Hh. The equilibrium value of Hh will satisfy the
condition t cool = H h/c′

s,h. To compute it, we take into account that
there is continuous injection of hot gas with a roughly constant rate
within one cooling time. We obtain

Hh = 4

7
Heff

(
tcoolcs,h

Heff

)3/4

. (58)

For the adiabatic blowout case of Fig. 4 we obtain H h ∼ 2 kpc. This
will be an overestimate, as gravity is likely to be important at such
distances from the centre of the galaxy.

Alternatively, the expansion of the hot phase could progress in
such a way as not to create a steep density gradient. In this case the
hot phase would be contained in a layer of thickness Hh and nearly
constant density. Exploiting equation (58), it is possible to include
the dynamical evolution of such a layer in the system of equations; in
this case, leak-out would not be considered as the hot phase formally
never returns to the halo. As a result, the hot gas produced by SNe
pushes the layer to high enough Hh values that adiabatic confinement
is always achieved. The predictions of this version of the model are
found in striking disagreement with observations in the Milky-Way-
like case (see Section 5), so the possibility of a hot gas layer with a
roughly constant density will not be further considered.

5 D I S C U S S I O N

5.1 The Milky Way

To highlight the predictive power of the model, we compare the
results of the Milky-Way-like adiabatic blowout case shown in Fig. 4
with available observational evidence. It is useful to stress that no
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accurate modelling or fine-tuning of parameters is attempted at this
stage, so an order-of-magnitude agreement is considered a success.
The predictions of nh (∼10−3 cm−3), nc (∼10 cm−3) and Th (∼3 ×
106 K) are in broad agreement with the ISM of the Milky Way.
Thermal pressure (∼103 K cm−3) is in line with observations, but
is an order of magnitude lower than the observed total pressure,
which is dominated by turbulent and magnetic contributions. The
mass ratio of cold gas to stars (∼0.1) is correctly reproduced after
10 Gyr.

The star formation rate Ṁsf is slowly decreasing in time, with
a ratio of average to final rates of ∼3. This is roughly consistent
with the results of the chemical evolution model of Chiappini et al.
(2001).

Both the average value and the range of the masses of collapsing
clouds are smaller than those observed for molecular clouds, which
can be as large as m cl � 106 M�. Large collapsing clouds are eas-
ily obtained by using a very low value for µshape, on the grounds
that kinetic support determines the Jeans mass mJ (Section 2.3).
The small range of collapsing cloud masses is reflected in the low
values of fcoll, the fraction of cold mass in collapsing clouds; it is
predicted to be ∼5 per cent, at variance to the observed ∼50 per
cent. To obtain higher fcoll values, it is useful to decrease αcl to the
observed value of 1.6, decreasing also f� to avoid excessive star for-
mation (this is also consistent with observations). However, good
fcoll values are obtained only by allowing clouds to coagulate for
at least 10 dynamical times. This unrealistic value is not worri-
some if we consider the uncertainty connected to the coagulation
picture. While the coagulation time, t coag ∼ 5 × 107 yr, is coinci-
dentally similar to the time interval between the sweeping of two
spiral arms, the formation of molecular clouds in the converging
flows of spiral arms (Ballesteros-Paredes et al. 1999) could easily
be more efficient than random aggregations of clouds, and this could
be mimicked by allowing coagulation to work for many dynamical
times.

The thickness of the layer of leaked-out hot gas is predicted to
be ∼2 kpc, in rough agreement with the value of ∼3 kpc estimated
for the Milky Way by Savage et al. (2000); see also Jenkins (2002).
However, this estimate is based on Far Ultraviolet Spectroscopic
Explorer (FUSE) detection of O VI absorption lines of OB stars;
this method is sensitive to temperatures in a narrow range around
∼3 × 105 K. The gas leaking out at Th = 106 K has adiabatically
cooled to ∼1.5 × 105 K at 2 kpc, while the temperature of ∼3 ×
105 K is reached at ∼0.6 kpc, significantly less than that observed.
However, this prediction depends sensitively on the parameter Tevap,
which influences the temperature of the hot phase. If this parame-
ter is increased by a factor of 3 (a reasonable choice according to
Paper II), the resulting layer is predicted to be 10 kpc thick, reaching
a temperature of ∼3 × 105 K at ∼3 kpc, as observed.

With reasonable choices of the parameters, and allowing coagu-
lation to work for 10 dynamical times, it is possible to reproduce
all these properties of the Milky Way. The reason why we do not
stress this result is because we consider the present model too simple
to draw significant conclusions from it. By interfacing this model
with an algorithm for disc formation in a cosmological dark matter
halo and including the effect of differential rotation and spiral arms,
it will be possible to produce accurate predictions for the Milky
Way, including galactic fountains, high-velocity clouds, chemical
enrichment of the various components, chemical gradients along
the disc, and so on. By reproducing the observed Milky Way, it will
be possible to constrain most model parameters by modelling just
one galaxy.

5.2 Critical solutions and the triggering of galactic winds

Although a proper modelling of galactic winds requires specifying
the properties of the dark matter halo hosting the galaxy, it is in-
teresting to analyse the cases in which feedback could lead to the
removal of a significant quantity of ISM from a galaxy. As removal
of gas from a halo with low circular velocity can be achieved even
with a single SB (see, for example, Ferrara & Tolstoy 2000), we
will concentrate on bright galaxies. Blowout leads to the expulsion
of matter with a velocity that, in the example of Fig. 4, ranges from
∼250 km s−1 at 1 Gyr to more than 500 km s−1 at later times,
so if these clouds are not slowed down significantly by the halo
gas (e.g by the layer of leaked-out hot gas) they may escape even
from relatively high-mass haloes. Anyway, blowout flows are never
very strong, so blowout is unlikely to lead to massive removal of
ISM from a galaxy. Besides, leaked-out gas cools below 105 K at
∼10 kpc, so it will be emitted as a tenuous wind from the low-mass
haloes, but will be retained by the halo of a bright galaxy. Leaked-
out gas is much hotter in the adiabatic confinement regime, so this
gas will be able to escape from moderate-sized haloes, but will be
retained, for instance, in big elliptical galaxies. In conclusion, as
long as blasts propagate into the hot phase and SBs do not percolate
the volume, the removal of mass is inefficient in bright galaxies.

This conclusion changes in the critical cases, where a significant
amount of gas accumulated for some time is consumed in a few
dynamical times, and when the porosity of SBs obtains unity value.

Critical solutions are found at least in three cases: (i) thin,
very low-� tot systems in the adiabatic blowout regime; (ii) thick,
moderate-� tot systems in the adiabatic blowout regime (in the case
of very efficient blowout); (iii) thick, high-� tot systems in the PDS
confinement regime (with low E51 and low fpds). While case (i) has
no astrophysical relevance (such systems would anyway be kept
ionized by the cosmological UV background), case (ii) may corre-
spond to some gas-rich dwarf galaxies and case (iii) to high-redshift
spheroids.

When these systems become critical, all the cold phase collapses
and gives rise to diffuse star formation. For a conservative f� value
of 0.1, we estimated star formation rates of tens of M� yr−1 for case
(ii) and in excess of 100 M� yr−1 for case (iii). In such big bursts f�
could well take unit values, thus boosting star formation rates even
higher. On the other hand, if the transition from the ‘candle’-like to
the ‘bomb’-like regime is not as quick as assumed, star formation
rates will be lower. Analogously to what happens in star-forming
clouds, the exploding SNe will propagate into the diffuse cold phase,
going soon in the PDS stage and then percolating the volume. This
will give rise to a unique SB with a very high mechanical luminosity,
able to sweep the whole galaxy. This snowplough will eventually
blow out of the galaxy and then fragment because of Rayleigh–
Taylor instabilities. If the momentum of the gas in the fragmented
snowplough at this point is sufficient, it will be thrown out of the
galaxy.

Percolation of SBs gives a similar effect if it takes place in the PDS
confinement (or blowout) regime. Although it has been assumed for
simplicity that clouds pierce the snowplough, this is likely true only
for the largest and densest clouds, that would likely be star-forming
in this case. The effect of a percolation of collapsed shells would
be to create a super-SB that sweeps the ISM, pushing part of the
gas out of the galaxy in the form of cold clouds while the rest
is compressed toward the centre of the galaxy. This is found, for
instance, in the simulations of primordial galaxies by Mori, Ferrara
& Madau (2002); as the physics is the same, their conclusion can
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be extended to larger, lower-density galaxies, as long as percolation
of SBs in the PDS confinement regime is obtained. Obviously, the
gas concentrated at the centre would give rise to a secondary burst
of star formation that would pump further energy into the super-SB.

Percolation of SBs in the adiabatic stage is likely to have a smaller
effect, as the blast would continue to propagate into the hot phase.
The cold phase would be affected by the relatively inefficient pro-
cesses of thermo-evaporation and cloud dragging (preferentially in
the radial direction). These same processes are in place also in the
presence of a hot phase that continually leaks out of the galaxy. In the
adiabatic confinement regime, the cold phase is so dense and with
such a low filling factor that these effects are likely to be inefficient,
while in the case of adiabatic blowout from a disc the dimension-
ality of the system would presumably lead to a funnelling of the
energy in the vertical direction, thus making a massive removal of
gas unlikely.

As a matter of fact, the condition Q sb > 1 is never met in the
adiabatic confinement regime, while it is achieved in the critical
cases discussed above (Fig. 8).

There are other cases in which the system may become critical.
In the presence of very high pressure, the density of the cold phase
can be so high (say >103 cm−3) that the formation of H2 is triggered
even in the absence of collapse. If this limit is reached when much
gas is accumulated, this may give rise to a sudden burst of star
formation.

Finally, a critical behaviour of the system can be triggered from
outside. For instance, a strong tidal perturbation (or a merger) would
act in two important ways, by lowering the Jeans mass of the clouds
(because of the external pressure) and by thickening the structure,
thus allowing a disc-like system to switch from adiabatic blowout
to adiabatic confinement; this would lower the Jeans mass even
more and decrease the dynamical time. The effect would be a rapid
consumption of the accumulated cold phase and a likely percolation
of SBs.

5.3 Simplified models

The present model can be generalized to reproduce the components
of real galaxies, such as disc, bulge and halo, and then interfaced
with a galaxy formation code that includes the mass assembly of dark
matter haloes, cooling inside those haloes, disc formation, galaxy
mergers, interaction with galaxy clusters, etc. However, it is much
more convenient to devise a set of approximate analytical solutions
to this feedback model. These solutions can also be adapted to model
the ‘subgrid’ physics of feedback in N-body simulations.

The solutions in the H eff –� tot plane can be divided into four main
regions where different regimes are met (adiabatic blowout, adia-
batic confinement, PDS confinement and critical blowout cases).
These regions are separated by limiting relations of the kind �tot =
�tot,0(Heff/1 kpc)−αlim , where the exponent α lim is usually in the
range of 0.5–1. At the lowest densities (a factor of 102 lower than
equation 55 for the reference choice of parameters) systems are crit-
ical, but they will most likely be kept ionized by the cosmological
UV background, so they will simply not evolve. At densities below
equation (55) (again for the reference choice of parameters) the sys-
tem is in the adiabatic blowout regime. Above that limit, it enters the
adiabatic confinement regime. PDS confinement is reached at densi-
ties higher than equation (56) (valid for E 51 = 0.3 and f evap = 0.05).

For each regime, a simplified solution can be obtained by noticing
the following facts that are found to hold in most cases: (i) Th is
nearly constant, and equal to a value that mostly depends on the
regime and on E51; (ii) F h, fcoll and fc are nearly constant to values

that mostly depend on the regime; (iii) cooling is negligible in all
cases but those in PDS confinement, where leak-out is negligible;
(iv) leak-out dominates over blowout in non-critical cases if fbo is not
large. With these assumptions, it is relatively easy to solve the system
of equations (43) for the mass flows, while typical values of T h,
F h, fcoll and fc for the different feedback regimes have been given
in Section 4. However, a proper presentation of these simplified
solutions requires some discussion that is out of place in this paper,
so they will be presented elsewhere.

5.4 Limitations and further work

The merit of such relatively simple modelling is to highlight the
possible physical regimes one should expect once a more complete
calculation is performed. However, there are a number of limitations
that have to be carefully taken into account to assess the validity of
the results presented here.

(i) The Sedov solution for the SBs in the adiabatic stage is only
a rough approximation of reality. There is a long list of effects,
mentioned above and in part described by Ostriker & McKee (1988),
that influence the dynamics of SBs. However, as long as the SBs
expand in the relatively smoother hot component, it is likely that the
Sedov solution gives the roughly correct evolution and functional
dependences for the SBs.

(ii) As already mentioned, thermal conduction at the interface
of cold and hot phases can make part of the cold gas evaporate. It
has been verified that the impact of thermo-evaporation is small in
the mass flows even if it is not quenched by magnetic fields, as the
thermo-evaporated mass is usually smaller than the evaporated mass
of the collapsing cloud whenever fevap is not much smaller than 1.

(iii) Type Ia SNe have not been considered. However, their intro-
duction is straightforward in this model; they will interact directly
with the ISM through a set of uncorrelated SNRs. As shown by
Recchi et al. (2002), Type Ia SNe may be very important because
they explode after a burst of star formation, and can contribute to
maintain the hot phase when most cold gas is consumed.

(iv) Cosmic rays are known to be in rough equipartition with tur-
bulence and magnetic fields. They are accelerated by the shocks
generated by SNRs and SBs, directly or indirectly through turbu-
lence (see, for example, Longair 1981). The role of cosmic rays,
which are confined within the galaxy by magnetic fields, is that they
distribute their energy to all the ISM, and not only to the densest
collapsing clouds. So, they could give an important contribution to
the mass and energy flows.

(v) There are other channels of mass and energy exchange be-
tween components that we are not considering here. One is the
decay of turbulence driven by the kinetic energy of SNe, the other
is the presence of a significant amount of mass in a warm phase,
that can receive part of the energy of the blast and radiate it. Also,
UV light coming from massive stars or from an external UV back-
ground could be responsible (together with thermo-evaporation) for
continuous evaporation of the cold phase. Although some analytical
estimates of these effects are possible, accurate numerical simula-
tions will be necessary to assess the importance of these processes.

(vi) In realistic situations, the ISM is subject to many influences,
such as spiral arms, differential rotation, tidal disturbances, mergers,
ram pressure from hot halo gas (as in ellipticals or clusters), etc. All
these processes can be modelled once the global structure of the
galaxy and its environment are specified. For instance, the passage
of a spiral arm can be modelled by a periodic decrease of the Jeans
mass due to the external pressure term. As in the adiabatic blowout
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case, the coagulation time is t coag ∼ 5 × 107 yr, of the same order
of the frequency of spiral arms, and the clouds have just time to
coagulate to increase their mass by a factor of a few before the
spiral arm sweeps again. So, a moderate decrease of the Jeans mass
would suffice in guaranteeing that star formation takes place mainly
in the spiral arms, even in the absence of a more explicit connection,
like that proposed by Ballesteros-Paredes et al. (1999).

(vii) The model presented here is assumed to be valid in the
regime where many generations of collapsing clouds self-regulate
in forming a galaxy. For dwarf galaxies, some changes in the model
are necessary. First, it is important to check that at least one collaps-
ing cloud is present. Secondly, the first episode of star formation
could itself cause a complete blow-away of the ISM (see, for exam-
ple, Ferrara & Tolstoy 2000), so that the system may never enter a
self-regulated regime. Moreover, for dark matter haloes with small
circular velocities the leaked-out or blown-out gas will most likely
be lost to the intergalactic medium.

(viii) This model gives satisfactory predictions for the state of
the ISM in a Milky-Way-like situation. The high-density, bursting
cases are subject to much weaker observational constraints, not only
for the paucity of very nearby starbursts but also for the presence of
dust that hampers observations in the optical, UV and soft-X bands.
Besides, the extrapolation of the assumptions that are successful
at low densities is not straightforward. For instance, large collaps-
ing clouds could be generated in cooling flows or, as mentioned
above, star formation could be triggered even in clouds smaller than
the Jeans mass when thermal pressure makes them denser than a
threshold density at which H2 starts to form. Careful comparison
with available observations is needed to constrain the parameters of
feedback in the starburst cases.

(ix) This model can be improved to give more accurate predic-
tions on observables related to the ISM. This would require proper
(numerical) modelling of the intermediate warm phase(s) and of the
ionization equilibrium between the phases.

5.5 Comparison with previous works

The model of the ISM of McKee & Ostriker (1977) has been a ref-
erence model for years, although the picture based on compressible
supersonic MHD turbulence is now emerging. The model presented
here has many points in common with McKee & Ostriker (1977),
but presents many improvements: (i) we address the dynamics of
the ISM, including star formation and feedback; (ii) we assume no
equilibrium, but investigate the conditions that lead to self-regulated
or critical ISM; (iii) we take into account the correlated nature of
Type II SNe. Besides, we do not consider the warm phase and its
ionization equilibrium with the hot phase. In the present model, we
do not require unit porosity of SBs to justify its presence of a hot
phase (which sometimes cannot even be maintained). As a matter
of fact, unit porosity of SBs is hardly reached in non-critical cases;
however, uncorrelated adiabatic SNRs that stop at Rbo′ would have
a porosity of the order of 1 in the MW example, but not in the EL
example in the adiabatic confinement case. So, in the light of the
present results, Q = 1 is at best an unnecessary assumption.

Some recent works on galaxy formation by Silk (1997, 2001),
Efstathiou (2000), Shu et al. (2004) or Springel & Hernquist (2003)
present models of feedback and star formation based, at least in
part, on the McKee & Ostriker (1977) model. In these cases, Type II
SNe are assumed to be uncorrelated and the ISM is assumed to be
self-regulated to a unit value of the porosity of SNRs. For instance,
Efstathiou (2000) fixes the star formation by assuming equilibrium

between the kinetic energy acquired by cold clouds at shocks and
that lost by coagulation, while Silk (1997, 2001) connects star for-
mation to the dynamics of the disc by requiring the Toomre Q-
parameter to be unity and postulating the identity of the time-scale
for star formation with the viscous time-scale. This is an impor-
tant ingredient for obtaining exponential discs, but the nature of this
identity remains unexplained. The model presented here does not
assume any equilibrium, and does not use any ingredient of disc
dynamics, thus being applicable in virtually all situations. While it
is clear that disc dynamics will influence the evolution of a spiral
galaxy, our results suggest that most properties of galaxy formation
can be understood simply as a chain of local processes.

An alternative to the present modelling is to consider the ISM as
turbulent. As shown by Avila-Reese & Vazquez-Semadeni (2001),
the ISM can be considered as a globally turbulent medium, with
turbulence forced in specific places (the star-forming regions) and
propagating throughout the volume. The ‘diffusion’ velocity of tur-
bulence is connected to the time-scale of decay of turbulence. Both
this group, which uses a two-dimensional code, and Mac Low et al.
(1998), who use a three-dimensional code, find that turbulence de-
cays as t−α with α 
 0.8. It is easy to show that (Avila-Reese &
Vazquez-Semadeni 2001), when turbulence is forced in some spe-
cific sites, the rms velocity of turbulence scales with distance from
the forcing region as u rms ∝ l−α/(2−α), while the decay distance of
turbulence grows with time as l ∝ t1−α/2. It is remarkable that for
α = 0.8 the two exponents are exactly equal to our relations R sb ∝
t0.6 and v sb ∝ R−0.4. While a direct physical interpretation of this
fact may be misleading without further investigation, it is clear that
the propagation of energy through the ISM by isolated spherical
blasts is not in clear contradiction with the results of the turbulent
model. This confirms the validity of a simple treatment as a first
approximation.

6 C O N C L U S I O N S

We have presented a model for feedback in galaxy formation, based
on a two-phase ISM, that does not restrict to self-regulated, equi-
librium solutions and neglects (for simplicity) the global structure
of the galaxy, apart from its density, vertical scaleheight and ve-
locity dispersion of clouds. From the dynamics of the SBs that
arise from the collapsing ‘molecular’ clouds, we have identified
four possible regimes of feedback, depending on whether SBs blow
out of the ‘disc’ or remain pressure-confined, and whether they
have time to enter the PDS stage. For a reference set of parameter
values, we have studied the dynamics of the system in the ver-
tical scaleheight–surface density plane, identifying the regions of
the plane corresponding to different regimes. Both blowout and
confinement mostly take place in the adiabatic regime. In a Milky-
Way-like adiabatic blowout case, the main characteristics of the ISM
of the Galaxy are broadly reproduced. In the adiabatic confinement
regime, the ISM is predicted to have higher pressure, temperature
of hot phase and densities of both phases, and smaller collapsing
clouds; in some cases, the density of the cold phase could be high
enough to trigger diffuse star formation. PDS confinement is found
for high-density, thick structures in significant regions of the pa-
rameter space. In this case, feedback is less effective, the hot phase
cooler and star formation quicker.

In many cases the system becomes critical, in the sense that
the hot phase is severely depleted and the cold phase percolates
the whole volume. This occurs for very low-density thin systems
(which would, however, be kept ionized by the cosmological UV
background), in some regions of the parameter space also for
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low-density thick systems in adiabatic blowout (which may cor-
respond to some gas-rich dwarf galaxies) and for high-density
thick systems in PDS confinement (which may correspond to high-
redshift galaxies). The most likely result of this critical behaviour
is the sudden consumption by star formation of the cold gas accu-
mulated by the galaxy; the dynamics switches from a ‘candle’-like
to a ‘bomb’-like solution.

The porosity of SBs is usually found to be much lower than unity.
However, in some cases unit porosity is found while SBs are in
the PDS stage. This corresponds to the formation of a super-SB
that sweeps the whole galaxy, removing most ISM from it. These
events, together with the critical solutions, are likely connected to
the triggering of galactic winds.

With respect to previous models of feedback, the main parameters
that are typically present, as the efficiency of feedback, the Schmidt
law with its normalization, or the rate of blowout and leak-out of gas
from a star-forming galaxy, are predictions of the present model. The
parameter space is connected to the properties of the ISM, and can
thus be constrained by observations of the Milky Way and nearby
galaxies; most parameters can be fixed in principle by reproducing
only the Milky Way. Moreover, the mass flows used in this model
can be fine-tuned by comparing with future detailed simulations
of the ISM in a forming galaxy that include all the main physical
processes thought to be at work.

This model is not restricted to self-regulated ISM, and presents a
rich variety of solutions with a relatively limited set of parameters.
Although the turbulent nature of the ISM is not explicitly taken
into account, the model is thought to give a good approximation to
the solution of the feedback problem. The feedback regimes found
here can be used, together with the refinements of the model that
will be given in upcoming papers, to construct a realistic grid of
feedback solutions to be used in galaxy formation codes, either
semi-analytical or numerical.
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A P P E N D I X A : L I S T O F F R E QU E N T LY
U S E D S Y M B O L S

αcl Slope of mass function of clouds
acl Radius of cloud
cs,h Sound speed of the hot phase
E51 Energy released by a SN
E (th)

sb Thermal energy of a SB
E (kin)

sb Kinetic energy of a SB
Ėsn Rate of energy release from SNe
Ėcool Rate of energy loss by cooling
Ėsnpl Rate of energy loss by snowplows
Ėbo Rate of energy loss by blow-out
Ėleak Rate of energy loss by leak-out
Ėfb Rate of energy gain from SBs
Ėhot Net energy flux of the hot phase
fE Efficiency of feedback
fh, fc Filling factors of the two phases
fcoll Fraction of cold gas in collapsing clouds
f� Efficiency of star formation
fevap Evaporated fraction of collapsed cloud
fbo Fraction of swept gas blown out by a SB
fbo,max Largest value of fbo

fcool Fraction of cooled gas in a cooling flow
frest Fraction of restored mass
fpds Release of energy after PDS confinement
Fh Fraction of hot gas
H eff Vertical scale-height of the system
H effh Dynamical vertical scale-height of hot gas
Hh Height of the layer of hot leaked-out gas
L38 Mechanical luminosity of a SB
mcl Mass of clouds
ml Lower cut-off mass of clouds
mu Upper cut-off mass of clouds
mJ Jeans mass of clouds
mcc Mass of the collapsing cloud
M sw Mass swept by a SB
M int Swept mass that is still hot inside a SB
M �,sn Mass of formed stars per SN
M tot Total mass of the system
M i Mass of the i component

∗

M Z
i Mass of metals in the i component

∗

Ṁi Net mass flux of the i component
∗

Ṁ Z
i Net metal flux of the i component

∗

Ṁinf Infall rate
Ṁcool Cooling rate
Ṁleak Leak-out rate
Ṁsf Star formation rate
Ṁrest Restoration rate
Ṁevap Evaporation rate
Ṁint Sweeping rate minus snowplow rate
Ṁsnpl Snowplow rate
µh, µc Molecular weights of the two phases
µshape Shape parameter for collapsing clouds

nh, n c Density of the two phases
N cl Mass function of clouds
N cc Total number of collapsing clouds
N sn Number of SNe in a collapsing cloud
P Pressure of the ISM
Qsb Porosity of SBs
Rsb Radius of SB
Rpds Radius of shell collapse for a SB
Rconf Confinement radius of a SB
Rbo′ Final radius of a blown-out unconfined SB
Rfin Final radius of a SB
Rsn Rate of SN explosions in a collapsing cloud
ρ tot Total density of the system
ρ̄h, ρ̄c Average densities of the two phases
σ v Velocity dispersion of clouds
� tot Total surface density of the system
tcoag Coagulation time
tdyn Dynamical time of clouds
tcool Cooling time of hot gas
tcross Sound crossing-time of a SB
tpds Time of shell collapse for a SB
tconf Confinement time for a SB
t life Lifetime of an 8-M� star
tbo Time of first blow-out of a SB
t bo′ Final time of a blown-out unconfined SB
tfin Final time of a SB
t inf Infall time-scale
t leak Leak-out time-scale
tsf Star-formation time-scale
Th, Tc Temperature of the two phases
Tevap Temperature of evaporated mass
v sb Velocity of SB
y Yield from massive stars
Z i Metallicity of the i component

∗

ζ m Metallicity in solar units
Notes: ∗ i = hot, cold, �, halo

A P P E N D I X B : T I M E - S C A L E S F O R T H E
C OAG U L AT I O N O F C O L D C L O U D S

We obtain here the time-scales for coagulation, given in Section 2.4,
from the Smoluchowski equation of kinetic aggregations. This
demonstration follows Cavaliere et al. (1992). The Smoluchowski
evolution equation for the mass function of clouds n(m; t) is

∂n

∂t
= 1

2

∫ m

0

dm ′K (m ′, m − m ′)n(m ′; t)n(m − m ′; t)

− n(m; t)

∫ ∞

0

dm ′K (m, m ′)n(m ′; t). (B1)

The kernel for aggregations of clouds 1 and 2, K (m 1, m 2), is given
by equation (9), where the cross-section for interactions is given by
equation (10). We define a typical mass for the mass function m �

(which is then identified with the upper cut-off mu) and scale all
masses with m � through the uni-dimensional variable ν = m/m �.
We separate the kernel for aggregation of clouds into geometric
and resonant terms (the latter term being considered only in this
appendix), and write the two terms as follows:

Kgeom = Fgeom m2/3
�

〈(
ν

1/3
1 + ν

1/3
2

)2〉
m

Kres = Fres m4/3
�

〈
(ν1 + ν2)

(
ν

1/3
1 + ν

1/3
2

)〉
m
. (B2)
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We call λ the exponent of m � in the equations. The two F func-
tions are, respectively, Fgeom = ρ̄cπ(4πρc/3)−2/3〈vap〉v and Fres =
ρ̄c2πG(4πρc/3)−1/3〈(vap)−1〉v. Let us assume that the mass function
is expressible as

n(m; t) dm = m2
��(ν) dν. (B3)

This is valid if the slope of the mass function is fixed and if m l � m u.
Inserting this ansatz into the Smoluchowski equation, and consid-
ering only the time-dependent terms, we easily obtain the equation:

ṁ� = Fmλ
� . (B4)

This is valid for the two coagulation modes. This equation admits
the solution:

m�(t) = m�0

[
1 − (λ − 1)Fmλ−1

�0 (t − t0)
]1/(1−λ)

. (B5)

We can then define a coagulation time as tcoag = 1/Fmλ−1
�0 . For the

two coagulation modes we obtain

m�(t) = m�0

(
1 + t − t0

3tcoag

)3

(GEOM.)

m�(t) = m�0

(
1 − t − t0

3tcoag

)−3

(RES.). (B6)

It is easy to verify that the coagulation time is given by equation (11)
in the case of geometrical interactions, while in the resonant case

tcoag =
(

4π

3

)1/3
1

2πG
ρ̄−2/3

c

ρc

ρ̄c

1/3 1

m1/3
J

〈
(vap)−1

〉 . (B7)

Finally, it is worth noticing that the slope of the mass function is
assumed not to change during the evolution of the system, while
coagulation would in general imply a flattening of the mass function.
This is reasonable in cases where coagulation and collapse regulate
the mass function to a given shape.

A P P E N D I X C : F E E D BAC K R E G I M E S
I N T H E n h– L 38 P L A N E

The fate of the SB depends mostly on the hot phase density nh and
the mechanical luminosity L38. To better quantify the fate of the SB
we restrict ourselves to the case of solar metallicity and µh = 0.6,
and express the hot phase density in units of nh,−3 = nh/(10−3 cm−3).
Moreover, H eff is expressed in units of 103 pc and the temperature
of the hot phase in units of 106 K. Table C1 reports the characteristic
times of SBs.

It is useful to analyse the fate of SBs in the nh–L 38 plane. The
condition t pds = t (ad)

conf determines the possibility of entering the PDS
stage; it is equivalent to the line

L38 = 0.20 T 11/2
h,6 n−1

h,−3. (C1)

In the absence of blowout, below this line SBs are pressure-confined
in the adiabatic stage; above this line they can enter the PDS
stage (Fig. C1a). The condition t pds = TBo′ determines whether
the blowout is in the adiabatic or PDS stage; it is equivalent to

L38 = 19 H 11/4
eff,3 n7/4

h,−3. (C2)

In the case of blowout, to the left of this line SBs blow out in the
adiabatic stage (which is maintained even after one sound crossing
time); to the right of it SBs blow out in the PDS stage (Fig. C1b).
The condition t bo = t conf determines whether SBs are going to end
by blowout or confinement; in the adiabatic stage it is equivalent
to

L38 = 1.4 H 2
eff,3 T 3/2

h,6 nh,−3. (C3)

Table C1. Characteristic times of a SB for typical values of the parameters.
Here µh,0.6 = µh/0.6.

tpds = 2.87 × 106 L3/11
38 n−8/11

h,−3 µ
9/22
h,0.6ζ

−5/11
m yr

Rpds = 674 L4/11
38 n−7/11

h,−3 µ
1/22
h,0.6ζ

−3/11
m pc

tconf = 4.12 × 106 L1/2
38 n−1/2

h,−3 µ
3/4
h,0.6T −5/4

h,6 yr (ad.)

= 2.95 × 106 L1/2
38 n−1/2

h,−3 µ
3/4
h,0.6T −5/4

h,6 yr (PDS)

Rconf = 857 L1/2
38 n−1/2

h,−3 µ
1/4
h,0.6T −3/4

h,6 pc (ad.)

= 592 L1/2
38 n−1/2

h,−3 µ
1/4
h,0.6T −3/4

h,6 pc (PDS)

tbo = 5.53 × 106 L−1/3
38 n1/3

h,−3µ
1/3
h,0.6 H5/3

eff,3 yr (ad.)

= 7.06 × 106 L−1/3
38 n1/3

h,−3µ
1/3
h,0.6 H5/3

eff,3 yr (PDS)

Rbo = 103 H eff,3 pc
t bo′ = 3.11 t bo (ad)

= 2.81 t bo (PDS)
Rbo′ = 1.98 Rbo (ad)

= 1.86 Rbo (PDS)

In the PDS stage, the numerical factor is 2.9. Below this line SBs
are pressure-confined; above it they blow out (Fig. C1c).

Fig. C2 shows all the relations listed above and the regions they
define in the nh –L 38 plane for the choice Th = 106 K and H eff =
103 pc. The thick lines mark the boundaries of regions where SBs
end in a different way. Region 1 in the figure contains the SBs that
blow out in the adiabatic stage. In region 2 SBs are confined in the
adiabatic stage, while in region 3 SBs are confined in the PDS stage.
In region 4 SBs blow out in the PDS stage. Finally, in the closed
region 5 SBs blow out in the adiabatic stage, but are confined be-
fore one sound crossing time. For other values of H eff and Th the lines

Figure C1. Fate of SBs in the nh –L 38 plane. The panels indicate the lines
separating the domains in which SBs (a) enter or do not enter the PDS stage,
(b) blow out in the adiabatic or PDS stage, (c) blow out or remain confined,
and (d) end after exhaustion of SNe.
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Figure C2. As in Fig. C1, but with all lines drawn together. For the expla-
nations of the five regions, see the text.

move along the plane, but it is easy to check that the area of the
triangle corresponding to region 5 is invariant.

It is interesting also to consider the region of the parameter space
in which SBs end after all SNe have exploded. This occurs when
t bo = t life and t conf = t life. The two conditions give

L38 = 6.2 × 10−3 H 5
eff,3nh,−3

L38 = 1.9 × 102T 5/2
h,6 nh,−3.

(C4)

They are both satisfied below the first line and above the sec-
ond (Fig. C1d). As the two lines are parallel, this happens only
if H eff,3T −1/2

h,6 = 7.9. In this case, a whole band in the plane corre-
sponds to exhaustion.

We conclude this discussion by noting that the plane is not uni-
formly populated, as both nh and L38 are dynamical variables.
In other words, the probability of a certain regime is not deter-
mined by the area occupied in the plane but by the dynamics of the
system.
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