



#### Role of Cosmic Dust Analogues in prebiotic chemistry

John Robert Brucato

INAF - Astrophysical Observatory of Arcetri, Florence Italy SIA - Italian Astrobiology Society jbrucato@arcetri.astro.it

## Dust is ubiquitous in Space



In the diffuse interstellar medium dust interacts with hot gas, UV radiation, cosmic rays, undergo destruction by sputtering and shuttering.

Dust condense in cool atmosphere of evolved stars



In dense interstellar medium dust growths through ice accretion and coagulation and undergo chemical evolution.

Dust & gas condense forming solar system objects

#### The role of dust in the universe

"The role of dust is that of observer and of catalyst" - J. Majo Greenberg (1963)

"The importance of grains in various aspects of astrochemistry is evident: they shield molecular regions from dissociating interstellar radiation, catalyze formation of molecules, and remove molecules from the gas phase" - *E.F. van Dishoeck, G.A. Blake, B.T. Draine, J.I. Lunine (1993)* 

> "Dust is both a subject and an agent of the Galactic evolution" - J. Dorschner and Th. Henning (1995)

"Dust does make a difference. It directly alters the way we view the universe. It also changes the nature of the universe that we see" - P.G. Martin (2004)

#### Cristalline silicates in evolved stars



#### Hydrogenated a-Carbon in ISM

Mennella et al. (1999)



#### Amorphous silicates in ISM



#### Silicate & a-carbon in comets Brownlee et al. (2006)



# **IDPs Interplanetary Dust Particles**



About 30,000 tons of IDPs are collected every year by Earth!

# ISM, comets and Interplanetary Dust Particles inventory

| Oxides:          | $SiO_2$ , MgO, FeO, Fe <sub>2</sub> O <sub>3</sub> , TiO <sub>2</sub> , ZrO <sub>2</sub> , Al <sub>x</sub> O <sub>y</sub>                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Silicon Carbide: | SiC                                                                                                                                                   |
| a-Carbon         |                                                                                                                                                       |
| Sulfides:        | FeS, NiS                                                                                                                                              |
| Silicates        | Olivine: $(Mg,Fe)_2SiO_4$<br>Pyroxene: $(Mg,Fe)SiO_4$<br>Spinel: $MgAl_2O_4$<br>Diopsite: $CaMgSi_2O_4$<br>Melilite: $(Ca,Na)_2(Al,Mg)[(Si,Al)_2O_7]$ |
| Carbonates       | Calcite: CaCO <sub>3</sub><br>Dolomite: CaMg(CO <sub>3</sub> ) <sub>2</sub>                                                                           |

#### **Cosmic Dust Analogues**

The use of analogues offers many advantages with respect to ET materials.

- There are no constraints to the type of measurements to be performed, thus samples can be thoroughly characterised;
- there is wide flexibility in applying production and processing techniques capable to simulate actual space conditions and processing in order to parameterise material behaviour vs. boundary conditions;
- there is no limitation in the available **amount**, so that tests can be **repeated**

# The role of minerals and metal oxides on prebiotic processes. A general overview

- Minerals can accumulate the prebiotic precursors (concentration effect)
- Minerals can act as catalytic environments, reducing the activation energy for the formation of products
- Minerals can tune the selectivity of prebiotic syntheses
- Minerals may act as a template

•Minerals are suitable environments to preserve newly formed biomolecules from degradation

#### Mg-rich olivine





Mixed a-carbon & silicate



#### Inorganic catalysis work structure





 $H_2$  is the most abundant molecule in ISM. It plays a crucial role in the initial cooling of clouds during gravitational collapse and is involved in most reaction schemes that produce other complex molecules.

It is widely accepted that  $H_2$  formation takes place on dust grains.

Heterogeneous catalysis (H + H ---> H<sub>2</sub>) Eley-Rideal mechanism

Langmuir-Hinshelwood mechanism



Photochemistry Radiochemistry



# H & D beams irradiation of amorphous olivine silicate (Fe, Mg)SiO<sub>4</sub>

(Perets et al. 2007)



Desorption rate of HD molecules vs. surface temperature during TDP on polycrystalline and amorphous silicates



TPD curves of HD desorption after irradiation with H+D atoms on amorphous silicates with irradiation times of 15, 30, 60, 120 and 240 s. The solid lines are fits obtaining using the rate equation model. Molecular desorption does not occur on amorphous surface but are trapped in adsorption sites → the desorbed molecules are not highly excited



Recombination efficiency of H on polycrystalline and amorphous silicates

Amorphous silicates are good candidate on which H recombine with high efficiency





HCONH<sub>2</sub>



HCN

| monored or game monored (10) | Interstellar | organic | molecules | (79) |
|------------------------------|--------------|---------|-----------|------|
|------------------------------|--------------|---------|-----------|------|

| $CH^+$ | HCN     | $H_2CO$           | $HC_3N$      | CH <sub>3</sub> OH  | $HC_5N$                      | HCOOCH <sub>3</sub>  | HC7N               |
|--------|---------|-------------------|--------------|---------------------|------------------------------|----------------------|--------------------|
| CH     | HNC     | $H_2CS$           | $C_4H$       | CH <sub>3</sub> CN  | $\rm CH_3CCH$                | $\rm CH_3C_3N$       | $CH_3OCH_3$        |
| CN     | HCO     | HNCO              | $CH_2NH$     | $CH_3NC$            | $\mathrm{CH}_3\mathrm{NH}_2$ | CH <sub>3</sub> COOH | $CH_3CH_2OH$       |
| CO     | OCS     | HNCS              | $CH_2CO$     | $CH_3SH$            | CH <sub>3</sub> CHO          | $H_2C_6$             | $\rm CH_3 CH_2 CN$ |
| CS     | $HCO^+$ | $c-C_3H$          | $\rm NH_2CN$ | NH <sub>2</sub> CHO | $\rm CH_2 CHCN$              | $CH_2OHCHO$          | $CH_3C_4H$         |
| $C_2$  | $HOC^+$ | $1-C_3H$          | HOCHO        | HC <sub>2</sub> CHO | $C_6H$                       |                      | $\rm CH_3C_5N$     |
| $CO^+$ | $HCS^+$ | $C_3N$            | $c-C_3H_2$   | $C_5H$              | $c-C_2H_4O$                  |                      | $CH_3COCH_3$       |
|        | $C_2H$  | $C_3O$            | $CH_2CN$     | $H_2CCCC$           | $\rm CH_2CHOH$               |                      | HC <sub>9</sub> N  |
|        | $C_2O$  | $C_3S$            | $H_2CCC$     | $\rm HC_3NH^+$      |                              |                      | $HC_{11}N$         |
|        | $C_2S$  | $H_2CN$           | HCCNC        |                     |                              |                      | $OHCH_2CH_2OH$     |
|        | $CH_2$  | $CH_3$            | HNCCC        |                     |                              |                      |                    |
|        | $CO_2$  | $C_2H_2$          | $CH_4$       |                     |                              |                      |                    |
|        | $C_3$   | HOCO+             | $H_2COH^+$   |                     |                              |                      |                    |
|        | -       | HCNH <sup>+</sup> |              |                     |                              |                      |                    |

Colangeli, J.R. Brucato, A. Bar-Nun, R.L. Hudson and M.H. Moore, in Comets II, M. Festou, H.U. Keller, and H.A. Weaverin Eds., University of Arizona Press (2005).

| .000). | lce                           | Reaction Products<br>Identified                                                                                                                                                    | Least Volatile Species                                           | Processing Experiment                  |
|--------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------|
|        | H <sub>2</sub> O              | $H_2O_2$ , $HO_2^{b}$ , $OH^{b}$                                                                                                                                                   | H <sub>2</sub> O <sub>2</sub>                                    | lon <sup>a</sup> , UV <sup>b</sup>     |
|        | СО                            | $CO_2, C_3O_2, C_2O$                                                                                                                                                               | C <sub>3</sub> O <sub>2</sub>                                    | lon <sup>c</sup> , UV <sup>⊳</sup>     |
|        | CO <sub>2</sub>               | CO, O <sub>3</sub> , CO <sub>3</sub>                                                                                                                                               | H₂CO₃ ( from H <sup>+</sup><br>implantation) <sup>d</sup>        | lon <sup>c,d</sup> , UV <sup>b,c</sup> |
|        | CH <sub>4</sub>               | C <sub>2</sub> H <sub>2</sub> , C <sub>2</sub> H <sub>4</sub> , C <sub>2</sub> H <sub>6</sub> ,<br>C <sub>3</sub> H <sub>8</sub> , CH <sub>3</sub> , C <sub>2</sub> H <sub>5</sub> | PAH's <sup>e</sup> and high<br>molecular weight<br>hydrocarbon s | lon <sup>e-g</sup> , UV <sup>b</sup>   |
|        | $C_2H_2$                      | CH <sub>4</sub> <sup>f</sup> , polyacetylene <sup>h</sup>                                                                                                                          | PAH's <sup>e</sup> ,<br>polyacetylene <sup>h</sup>               | lon <sup>e,h</sup>                     |
|        | C <sub>2</sub> H <sub>6</sub> |                                                                                                                                                                                    |                                                                  |                                        |
|        | H₂C O                         | POM, CO, CO <sub>2</sub> , HC O                                                                                                                                                    | POM                                                              | lon <sup>n</sup> , UV <sup>ɒ</sup>     |
|        | CH₃O H                        | CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> CO,<br>H <sub>2</sub> O, C <sub>2</sub> H <sub>4</sub> (OH) <sub>2</sub> ,<br>HCO, HCOO <sup>-</sup>                        | C <sub>2</sub> H <sub>4</sub> (OH) <sub>2</sub>                  | lon <sup>i,j</sup> , UV <sup>b</sup>   |
|        | NH <sub>3</sub>               | $N_{2}H_{4}^{b}, NH_{2}^{b}$                                                                                                                                                       | $N_2H_4^{D}$                                                     | lon <sup>k</sup> , UV <sup>b</sup>     |
|        | HCN                           | HCN oligomers                                                                                                                                                                      | HCN oligomers                                                    | lon <sup>n</sup> , UV <sup>n</sup>     |
|        | HNCO                          | $NH_4^+$ , OCN, CO, CO <sub>2</sub>                                                                                                                                                | NH₄OCN                                                           | lon <sup>n</sup> , UV <sup>n</sup>     |
|        | НСООН                         |                                                                                                                                                                                    |                                                                  |                                        |
|        | HC(=O)CH <sub>3</sub>         |                                                                                                                                                                                    |                                                                  |                                        |
| (      | HC(=O)NH <sub>2</sub>         | ← Forma                                                                                                                                                                            | mide                                                             |                                        |
|        | HC(=0)0CH3                    |                                                                                                                                                                                    |                                                                  |                                        |
|        | SO <sub>2</sub>               | SO <sub>3</sub>                                                                                                                                                                    | S <sub>8</sub> '                                                 | lon <sup>i</sup> , UV <sup>m</sup>     |
|        | H₂S                           | none reported                                                                                                                                                                      |                                                                  | UV <sup>m</sup>                        |
|        | OCS                           |                                                                                                                                                                                    |                                                                  |                                        |
|        | CH <sub>3</sub> CN            | CH <sub>4</sub> , H <sub>2</sub> CCNH, CH <sub>3</sub> N C                                                                                                                         |                                                                  | lon <sup>n</sup> , UV <sup>n</sup>     |
|        | HCCCN                         |                                                                                                                                                                                    |                                                                  |                                        |

<sup>a</sup> Moore and Hudson (2000), <sup>b</sup> Gerakines et al. (1996), <sup>c</sup> Gerakines and Moore (2001), <sup>d</sup> Brucato et al. (1997), <sup>e</sup> Kaiser and Roessler (1998), <sup>f</sup> Mulas et al. (1998), <sup>g</sup> Moore and Hudson (2003), <sup>h</sup> Moore et al. (unpublished work), <sup>i</sup> Hudson and Moore (2000), <sup>j</sup> Palumbo et al. (1999), <sup>k</sup> Strazzulla and Palumbo (1998), <sup>1</sup> Moore (1984), <sup>m</sup> Salama et al. (1990).





- It's a simple one C-bearing molecule.
- It's active in synthesis of nucleobases.
- It's active in selective degradation of DNA.
- It's formed by hydrolysis of HCN.
- It's observed in:
  - ✓ ISM (Millar 2005);
  - ✓ Hale-Bopp comet (Bockeleé-Morvan et al. 2000);
  - ✓ tentatively in young stellar object W33A (Schutte et al. 1999);
  - ✓ in dense ISM IRS9 (Raunier et al. 2000).

| Fnvironment                                          | I                                                              | on Processin                                                              | ıg                                            | Phe                                            | oton Process                                                 | ing                               |
|------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--------------------------------------------------------------|-----------------------------------|
| (ice residence time<br>in years)                     | Flux,<br>1 MeV $p^+$<br>(eV cm <sup>-2</sup> s <sup>-1</sup> ) | Energy<br>absorbed<br>(eV cm <sup>-2</sup> s <sup>-1</sup> ) <sup>a</sup> | Dose<br>(eV molec <sup>-1</sup> )             | Flux ( $eV cm^{-2} s^{-1}$ )                   | Energy<br>absorbed<br>(eV cm <sup>-2</sup> s <sup>-1</sup> ) | Dose<br>(eV molec <sup>-1</sup> ) |
| Diffuse ISM $(10^5 - 10^7)^b$                        | 1 x 10 <sup>7</sup>                                            | $1.2 \ge 10^4$                                                            | <1 - 30                                       | 9.6 x 10 <sup>8</sup><br>at 10 eV <sup>b</sup> | 5 x 10 <sup>8</sup><br>0.02 μm ice                           | $10^4 - 10^6$                     |
| Dense cloud $(10^5 - 10^7)^b$                        | 1 x 10 <sup>6</sup>                                            | $1.2 \times 10^3$<br>0.02 µm ice                                          | << 1 - 3                                      | 1.4 x 10 <sup>4</sup><br>at 10 eV              | $1.7 \times 10^3$<br>0.02 µm ice                             | < 1 - 4                           |
| Protoplanetary nebula $(10^5 - 10^7)^c$              | 1 x 10 <sup>6</sup>                                            | $1.2 \times 10^3$<br>0.02 µm ice                                          | << 1 - 3                                      | $2 \times 10^5$<br>at 1-10 keV <sup>d</sup>    | 5 x10 <sup>4</sup><br>0.02 μm ice <sup>e</sup>               | 2-240                             |
| Oort cloud $(4.6 \times 10^9)$                       | $\phi(E)^{f}$                                                  | f                                                                         | ~150 (0.1 m)<br>~55-5 (1-5 m)<br><10 (5-15 m) | 9.6 x 10 <sup>8</sup><br>at 10 eV              | 9.6 x 10 <sup>8</sup><br>0.1 μm ice                          | 2.7 x 10 <sup>8</sup>             |
| Laboratory<br>(4.6 x 10 <sup>-4</sup> ) <sup>g</sup> | 8 x 10 <sup>16</sup>                                           | 2 x 10 <sup>15</sup><br>1 μm ice                                          | 10                                            | $2.2 \times 10^{15}$<br>at 7.4 eV              | 2.2 x 10 <sup>15</sup><br>1 μm ice                           | 10                                |

a The absorbed energy dose from 1 MeV cosmic-ray protons assumes a 300 MeV cm2 g-1 stopping power and an H2O-ice density of 1 g cm-3. Protons deposit energy in both the entrance and exit ice layer of an ice-coated grain.

b 10eV photons = 1200 Å, vacuum UV (UV-C). Jenniskens et al., (1993).

c Typical disk longevities. (Lawson et al., 1996).

d Typical flux at 0.1 pc, 1 keV photons = 12 Å, soft X-rays (Feigelson & Montmerle, 1999).

e Absorbed energy dose from 1 keV x-rays assumes a 1 keV electron production in 1 g cm-3 H2O-ice with a 127 MeV cm2 g-1 stopping power.

f An energy dependent flux, j(E), was used to calculate the resulting energy dose at different depths in a comet nucleus for an H2O-ice density of 1 g cm-3. For details see Strazzulla and Johnson (1993) and references therein.

g Typical proton and UV data from the Cosmic Ice Laboratory at NASA Goddard.



Brucato et al. 2006



Brucato et al. 2006a

#### Ion irradiation of pure icy Formamide

NH<sub>3</sub> ammonia



#### Ammonium cyanide is stable at room temperature!



Brucato et al. 2006a

### 200 keV H+ irradiation of Formamide with & without a-olivine FeMgSiO<sub>4</sub>



#### Brucato et al. 2006b

# Normalized ratio of synthesized molecules Vs. Formamide molecules destroyed

| Species         | Ratio |      |  |
|-----------------|-------|------|--|
|                 | Pure  | CDA  |  |
| NH <sub>3</sub> | 0.79  | 0    |  |
| $NH_4^-$        | 0.56  | 0.47 |  |
| HCN             | 0.44  | 0    |  |
| CO <sub>2</sub> | 0.27  | 0.41 |  |
| HNCO            | 0.14  | 0.10 |  |
| CO              | 0.70  | 0.16 |  |
| OCN-            | 1     | 1    |  |



#### Thermal processing of *liquid* Formamide (160 °C) with & without dust



Saladino R., Crestini C., Neri C., Brucato J.R., Colangeli L. Ciciriello F., Di Mauro E., Costanzo G., *ChemBioChem* **6**, 1, 2005





# Inorganic catalysis is an important process active for prebiotic chemistry



# CONCLUSION

Primitive dust condensates as observed in expanding envelopes of evolved stars, in interstellar medium, in proto solar nebulae and in planetary atmospheres are extremely interesting catalysts for prebiotic chemistry occurring in the *gas-phase*, in *liquid-phase* and in the *solid-phase*.

# IN DUST WE TRUST!