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Lyman-α forest
Neutral hydrogen clouds scatter quasar light 

QuasarHI cloud

Trough where light is scattered
 out of line of sight

Observer

Image: E. Wright



Lyman-α forest
3D map of neutral hydrogen: traces baryons

QuasarHI cloud

Observer



80 % of the baryons at z=3 

  are in the Lyman-! forest 

    baryons as tracer of the dark 

      matter density field 

   " IGM ~ " DM
      at scales larger than the 

      Jeans length ~ 1 com Mpc 

   flux = exp(-#) ~ exp(-("IGM )
1.6 T -0.7 ) 

THEORY: GAS in a $CDM universe 

Bi & Davidsen (1997), Rauch (1998) 

Lyman-α gives 3D map of 
dark matter clustering

over time

Lyman-α forest

Image:  J. Bolton

SDSS

Baryons trace dark matter



Lyman-α forest
Linear power 

spectrum
Simulation power 

spectrum

Galaxies 

Lyman-α

Lyman-α probes
smallest scales

Mildly nonlinear physics



simulation. The total CPU consumption for simulations with the smallest neutrino mass

Σmν =0.15 eV is thereby about 10% larger than that for the largest mass we investigated

Σmν =0.6 eV.
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Figure 1: Density slices of thickness 6 h−1 comoving Mpc at z = 3 extracted from two 60h−1 Mpc
hydrodynamical simulations with gas and dark matter and no neutrinos. The right column shows
a simulation that includes neutrinos with Σmν =1.2 eV. The presence of neutrinos (bottom panel,
green) clearly affects both the gas (red) and the dark matter (blue) distribution.

In Figure 1 we show illustrative slices of the density distribution of thickness 6/h

comoving Mpc extracted from two 60/h comoving Mpc simulations at z = 3 with and
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• Structure growth tells us the 
initial conditions

• Primordial power spectrum

Lyman-α forest



Lyman-α forest

Image: Kim et al

Flux = exp(−τ)Absorption with 
optical depth, τ



Lyman-α forest

Image: Kim et al

Observable: Flux Power spectrum

Fairly insensitive to small-scale structure



SDSS

• 2.5m telescope in 
Apache Pt, New Mexico

• Takes enormous number 
of spectra

• Quantity over quality



SDSS

• Spectra need not have 
high S/N

• Instead need sky 
coverage and high 
density



• Inflation predicts a nearly scale invariant smooth 
power law power spectrum.

• How strongly does the data support this?

Motivation



• Inflation predicts a nearly scale invariant smooth 
power law power spectrum.

• How strongly does the data support this?

• Lyman-α currently only direct probe
of small-scale power spectrum. 

Motivation



Motivation
Local feature may bias recovered parameters

Signal with feature

Scale-invariant signal

Recovered signal



Motivation
Solution: Minimally Parametric method

Signal with feature

Scale-invariant signal

Recovered signal

Need to ensure robustness
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Power law primordial power spectrum:

Do parameter estimation.

P (k) = As

(
k

k0

)ns−1

Power Spectrum 
Reconstruction 



Power law primordial power spectrum:

Do parameter estimation.

P (k) = As

(
k

k0

)ns−1

Power Spectrum 
Reconstruction 



Reconstruction

Power law
spectrum

Cubic spline
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Wavenumber (h/Mpc)

Fit with cubic spline.

Knots
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Lyman-α

Power spectrum 
feature

Best-fit from 
WMAP7
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We need to fit the signal, but NOT the noise

Use cross-validation: similar to jack-knifing.

Which is best?

Reconstruction



Noise is extra small-scale variation. 

Likelihood to penalise “wiggly” shapes:

Cross-validation to choose penalty most 
accepted by data

Power Spectrum

logL = logL(Data|P (k)) + λ

∫

k
dk(P ′′(k))2



Cross-Validation

Divide data into: training set (crosses) and                                  
                          validation set (circles)

R
ed

sh
ift

Scale



Cross-Validation
R

ed
sh

ift

Scale

 Training set should predict validation set



Cross-Validation

1.Pick penalty. 

2.Find best fit to training set

3.Predict validation set from best-fit

4.Find penalty which best predicts validation set

logL = logL(Data|P (k)) + λ

∫

k
dk(P ′′(k))2



• Assume data 
Gaussian: N(μ,σ)

• Find μ, σ in best 
agreement with data

Parameter 
Estimation

Minimally 
Parametric

• Choose some form 
F(μ,σ)

• Find μ, σ in agreement 
with training data

• Check how well F(μ,σ)
predicts validation data
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Motivation

• Structure nonlinear

• Need to construct a map between P(k) and 
flux statistics: depends on baryonic physics

• Previous map assumed scale-invariance

Why do we need new simulations?



Simulation Setup

• 30+ hydrodynamic simulations using 
GADGET-II.

• 60 Mpc box, 2x4003 particles

• 4003 dark matter particles - collisionless

• 4003 baryons - with cooling



Important Trick

• Dense regions have 
many slow collisions

• Do not influence the 
Lyman-α forest

• Save time by making 
dense regions “stars”

Image: Millennium Simulation
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Simulated Spectra

• Draw skewers through 
density field

• Calculate absorption 
along skewers

• Average of two-point 
statistics

Image: Millennium Simulation



Flux Power Spectrum

Simulation

1D
 F

lu
x 

Po
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er

Smaller Scales (s/km)

Data
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Likelihood 
Construction 

• Vary one parameter at a time. 

• Fit change in flux power with a polynomial

• Check accuracy with jack-knifing.

δPF(pi) = Σi

(
aδp2

i + bδpi

)



Likelihood 
Construction 

• Marginalise over thermal parameters:
 -  Temperature
 -  Temperature-density relation
 -  Mean optical depth, aka ionising 
radiation density

• Correct for resolution and box effects, 
damping wings, SiIII, ......
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Data Comparison
• Current data: SDSS quasar flux power 

spectrum from McDonald et al 2005.

• ~3000 quasar sightlines

• Redshift 2.2 to 4.2

• Future: BOSS (SDSS-III)

• 160,000 sightlines

• Redshift 2.2 to 3.0



Results

• “Envelope” of splines with likelihood in top 95%. 
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Results

• 68% and 95% have similar envelopes; lower 
likelihood splines have more features. 
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Results
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• Error bar shows 
constraints from 
parameter estimation

• Driven by prior 
assumption of power 
law form 

A sufficiently high penalty reproduces
the previous results.



Results
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High Penalty

• CV score constant with penalty

• Cannot distinguish between above plots.



BOSS simulation

• Simulated flux power spectrum with 
theoretically motivated parameters

• Simulate BOSS covariance matrix by 
dividing SDSS-II covariance matrix by 80. 

• Add Gaussian noise to simulated flux 
power spectrum

• Add SiIII, resolution...
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Results: BOSS Simulation

Input power 
spectrum

Knots

Extrapolation of WMAP 
power spectrum

Bird et al (2010), arxiv:1010.1519

Comparable error bars to the CMB!
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BOSS Simulation

Results: BOSS

• Reproduce earlier results 
with SDSS covariance 
matrix 

• CV score again constant 
with penalty

• Fixing thermal params 
finds preferred prior

No preferred prior for current data due to 
systematic and statistical error. 



Conclusions
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CMB and galaxy 
constraints
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Ultimate goal: combine Lyman-α with large-
scale datasets


