Chemical evolution of heavy elements in different stellar systems of the Local Group

Cescutti Gabriele
in collaboration with
Francesca Matteucci,
Gustavo Lanfranchi, Andrew McWilliam,
Patrick François, Cristina Chiappini

Astronomy Department
Trieste University

Trieste, 11/03/2009
Outline

• Galactic chemical evolution – introduction

• Studied stellar systems

• The Manganese in the three stellar systems

• The Oxygen in the Galactic bulge and in the Galactic disc

• The neutron capture elements and the comparison between dwarf spheroidal galaxies and the MW

• Description and results of a new inhomogeneous chemical evolution code

• Results for the radial gradients for different chemical elements in the disc of our Galaxy

• Conclusions
Galactic chemical evolution

Stars and interstellar gas in galaxies exhibit diverse chemical element abundance patterns that are shaped by their environment and formation histories.

The aim of Galactic Chemical Evolution is to use the observed abundances in stars and the interstellar medium to reconstruct the chemical history and so try to understand the mechanisms of galaxy formation and evolution, moreover, have an insight into the stellar evolution, giving constraints to the stellar yields.

Models for the chemical evolution of galaxies need to account for the collapse of gas and metals into stars (star formation), the synthesis of new elements within these stars, and the subsequent release of metal-enriched gas as stars lose mass and die. An additional feature are the ongoing accretion of gas from the outside of system and the possible presence of galactic winds.
Galactic chemical evolution

An homogeneous model follows the time evolution of the gas fraction of element A with this equation:

\[
\psi(R, t) = \nu G^k(R, t) \\
\dot{G}_A(R, t) = \\
- X_A(R, t)\Psi(R, t) + X_A^{\text{inf all}} \dot{G}_{\text{inf}}(R, t) - X_A(R, t)\dot{W}(R, t)
\]

1) Locked in stars
 Star formation
2) Infalling in the system
 Accretion of gas
3) Flowing out the system
 Galactic winds

\[
+ \int_M \Psi(R, t - \tau(\tilde{m})) \phi(\tilde{m}) Q(\tilde{m}, Z(t - \tau(\tilde{m}))) A d \tilde{m}
\]

3) Produced by stars
 Stellar winds-SNII-SNIIa

Stellar nucleosynthesis

Trieste, 11/03/2009
Studied stellar systems

Solar vicinity Located at about 8kpc from the centre of our Galaxy, belongs to the galactic disc within the Orion spiral arm. We can resolve individual stars at all evolutionary phases.

Galactic bulge In the center of the Milky Way, the distribution of stars changes: a sign of a different component of the galaxy - the galactic bulge. It is hard to study the galactic bulge due to dust. But the dust is patchy, and there are holes which we can peek through, such as Baade's window. Different teams were pursuing the detailed element abundances of bulge giant stars following the pioneering effort by McWilliam & Rich (1994).

Dwarf spheroidal galaxies They are low luminosity, dwarf elliptical galaxies with low surface brightness. The Milky Way has 12 identified dwarf spheroidal galaxies (dSphs) companions. It is possible the measure the chemical abundances in red giant stars with high resolution spectroscopy.

Trieste, 11/03/2009
The different stellar systems have had different evolutions. To account for these, their models present some main differences:

<table>
<thead>
<tr>
<th></th>
<th>Solar vicinity</th>
<th>Milky way Bulge</th>
<th>Dwarf spheroidals</th>
</tr>
</thead>
<tbody>
<tr>
<td>υ Star formation Efficiency</td>
<td>1</td>
<td>20</td>
<td><1</td>
</tr>
<tr>
<td>Wind</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Infall Law</td>
<td>Two infall model (halo-disc)</td>
<td>One infall (short timescale!)</td>
<td>Depends on the dwarf spheroidal</td>
</tr>
</tbody>
</table>

They share the same stellar nucleosynthesis!

Trieste, 11/03/2009
Manganese and SNeIa

The Mn in the ISM is enriched by two main sources (as iron!):
- Supernovae type II
- Supernovae type Ia (yields by Iwamoto et al. 1999)

Important ingredient of GCE, produce ~30% of iron at the solar formation time. The scenario we take in account in the models for SNeIa is the single degenerate: a white dwarf accreting material from a companion giant star up to the Chandrasekhar limit.

Manganese is a gray-white metal, resembling iron. It is a hard metal and is very brittle, fusible with difficulty, but easily oxidized. Manganese metal and its common ions are paramagnetic.

They have a long timescale, in the MW disc they start to be important at [Fe/H]=-1!

Trieste, 11/03/2009
The Mn in the three systems with the yields determined by François et al. (2004), to well fit the data of the MW disc (without metallicity dependence)

\[[A / B] = \log_{10} \left(\frac{N_A}{N_B} \right)_{\text{star}} - \log_{10} \left(\frac{N_A}{N_B} \right)_{\text{sun}} \]

Adopted solar values: Asplund et al. (2005)
Manganese 2

To improve the results for Mn we use the yields for SNII computed by Woosley & Weaver (1995), with metallicity dependence.
We explore the role of the SNIa yields, adopting yields again depending on the metallicity: $(Z/Z_\odot)^{0.65}$ (cfr Badenes et al. 2008)

This solution to the Mn problem in Sagittarius was suggested by McWilliam et al. (2003)
The model for the Bulge with the oxygen yields of Woosley & Weaver ('95) (the best fit for the solar vicinity, see François et al. 2004) does not fit the data for oxygen of this system. We improve the results if we use the yields by Maeder '92 (which take in account the mass-loss in the massive stars), only for the solar metallicity.

Observational data by Lecureur et al. (2007)
The improvement is clearer when we plot $[O/Mg]$ vs $[Mg/H]$.

The chemical evolution of Carbon is work in progress!

Observational data by

△ Lecureur et al.(2007)
● Fulbright et al.(2007)
† Origlia et al.(2005)
Oxygen in the solar vicinity

The model for the solar vicinity fits the data with the yields of Woosley & Weaver ('95) (cfr. François et al '04).

However, the model with the yields by Maeder ('92) does not change the results in the solar vicinity up to solar...
Neutron capture elements: r-s process

The elements beyond the iron peak (A>60) are formed through neutron capture on seed nuclei (iron and silicon).

Two cases:

- **s-process**
 - $\tau_\beta \ll \tau_C$

- **r-process**
 - $\tau_\beta \gg \tau_C$

Different Timescale of the neutron capture

Different process path
Yields for neutron capture elements

s-process: low mass AGB stars

Busso et al. (2001) for Ba, La, Sr, Y & Zr

Nucleosynthesis prescriptions

r-process: where explosions of SNe II (?)

No theoretical computations (see Travaglio et al. 2004)

We use these which best fit the data:

<table>
<thead>
<tr>
<th>M_{star}</th>
<th>Q_{Sr}</th>
<th>Q_Y</th>
<th>Q_{Zr}</th>
<th>Q_{Ba}</th>
<th>Q_{La}</th>
<th>Q_{Eu}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10M_{\odot}$</td>
<td>1.62 10^{-6}</td>
<td>8.60 10^{-7}</td>
<td>1.80 10^{-6}</td>
<td>9.00 10^{-7}</td>
<td>9.00 10^{-8}</td>
<td>4.50 10^{-8}</td>
</tr>
<tr>
<td>$15M_{\odot}$</td>
<td>5.40 10^{-8}</td>
<td>1.20 10^{-8}</td>
<td>1.80 10^{-7}</td>
<td>3.00 10^{-8}</td>
<td>3.00 10^{-9}</td>
<td>3.00 10^{-8}</td>
</tr>
<tr>
<td>$30M_{\odot}$</td>
<td>3.25 10^{-9}</td>
<td>1.00 10^{-9}</td>
<td>5.00 10^{-9}</td>
<td>1.00 10^{-9}</td>
<td>1.00 10^{-10}</td>
<td>5.00 10^{-10}</td>
</tr>
</tbody>
</table>

Trieste, 11/03/2009
The stable nuclides are marked by black boxes; n-capture in s-process synthesis occurs near these nuclei. The jagged diagonal black line represents the limit of experimentally determined properties of nuclei, and the magenta line represents the r-process "path." Vertical and horizontal black lines represent closed neutron or proton shells. Color shading denotes the different (log) time scales for β^- decay.

Trieste, 11/03/2009
Barium

s-process
low mass stars
1-3M_{sun}
Busso et al.

+

r-process
massive star
10-30M_{sun}
(previous table)

Observational data:
- François et al. (2007)
 other authors

Trieste, 11/03/2009
Observational data:
- François et al. (2007)
- Honda et al. (2004) & other authors

Lanthanum

s-process
low mass stars
1-3M_{\odot}
Busso et al.

+ r-process
massive star
10-30M_{\odot}
(this work)

Trieste, 11/03/2009
Observational data:
- François et al. (2007)
- upper limits
- Honda et al. (2004) & other authors

Strontium

s-process
low mass stars
1-3M\textsubscript{sun}
Busso et al.

+ r-process
massive star
10-30M\textsubscript{sun}
(this work)

Trieste, 11/03/2009
Yttrium

s-process
low mass stars
1-3M_{\odot}
Busso et al.

$+$

r-process
massive star
10-30M_{\odot}
(this work)

Observational data:
- François et al. (2007)
- upper limits
- Honda et al. (2004) & other authors

Trieste, 11/03/2009
s-process
low mass stars
1-3M_{\odot}
Busso et al.

+

r-process
massive star
10-30M_{\odot}
(this work)

Observational data:
- François et al. (2007)
- upper limits
- Honda et al. (2004) &
other authors

Trieste, 11/03/2009
Europium

Observational data:
- François et al. (2007)
- upper limits
- Honda et al. (2004) & other authors

Trieste, 11/03/2009
Neutron Capture elements in dSphs (vs MW)

The galactic wind and the different star formation, produce different chemical evolution, in particular in the case of ratio of $[\text{Eu/Fe}]$
Neutron Capture elements in dSphs (vs MW)

Lanfranchi et al. (2008)

- Sculptor's data
- MW's data
Building blocks of the spiral galaxies as the MW?

\[\text{Neutron Capture elements in dSphs (vs MW)} \]

Lanfranchi et al. (2008)

Sculptor's data
MW's data
The problem of the spread

spread!

No spread!

Trieste, 11/03/2009
Inhomogeneous chemical evolution model for the halo of the Milky Way

Problem to solve:
The neutron capture elements at low metallicities show spread whereas α-elements (O, Ca, Si, Mg) do not.

Main assumptions:

- A random formation of new stars subjects to the condition that the cumulative mass distribution follows a given initial mass function;

- α-elements and neutron capture elements are produced in different mass ranges:
 - All the massive stars for α-elements
 - From 10 to 30 M_{\odot} for neutron capture elements

Trieste, 11/03/2009
Inhomogeneous chemical evolution model for the halo of the Milky Way

We divide the halo in boxes each one of the typical size of 200 pc and we treat each box as isolate from the other boxes.

Inside each box, we simulate for 1 Gyr the chemical enrichment.

The main parameters are the same as those of the homogeneous model.

Trieste, 11/03/2009
Inhomogeneous chemical evolution model for the halo of the Milky Way

1. Hot Gas (10 Myr?)
 - Star of mass $M(i)$ randomly chosen (following IMF)
 - $M > 3$
 - Dead time T_d
 - Remnant

2. Chemical enrichment
 - Sum $M(i) > X$

3. Infall
 - Cold Gas
 - Star formation: X Msun
 - $X > 100$ Msun
 - Burst of X Msun
 - $T = T + 1$ Myr
 - $T > T_{max}$
 - YES
 - End
 - NO
 - NO
 - NO

Trieste, 11/03/2009
Inhomogeneous chemical evolution model for the halo of the Milky Way

Results obtained if we “extract” the masses of 50 stars

the IMF used
Inhomogeneous chemical evolution model for the halo of the Milky Way

Trieste, 11/03/2009
Inhomogeneous chemical evolution model for the halo of the Milky Way

10^5 stars

Trieste, 11/03/2009
Inhomogeneous chemical evolution model for the halo of the Milky Way

10^7 stars
Inhomogeneous model

Neutron capture: large dispersion

Observational data
● Model results

Cescutti (2008)
\(\alpha\) - elements: small dispersion

Inhomogeneous model

Observational data
- Model results

Cescutti (2008)
Inhomogeneous model

Neutron capture: large dispersion

Cescutti (2008)
Observational data

Model results

\(\alpha \) – elements: small dispersion

Inhomogeneous model

Cescutti (2008)
Radial gradients in the MW

In our chemical homogeneous model, we can mimic a inside-out scenario (the disc starts to form from the center to the outskirts) with a different time scale for the infall rate as a function of the galactocentric distance.

This scenario produces radial gradients for the chemical elements.

It is difficult to measure these gradients, mainly because of the uncertainties in the measurements of the distances.

With the new data on Cepheids by Andrievsky et al. (2005), for the first time we have observational data for the gradients of heavy elements as neutron capture elements.

\[
\dot{G}_A(R, t) = -X_A(R, t)\Psi(R, t) + X^\text{inf all}_A \dot{G}^\text{inf}_A(R, t) \\
+ \int_M \Psi(R, t - \tau(\tilde{m})) \phi(\tilde{m}) Q(\tilde{m}, Z(t - \tau(\tilde{m}))) d \tilde{m}
\]
Radial gradients are produced by the inside-out formation of the Galactic disc.

Cescutti et al. (2007)

Andrievski et al. (2005)

Mean and standard deviation on radial bins.

Trieste, 11/03/2009
Radial gradients in the MW

Radial gradients are produced by the inside-out formation of the Galactic disc

Andrievski et al. (2005)
Mean and standard deviation on radial bins

Cescutti et al. (2007)
Radial gradients are produced by the inside-out formation of the Galactic disc.

- Andrievski et al. (2005)
- Mean and standard deviation on radial bins
Radial gradients are produced by the inside-out formation of the Galactic disc

Cescutti et al. (2007)

Andrievski et al. (2005)

Mean and standard deviation on radial bins
Conclusions

Modelling different histories of star formation in the three systems (Solar neighborhood, MW bulge and Sagittarius dwarf spheroidal) are insufficient to reproduce the different behaviour of the [Mn/Fe] ratio; rather, it is necessary to invoke metallicity-dependent type Ia SN Mn yields.

The inclusion of metallicity-dependent oxygen yields improve significantly the agreement between our predictions for the Galactic bulge and the observed [O/Mg]; moreover our results confirms the conclusion that the bulge formed more rapidly than the disk, based on the overabundances of elements produced by massive stars.

By means of the comparison between the models and the new data at low metallicity we conclude that:

· Sr, Y, Zr, Ba and La are produced by both r and s-process:
 by s-process in low mass stars (1-3M_{\odot})
 by r-process in massive stars (10-30M_{\odot})
· Europium is produced by r-process in massive stars (10-30M_{\odot})
The same nucleosynthesis prescriptions adopted to well fit the data in the Milky Way reproduce a good fit to the data of dwarf spheroidal galaxies. Moreover, the chemical evolution excludes that the dwarf spheroidal galaxies (that we see nowadays) are the building blocks of the Milky Way.

We have developed a model which is able to reproduce the spread of neutron capture elements and, at the same time, the small star to star scatter of the alpha-elements. Our model for the galactic disc with our nucleosynthesis prescriptions well fits the radial abundance gradients measured in the Cepheids for several elements and confirm the inside-out scenario for the formation of the MW disc.
Future prospectives

- Improve the inhomogeneous model and extend it to the dwarf spheroidal systems.
- Reproduce the chemical evolution in the disc of the Milky Way for Carbon using a nucleosynthesis which reproduces to observational data of the MW bulge.
- Try to predict the chemical evolution of the dwarf spheroidal galaxies for iron peak elements with a nucleosynthesis consistently with the MW results.