The Many Manifestations of "Downsizing"

Fabio Fontanot (INAF-OATs) OATs Seminar 09/12/09 OSSERVATORIO ASTRONOMICO TRIESTE

Outline

1st Review

Definition of Downsizing

Outline

- 1st Review
- Definition of Downsizing
 2nd Comparison with semi-analytical models
 - Discussing tensions

Outline

- 1st Review
 - Definition of Downsizing
- 2nd Comparison with semi-analytical models
 - Discussing tensions
- 3rd Origin of the discrepancies
 - Possible solutions?

Introduction

Structure Formation

Dark Matter Structures assemble bottom-up

- Small halos first
- Massive halos as the result of mergers

TIME

DM Halos Merger Tree "Bottom-up"

Structure Formation

Dark Matter Structures assemble bottom-up

- Small halos first
- Massive halos as the result of mergers

Properties of galaxies show evidences of the opposite behavior

Downsizing Cowie et al., 1996

Notation

- DS = Downsizing
- mMG = more Massive Galaxies
- SSFR = specific SFR

The many Manifestations:

DS in (specific) SFR (Cowie+96,Zheng07,Noeske+07,Drory&Alvarez08,Dunne+08,Santini+09...)

- Mass of the "typical" SF galaxy decreases with z
- The decline of SSFR is faster for mMG

W + 24 micron
 Bell+07
 Martin+07
 Daddi+07
 Elbaz+07

SED Fitting Noeske+07 Santini+09

Radio Stacking Dunne+08

DS as a s election effect?

The many Manifestations:

DS in (specific) SFR (Cowie+96,Zheng07,Noeske+07,Drory&Alvarez08,Dunne+08,Santini+09...)

- Mass of the "typical" SF galaxy decrease with z
- The decline of SSFR is faster for mMG
- DS in stellar mass (Drory+05, Cimatti+06, Fontana+06, Pozzetti+07, Conselice+07,...)
 - mMG assemble at higher z

The fit is a

Cole+00 Bell+03 Drory+05 Bundy+05 Borsch-+06 Fontana+06 Pozzetti+07 PerezGonzalez+07 Panter+07

Marchesini+09

Marchesini+09

The many Manifestations:

- DS in (specific) SFR (Cowie+96,Zheng07,Noeske+07,Drory&Alvarez08,Dunne+08,Santini+09...)
 - Mass of the "typical" SF galaxy decrease with z
 - The decline of SSFR is faster for mMG
- DS in stellar mass (Drory+05, Cimatti+06, Fontana+06, Pozzetti+07, Conselice+07,...)
 - mMG assemble at higher z
- Archeological DS (Thomas+05, Gallazzi+05, Panter+07, ...)
 - mMG host the older stellar populations

Archeological DS

Panter+07

 Mass binning as a function of z=0 stellar mass

Archeological DS

Panter+07

Gallazzi+05

The many Manifestations:

- DS in (specific) SFR (Cowie+96,Zheng07,Noeske+07,Drory&Alvarez08,Dunne+08,Santini+09...)
 - Mass of the "typical" SF galaxy decrease with z
 - The decline of SSFR is faster for mMG
- DS in stellar mass (Drory+05, Cimatti+06, Fontana+06, Pozzetti+07, Conselice+07,...)
 - mMG assemble at higher z
- Archeological DS (Thomas+05, Gallazzi+05, Panter+07, ...)
 - mMG host the older stellar populations

Chemo-Archeological DS (Carollo+93, Trager+00, Matteucci+04, Thomas+05,...)

• mMG have higher [α /Fe] ratios

Chemo-Archeological DS

See also Pipino+09 Calura&Menci09

The many Manifestations:

- DS in (specific) SFR (Cowie+96,Zheng07,Noeske+07,Drory&Alvarez08,Dunne+08,Santini+09...)
 - Mass of the "typical" SF galaxy decrease with z
 - The decline of SSFR is faster for mMG
- DS in stellar mass (Drory+05, Cimatti+06, Fontana+06, Pozzetti+07, Conselice+07,...)
 - mMG assemble at higher z
- Archeological DS (Thomas+05, Gallazzi+05, Panter+07, ...)
 - mMG host the older stellar populations
- Chemo-Archeological DS (Carollo+93, Trager+00, Matteucci+04, Thomas+05,...)
 - mMG have higher [α/Fe] ratios
- DS in metalicity (Savaglio+05,Erb+06,Maiolino+08,...)
 - Metalicity of mMG decrease slower with z

DS in Metalicity

Maiolino+08 Mannucci+09

The many Manifestations: DS in (specific) SFR (Cowie+96,Zheng07,Noeske+07,Drory&Alvarez08,Dunne+08,Santini+09...)

- Mass of the "typical" SF galaxy decrease with z
- The decline of SSFR is faster for mMG
- DS in stellar mass (Drory+05, Cimatti+06, Fontana+06, Pozzetti+07, Conselice+07,...)
 - mMG assemble at higher z
- Archeological DS (Thomas+05, Gallazzi+05, Panter+07, ...)
 - mMG host the older stellar populations
- Chemo-Archeological DS (Carollo+93, Trager+00, Matteucci+04, Thomas+05,...)
 - mMG have higher $[\alpha/Fe]$ ratios
- DS in metalicity (Savaglio+05,Erb+06,Maiolino+08,...)
 - Metalicity of mMG decrease slower with z
- AGN DS (Ueda+03, Hasinger+05, LaFranca+05,...)
 - The LF of more luminous AGNs peaks at higher z

AGN DS

Hasinger+05

Redshift

Redshift

The many Manifestations: • DS in (specific) SFR (Cowie+96,Zheng07,Noeske+07,Drory&Alvarez08,Dunne+08,Santini+09...) • Mass of the "typical" SF galaxy decrease with z

The decline of SSFR is faster for mMG

DS in stellar mass (Drory+05, Cimatti+06, Fontana+06, Pozzetti+07, Conselice+07,...)

• mMG assemble at higher z

Archeological DS (Thomas+05, Gallazzi+05, Panter+07, ...)

• mMG host the older stellar populations

Chemo-Archeological DS (Carollo+93, Trager+00, Matteucci+04, Thomas+05,...)

mMG have higher [α/Fe] ratios

◆ DS in metalicity (Savaglio+05,Erb+06,Maiolino+08,...)

Metalicity of mMG decrease slower with z

◆ AGN DS (Ueda+03, Hasinger+05, LaFranca+05,...)

 The LF of more luminous AGNs peaks at higher z

The many Manifestations:

DS in (specific) SFR (Cowie+96,Zheng07,Noeske+07,Drory&Alvarez08,Dunne+08,Santini+09...)

 Mass of the "typical" SF galaxy decrease with z

The decline of SSFR is faster for mMG

- DS in stellar mass (Drory+05, Cimatti+06, Fontana+06, Pozzetti+07, Conselice+07,...)
 - mMG assemble at higher z
- Archeological DS (Thomas+05, Gallazzi+05, Panter+07, ...)
 - mMG host the older stellar populations
- Chemo-Archeological DS (Carollo+93, Trager+00, Matteucci+04, Thomas+05,...)
 - mMG have higher [α/Fe] ratios
- DS in metalicity (Savaglio+05,Erb+06,Maiolino+08,...)
 - Metalicity of mMG decrease slower with z

AGN DS (Ueda+03,Hasinger+05,LaFranca+05,...)

 The LF of more luminous AGNs peaks at higher z

- Simulate the formation and evolution of galaxies populations within the ACDM cosmology
- Main ingredients (1)
 - Cosmological parameters
 - DM halos merger trees
 - Substructure evolution

- Simulate the formation and evolution of galaxies populations within the ACDM cosmology
- Main ingredients (1)
 Cosmological parameters
 DM halos merger trees
 - Substructure evolution

- The evolution of baryonic component is followed by using physically motivated analytical approximations
 Main Ingredients (2)
 - Gas cooling and Infall
 - Star Formation and Stellar feedback
 - Galaxy size, morphology
 - BH growth
 - AGN activity and AGN feedback

This work MORGANA Monaco, Fontanot & Taffoni 2007 • WDL08 Wang, De Lucia +08 Somerville+08 RSS08 Different choices for the treatment of physical processes Normalized to (almost) the same subset of low-z observations

Error on the mass estimate Kitzbichler&White07 Marchesini+09 Normal distribution with $\sigma = 0.25$ dex

Stellar Mass Density Evolution

DS in SAMs ?

 The strongest discrepancies are seen in the intermediate-to-low mass galaxy population.
 They form too early

DS in SAMs ?

 The strongest discrepancies are seen in the intermediate-to-low mass galaxy population.
 They form too early
 They are too passive

Age of stellar populations

DS in SAMs ?

 The strongest discrepancies are seen in the intermediate-to-low mass galaxy population.
 They form too early
 They are too passive
 They are too old

Interlude

More Conclusions (2)

 The error on the stellar mass and SFR determinations play a key role in the comparison between observational constraints and model predictions

 Understanding the systematics (Stringer+08,Marchesini+08)

 Testing reconstruction algorithms against synthetic SEDs and star formation histories

- Role of complex vs simple star formation histories
- Role of dust attenuation recipes
- Role of multi-wavelength photometry

Dust modeling

MORGANA+GRASIL Synthetic Spectra

Fontanot+09a

SSP modeling

EROs number counts Fontanot&Monaco10

Bertelli+94 Padova SSP

Maraston+05 SSP

Discussion

- Characterizing the properties of the galaxy population determining the excess of low-mass galaxies in SAMs
 - Hierarchy
 - Activity
 - Environment
 - Cosmic Time

Central/Satellite Hierarchy

Hierarchy

Activity

Hierarchy

Environment

Cosmic Time

B-drop outs MORGANA $^{-2}$ Φ(Mpc⁻³) $^{-3}$ Bouwens+07 $^{-5}$ [3.5 - 4.5]-22-24-20-18-16 $M_{1600,AB}$

Lo Faro+09 **Same MORGANA** realization **Different dust** parameters Higher molecular fraction Faster escape time **Calibrated to** reproduce the bright tail of UV LF

Cosmic Time

Lo Faro+09

Conclusions (3)

- Central Galaxies hosted in rather massive halos z>2 are responsible for the excess of low-mass objects in SAMs
 High-redshift halos with Vcirc~100-200Km/s
 - Physical mechanisms acting on this scale