A sample return mission to a primitive Near Earth Asteroid: the ESA Cosmic Vision M3 mission MarcoPolo-R

Elisabetta Dotto
(INAF-Osservatorio Astronomico di Roma)
The Solar System

Kuiper Belt and outer Solar System planetary orbits

The Oort Cloud (comprising many billions of comets)

Oort Cloud cutaway drawing adapted from Donald K. Yeoman's illustration (NASA, JPL)
Small bodies of the Solar System

- Trans-Nettunian Objects
- Centaurs
- Jupiter Troians
- Main Belt Asteroids
- Near Earth Objects

➢ they are the less evolved bodies of the Solar System

➢ they are remnants of the planetary building blocks (planetesimals)

➢ their composition changes accordingly to the solar distance where they formed
Small bodies of the inner Solar System: the Near Earth Objects

So far we know more than 7800 NEOs.

Apollo: \(a > 1 \text{ UA} \) \quad Amor: \(1.017 \text{ UA} < q < 1.3 \text{ UA} \) \quad Atens: \(a < 1 \text{ UA} \)

\(q < 1.017 \text{ UA} \) \quad Q > 0.983 \text{ UA}

- are the final stage of asteroids and comets orbiting around the Sun in the inner Solar System
- they formed in other regions of the Solar System
- they moved in their present orbits (dynamical mechanisms, lifetime million years)
- they collide with Sun or inner planets

Trieste 04-06-2011
Elisabetta Dotto - INAF-OA Roma
The Near Earth Asteroids

Amor (1 < q < 1.3)
Apollo (q < 1, a > 1)
Aten (Q > 1, a < 1)
IEO (Q < 1)
Why an asteroid?

Asteroids, as primitive building blocks of the solar system formation process, offer clues to the chemical mixture from which the terrestrial planets formed some 4.6 billion years ago.
Look different, but common origin
Minor Bodies: Asteroids and Comets Visited So Far
(Not to scale!)

Look different, but common origin.
Only primitive types retain a memory of the origin.
Taxonomy of Asteroids: Surface Composition

<table>
<thead>
<tr>
<th>Tax.Type</th>
<th>Minerals</th>
<th>Possible Meteorite Analogous</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Olivine ± FeNi metal</td>
<td>Olivine Achondrites Pallasites Olivine-metal partial melt residues</td>
</tr>
<tr>
<td>V</td>
<td>Pyroxene ± Feldspar</td>
<td>Eucrites, Howardites, Diogenites</td>
</tr>
<tr>
<td>E</td>
<td>Enstatite</td>
<td>Enstatite achondrites (aubrites) Iron-bearing Enstatites Fe-bearing Aubrites</td>
</tr>
<tr>
<td>M</td>
<td>Metal ± Enstatite Hydrates Silicates + Organics?</td>
<td>Iron Meteorites Enstatite Chondrites</td>
</tr>
<tr>
<td>S</td>
<td>Metal ± Olivine ± Pyroxene</td>
<td>Pallasites with accessory py. Olivine-dominated Stony-Iron Urelites and primitive achondrites Ordinary Chondrites</td>
</tr>
<tr>
<td>O</td>
<td>Olivine+Pyroxene</td>
<td>L6-LL6 Ordinary chondrites</td>
</tr>
<tr>
<td>Q</td>
<td>Olivine+Pyroxene (+metal)</td>
<td>Ordinary Chondrites</td>
</tr>
<tr>
<td>R</td>
<td>Olivine+Orthopyroxene</td>
<td>Olivine-pyroxene cumulates Olivine-pyroxene partial melt residues</td>
</tr>
<tr>
<td>C</td>
<td>Iron-bearing hydrated Silicates</td>
<td>CI1 and CM2 Chondrites Dehydrated CI1 and CM2 assemblages</td>
</tr>
<tr>
<td>P</td>
<td>Anhydrous silicates + organics</td>
<td>Olivine-organic cosmic dust particles</td>
</tr>
<tr>
<td>D</td>
<td>Organics+Anhydrous silicates</td>
<td>Organic-olivine cosmic dust particles</td>
</tr>
</tbody>
</table>
Asteroids taxonomic classes

The asteroid taxonomic classes are indicative of different mineralogies.
Asteroids taxonomic classes

The asteroid taxonomic classes are indicative of different mineralogies. Their distribution varies with the heliocentric distances:

- \(a < 2.5 \, \text{AU} \) : S type
 - S (silicates): evolved
- \(2.5 < a < 3.5 \, \text{AU} \): C type
 - C (carbonaceous): less processed, quite primordial
- \(a > 3.5 \, \text{AU} \) : D type
 - D: primordial

The asteroids classes distribution reflects the presence of a temperature gradient in the Solar System.

Gradie & Tedesco 1992
Chondritic meteorites: temperatures and evolution

Primitive Objects

Trieste 04-06-2011 Elisabetta Dotto - INAF-OA Roma
CAIs

Chondrules

Eucrites

Differentiation

Planetesimal accretion

HED differentiation

Angrites

Mesosiderites

Pallasites

Planetary Formation

Mars

Earth

Absolute Time Before Present (Myr)

4558

4568

ΔT (Myr)

100

30

20

10

0
“Why a Near Earth Asteroid?”
Why an NEA?

NEAs offer many advantages:

- Accessibility
- Great diversity of physical properties composition
- Identified links to the origin population

NEA Population (H<21)
NEAs visited
Marco Polo targets
MarcoPolo-R target
More than 7800 known NEOs

Fast resonances: Main Belt Asteroids become rapidly NEAs by dynamical transport from a source region (in a few million years)
MarcoPolo-R

will rendez-vous with a primitive NEA,

will scientifically characterize it at multiple scale (global characterization, local characterization, context measurements),

will return a sample to Earth

Core team:

Cosmic Vision 2015-2025 Call for Proposals

The Cosmic Vision Plan

Major scientific questions:

1. What are the conditions for planet formation and the emergence of life?

2. How does the Solar System Work?

3. What are the fundamental physical laws of the Universe?

4. How did the Universe originate and what is it made of?

Trieste 04-06-2011 Elisabetta Dotto - INAF-OA Roma
Cosmic Vision 2015-2025 Call for Proposals

The Cosmic Vision Plan

Major scientific questions:

1. What are the conditions for planet formation and the emergence of life?

2. How does the Solar System Work?

3. What are the fundamental physical laws of the Universe?

4. How did the Universe originate and what is it made of?
The Cosmic Vision Plan

2. How does the Solar System Work?

2.1. From the Sun to the edge of the Solar System

Study the plasma and magnetic field environment around the Earth and around Jupiter, over the Sun’s poles, and out the heliopause where the solar wind meets the interstellar medium.

2.2. The giant planets and their environments

In situ studies of Jupiter, its atmosphere, internal structure and satellites.

2.3. Asteroids and other small bodies

Obtain direct laboratory information by analysis samples from a Near-Earth Object.
The Cosmic Vision Plan

2. How does the Solar System Work?

2.1. From the Sun to the edge of the Solar System

Study the plasma and magnetic field environment around the Earth and around Jupiter, over the Sun’s poles, and out the heliopause where the solar wind meets the interstellar medium

2.2. The giant planets and their environments

In situ studies of Jupiter, its atmosphere, internal structure and satellites

2.3. Asteroids and other small bodies

Obtain direct laboratory information by analysis samples from a Near-Earth Object
We need to return samples from space

Original material
Formation processes
Chronology

A pristine sample from a primitive asteroid is required to study the precursors of terrestrial planets.
The Cosmic Vision Plan

Major scientific questions:

1. What are the conditions for planet formation and the emergence of life?

2. How does the Solar System Work?

3. What are the fundamental physical laws of the Universe?

4. How did the Universe originate and what is it made of?

Trieste 04-06-2011

Elisabetta Dotto - INAF-OA Roma
A mission to a primitive Near Earth Asteroid

Stars
- Stellar nucleosynthesis
- Nature of stellar condensate grains

The Interstellar Medium
- IS grains, mantles & organics

The proto-solar nebula
- Accretion disk environment, processes and timescales

Planetary formation
- Inner Solar System Disk & planetesimal properties at the time of planet formation

Accretion history, alteration processes, impact events, regolith

Life
- Nature of organics in NEAs

The Earth
- Impact hazard
- Evolution of life on Earth

Nature of stellar condensate grains
The planets of the inner Solar System experienced an intense influx of cometary and asteroidal material for several hundred million years after they formed.

The earliest evidence for life on Earth coincides with the decline of this enhanced bombardment. The fact that the influx contained vast amounts of complex organic material offers a tantalising possibility that it may be related to the origin of life.
MarcoPolo-R will rendezvous with a primitive NEA:
- scientifically characterize it at multiple scales, and
- return a sample to Earth unaffected by the atmospheric entry process or terrestrial contamination.

- it is the first sample return mission to a primitive low albedo asteroid
- it will return a sample (few 10s of grams) for laboratory analyses of organic-rich material
- it will determine the geological context of the returned sample

Community supporters:
556 scientists, 16 countries, ~130 Italians

Web page: www.oca.eu/MarcoPolo-R/
MarcoPolo-R will provide crucial elements to answer the following key questions:

1) What were the processes occurring in the primitive solar system and accompanying planet formation?

2) What are the physical properties and evolution of the building blocks of terrestrial planets?

3) Do NEAs of primitive classes contain pre-solar material yet unknown in meteoritic samples?

4) What are the nature and the origin of the organics in primitive asteroids and how can they shed light on the origin of molecules necessary for life?
What were the processes occurring in the early solar system and accompanying planet formation?

A. Characterise the chemical and physical environments in the early solar nebula

B. Define the processes affecting the gas and the dust in the solar nebula

C. Determine the timescales of solar nebula processes

Measurements
- Bulk chemistry.
- Mineralogy, Petrology.
- Isotopic chemistry in inclusions, matrix, presolar grains and volatiles, water.
What are the physical properties and evolution of the building blocks of terrestrial planets?

D. Determine the global physical properties of an NEA
E. Determine the physical processes, and their chronology, that shaped the surface structure
F. Characterise the chemical processes that shaped the NEA composition (e.g. volatiles, water)

G. Link the detailed orbital and laboratory characterisation to meteorites and IDPs and provide ground truth for the astronomical database

Measurements
- Volume, shape, mass.
- Surface morphology and geology.
- Mineralogy & Petrology.
- Isotope geochemistry & chronology
- Weathering effects.
- Thermal properties.
Do NEAs of primitive classes contain pre-solar material yet unknown in meteoritic samples?

Meteorites contain refractory pre-solar grains from supernovae, novae, AGB stars.

1. Determine the stellar environment in which the grains formed.
2. Define the interstellar processes that have affected the grains.
3. Determine the interstellar grain inventory.

Measurements:
- Bulk chemistry.
- Grain mineralogy and composition.
- Isotope chemistry of grains.
What are the nature and the origin of the organics in primitive asteroids and how can they shed light on the origin of molecules necessary for life?

Current exobiological scenarios for the origin of life invoke the exogenous delivery of organic matter to the early Earth. The planets of the inner solar system experienced an intense influx of organic-rich material for several hundred million years after they formed. The earliest evidence for life on Earth coincides with the decline of this bombardment.

Many biologically important molecules are present in the organic materials.
What are the nature and the origin of the organics in primitive asteroids and how can they shed light on the origin of molecules necessary for life?

K. Determine the diversity and complexity of organic species in a primitive asteroid

L. Understand the origin of organic species

M. Provide insight into the role of organics in life formation

Measurements

Abundances and distribution of insoluble organic species. Soluble organics. Global surface distribution and identification of organics
“Why do you need to return samples?”
Laboratory investigation:

High spatial resolution and analytical precision are needed:

- High precision analyses - including trace element abundances to ppb levels and isotopic ratios approaching ppm levels of precision

- High spatial resolution - a few microns or less

- Requires very specific sample selection and preparation.

- Requires large, complex instruments – e.g. high mass resolution instruments (large magnets, high voltage), bright sources (e.g. Synchrotron) and usually requires multi-approach studies
Superior instruments...

“Miranda” GC-IRMS Laboratory
Isotope ratio ±

In-situ instruments limited (mass/volume/power/reliability)
Superior instruments...

In-situ measurements provide insufficient precision
“Why do you need to return samples when we have meteorites?”
Going beyond meteorites

To survive atmospheric entry requires major processing

Re-distributes elements & isotopes, Modifies minerals & organics

Accreted material?

Atmospheric Entry Filter?

Compressive strength

Trieste 04-06-2011 Elisabetta Dotto - INAF-OA Roma
Organics

Over 80 ET amino acids

Many different synthesis mechanisms

Strecker

Precise abundances of molecules and precursors are required to understand the origin of these molecules.
A sample return from a primitive Near Earth Asteroid

From stars to meteorites

Nucleosynthesis Condensation Implantation

Near Earth Asteroid Sample Return

Mantle formation
Chemical reaction
Shock
Irradiation

Atmospheric entry
Contamination weathering

Accretion
Thermal/aqueous alteration
Impacts
Weathering

Evaporation
Condensation
Shock
Irradiation
Chemical reaction

after Davidson 2009
A sample return from a primitive Near Earth Asteroid

From stars to asteroid sample

Nucleosynthesis

Condensation

Implantation

Accretion

Thermal/aqueous alteration

Impacts

Weathering

Evaporation

Condensation

Shock

Irradiation

Mantle formation

Chemical reaction

Chemical reaction

Shock

Irradiation

after Davidson 2009
Avoid contamination…

Tagish Lake
Most perfectly collected sample?

Collected within 5 days from frozen lake and kept at -20°C

Terrestrial contamination

… any result obtained for organics in meteorites may be questioned
Aqueous alteration

Mixed regolith provides range of alteration
Free of terrestrial contamination
- find low alteration materials
- study alteration process

Water
Carbonaceous chondrites exhibit aqueous alteration
- How much water was there initially?
- What was the fate of the water?
- Implications for terrestrial planets

Is D/H in primitive asteroids similar to that on Earth?
MarcoPolo-R Mission

MarcoPolo-R will rendezvous with a primitive NEA:
- scientifically characterize it at multiple scales, and
- return a sample to Earth unaffected by the atmospheric entry process or terrestrial contamination.

- it is the first sample return mission to a primitive low albedo asteroid
- it will return a sample (few 10s of grams) for laboratory analyses of organic-rich material
- it will determine the geological context of the returned sample
The present proposal is based on the previous Marco Polo mission study, which was selected for the Assessment Phase of the first round of Cosmic Vision.

Its scientific rationale was highly ranked by ESA committees and it was not selected only because the estimated cost was higher than the allotted amount for an M class mission.

The cost of MarcoPolo-R will be reduced to within the ESA medium mission budget by collaboration with APL and JPL in the NASA program for coordination with ESA's Cosmic Vision Call for Proposal.
NASA contribution to ESA-led MarcoPolo-R Mission:

- **Sample acquisition and transfer**, including active sample acquisition devices and robotic mechanisms to transfer samples reliably into a canister;
- **Earth re-entry capsule**, including sample canister;
- **Sample recovery**, including recovery operations at Utah Test and Training Range (UTTR) and sample canister delivery and opening.

MarcoPolo-R Mission of Opportunity (possible precursor)
MarcoPolo-R mission baseline

<table>
<thead>
<tr>
<th>Launch</th>
<th>Mission duration (yrs)</th>
<th>Stay time (months)</th>
<th>Δv (km.s⁻¹)</th>
<th>Entry v (km.s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.03.2020*</td>
<td>6.98</td>
<td>10.5</td>
<td>2.07</td>
<td>12.0</td>
</tr>
<tr>
<td>10.03.2020*</td>
<td>4.70</td>
<td>3.5</td>
<td>1.9</td>
<td>15.0</td>
</tr>
<tr>
<td>23.02.2021*</td>
<td>9.09</td>
<td>13.7</td>
<td>2.93</td>
<td>12.0</td>
</tr>
<tr>
<td>24.04.2021</td>
<td>7.99</td>
<td>16.1</td>
<td>2.81</td>
<td>13.6</td>
</tr>
<tr>
<td>09.01.2022</td>
<td>7.28</td>
<td>9.3</td>
<td>2.88</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Asteroid Departure 01/02/2027
Flyby 2 Earth 30/11/2024
Earth arrival 18/04/2029
Earth departure 24/04/2021
Flyby 1 Venus 02/06/2022
Asteroid Arrival 05/10/2025
Flyby 3 Venus 03/11/2027
ASTEROID TARGET: 1996 FG3

1996 FG3 is a binary object and it is probably a rubble pile

$D_p = 1.4 \text{ km}$ \hspace{1cm} $P_p = 3.5942 \pm 0.0002h$

$D_s = 430 \text{ m}$ \hspace{1cm} $P = 16.135 \pm 0.005h$

Dist. = 2.4 km

$a_p:b_p:c_p = 1.05:0.95:0.70$

$a_s:b_s:c_s = 0.32:0.23:0.23$

mass: \hspace{0.5cm} 2.1 \times 10^{12} \text{ kg}$

density: \hspace{0.5cm} $1.4 \pm 0.3 \text{ g/cm}^3$

 Classified as belonging to the C class.
Sample requirements

Small (sub-mm) particles?
- Large numbers collected
- Sample multiple lithologies
- Range of weathering

Large (~cm) particles?
- Interiors protected
- Trace organic species
- Weathering gradients

A few 10s of grams of sample will guarantee the scientific success of MarcoPolo-R.
Test with Brush Wheel Sampler and tuff rocks
BWS collecting lunar regolith simulant
The *MarcoPolo-R ERC (cross section)*

The *MarcoPolo-R ERC Landing Footprint at UTTR*

Trieste 04-06-2011 Elisabetta Dotto - INAF-OA Roma
Baseline payload

Wide angle camera
Narrow angle camera
Close-up camera
Vis/NIR imaging spectrometer
MIR spectrometer
Radio science
Laser altimeter
Neutral particle analyser
Complementary instruments/lander possible

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass [kg]</td>
<td>30</td>
</tr>
<tr>
<td>Power [W]</td>
<td>90</td>
</tr>
<tr>
<td>Data volume [Gbit]</td>
<td>280</td>
</tr>
</tbody>
</table>

Development compatible with overall schedule
Sample Return mission opens new perspectives

Analyses of organic compounds that could be responsible for the origin of life on Earth;

Discovery primitive materials preserved during Solar System formation;

Understanding evolutionary processes occurred during the Solar System lifetime.

Development of Sample Return technologies suitable for future exploration: Sampling mechanism, Earth return vehicle, re-entry capsule.

Development of robotic systems able to make use of SR resources for human exploration.

Development of Curation Centers for analyses, delivery and storage of ET samples.

Educational & Public-Outreach.

Elisabetta Dotto - INAF-OA Roma
Curation basic equipments

A dedicated sample return storage and curation facility will be equipped with the following characteristics:
- Clean room environment of class 10;
- Maintenance of ambient temperature in the laboratory;
- Containment cabinets with positive-pressure in controlled atmosphere (e.g. GN2, Ar);
- Humidity control;
- Dedicated processing cabinets (e.g. stainless steel gloved cabinet);
- Combination of human and robotic processing;

Trieste 04-06-2011
Elisabetta Dotto - INAF-OA Roma
Sample Preparation

- Separation of pebbles and dust;
- Sample preliminary examination;
- Sample classification;
- Polished sections of pebbles and dust;
- Separation of samples to be delivered to laboratory for studies and those stored indefinitely in the facility;
- Sample allocation in special holders for delivering to worldwide laboratories.

Beni M’hira L6 chondrite (plane polarized transmitted light)
Preliminary Characterization

| Imaging | Optical microscopy
<table>
<thead>
<tr>
<th></th>
<th>Scanning Electron Microscopy (SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineralogy</td>
<td>X-ray Diffraction (XRD)</td>
</tr>
<tr>
<td></td>
<td>Visible-Infrared spectroscopy</td>
</tr>
<tr>
<td></td>
<td>Microanalysis scanning Electron Microscopy (SEM-EDX)</td>
</tr>
<tr>
<td>Organic analyses</td>
<td>Visible-Infrared micro spectroscopy</td>
</tr>
<tr>
<td></td>
<td>Micro Raman spectroscopy</td>
</tr>
<tr>
<td>Fluid Inclusion</td>
<td>Micro-Raman Spectroscopy</td>
</tr>
<tr>
<td></td>
<td>Optical petrography</td>
</tr>
</tbody>
</table>
Preliminary Curation Database

Samples will be catalogued in order to set up a series of self-consistent describing elements according to:

• Specimen description: name, physical properties, preliminary investigation data set, classification.
• Sample description: name, type (e.g. rock, pebbles, dust), form (e.g., single chip, cube, plate, fragments, many grains, powder, etc.).
• Sampling site (e.g., outer part, inner part, central, etc.).
• Sample allocation.
General activities of storage and curation facility

• To prevent mineralogical, chemical and physical alteration of samples;
• To protect samples from chemical (inorganic and organic) and particulate contamination;
• To catalogue and archive the samples;
• To document sample handling history;
• To perform and document the sample preliminary examinations;

• To separate and section samples;
• To distribute samples to scientists around the world for detailed study;
• To preserve a portion of each sample collection for future study;
• To secure the samples;
• To spread information of scientific results to the public.

Collaboration and personnel sharing among curation facilities are envisaged.
Near Earth Asteroid Sample Return

Returned primitive NEA sample provide a unique window into distant past allowing scientists to unravel mysteries surrounding birth and evolution of Solar System.

- **Legacy - Retention of samples for future advances**
- **Curation and distribution facility**
- **Large community – range of disciplines - direct involvement**
 - Planetology
 - Astrobiology
 - Nucleosynthesis
 - Cosmochemistry

- **MarcoPolo-R** will use a combination of in situ and laboratory measurements to:
 - Provide a window into the distant past
 - Allow scientists to unravel mysteries surrounding the birth and evolution of the solar system
 - Involve large community, in a wide range of disciplines
 - Retain samples for future advances through a **Curation and Distribution Facility**
 - Demonstrate key capabilities for any sample return mission
 - Generate public interest

David Hardy
Near Earth Asteroid
Sample Return
Descent/Sampling

Landing/touchdown

- 3 sampling attempt capability
- Clearance: ~ 50 cm hazards
- Landing accuracy ~ 5 m

Sampling

- Dust to cm-sized fragments
- Contamination-avoidance strategy

1. Asteroid characterization
2. Hovering at 200 – 400 m altitude, “go-decision”
3. Autonomous terrain-relative descent
 - Navigation camera + multi-beam laser/radar altimeter
4. Touchdown/sampling
5. Ascent to safe position
Near Earth Asteroid Sample Return

Descent/Sampling

- **Sampling option 1**: Short-term landing (~ 10 min.), “energy-absorbing” landing legs, down-thrust, rotating corer (sample canister)

- **Sampling option 2**: Touch & go (< 3 sec.), “elastic” legs, fast sampler (sample canister)
Main spacecraft

Concept 1: Corer, top-mounted capsule, one articulated arm inside central cylinder

Concept 2: Corer, bottom-mounted capsule, two articulated arms

Concept 3: Fast sampler, top-mounted capsule, transfer via landing pads/legs + elevator in central cone
1. \(T_0 \) – 4 hours: Separation with main spacecraft
2. \(T_0 \): Re-entry (heat flux \(\sim 15 \) MW\(\cdot \)m\(^{-2} \))
3. \(T_0 + 200 \) s: Parachute opening (\(\sim 10 \) km, subsonic)
4. \(T_0 + 1800 \) s: Soft landing in Woomera, Australia
5. Landing + few min/hrs: Search & Recovery
Earth re-entry capsule

- 45° half-cone angle front shield
- In-development lightweight ablative material or classical carbon phenolic
- Capsule mass: 25 – 69 kg
Development

- Proto-Flight Model + dedicated qualification models
- No specific planetary protection measures required
- Pre-development

<table>
<thead>
<tr>
<th>Enabling and enhancing technology activities</th>
<th>Heritage (or activities ongoing for future missions: e.g. ExoMars, MoonNEXT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample acquisition, transfer and containment system</td>
<td>Exomars, Philae, MSR activities</td>
</tr>
<tr>
<td>Low-gravity and high-clearance landing/ touchdown system</td>
<td>Philae, Moon NEXT activities</td>
</tr>
<tr>
<td>Parachute system: canopy, packaging and deployment device</td>
<td>Huygens, Exomars</td>
</tr>
<tr>
<td>Autonomous GNC technology for proximity operations</td>
<td>MSR/MoonNEXT activities (VisNav, etc.), NEA GNC TRP activity</td>
</tr>
<tr>
<td>FDIR, altimetry and attitude measurement sensor (need to be confirmed in future phases)</td>
<td>ExoMars, ongoing Aurora activities</td>
</tr>
<tr>
<td>Delta-development of high-flux ablative TPS material</td>
<td>Ongoing TRP and previous ESA activities</td>
</tr>
<tr>
<td>Contamination assessment of bi/mono-propellant thrusters</td>
<td>Classical thrusters firing tests</td>
</tr>
<tr>
<td>Capsule dynamic stability</td>
<td>Huygens, ExoMars</td>
</tr>
</tbody>
</table>

- All testing facilities available
A technically feasible mission

Maximal use of ongoing/past activities allows an effective and robust development plan

- Safe landing/touchdown (including “relaxed” GNC)
- Sample collection, transfer and sealing
- Earth re-entry

High heritage and no pre-development needed for:

- Mission and science operations
- “Standard” platform equipment (e.g. power, thermal, propulsion)

<table>
<thead>
<tr>
<th></th>
<th>Contractor 1</th>
<th>Contractor 2</th>
<th>Contractor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total dry mass</td>
<td>745</td>
<td>744</td>
<td>812</td>
</tr>
<tr>
<td>Launch mass</td>
<td>1448</td>
<td>1462</td>
<td>1557</td>
</tr>
<tr>
<td>Launch vehicle perf.</td>
<td>1629</td>
<td>1719</td>
<td>1629</td>
</tr>
<tr>
<td>Launch mass margins (%)</td>
<td>11</td>
<td>15</td>
<td>4</td>
</tr>
</tbody>
</table>
Option 1 – A NASA led sample return mission with ESA participation in the framework of a Mission of Opportunity in OSIRIS-REx mission.

Option 2 – An ESA led sample return mission with major components provided by a partner, namely the Earth re-entry capsule and a sample mechanism both provided by APL and JPL and based on the GALAHAD proposal.