Iron Tail

M. Fulle (INAF - OATrieste)

Sinte Maza (Iron Tail)

was an Oglala Sioux who fought alongside Sitting Bull at the Battle of the Little Big Horn (google)

Stereo Spececraft

Two twin spacecrafts are slowly drifting towards L4-L5 points of Earth orbit to get stereo images of the solar corona (plot position @q of **C**omet McNaught 2006P1)

Each spacecraft has wide angle cameras pointing between Sun & Earth

Antecedent: sodium tail of comet C/1995O1 Hale-Bopp (left panel)

All starts in 2003.....

SOHO images of C/2002V1 NEAT (unsharp masking by G.A.Milani)

17 feb 2003 6hUT

18 feb 2003 19hUT

C/2006P1 filament is not a dust tail: 1. no plausible dynamics 2. no gap explanation

C/2006P1 tail is NOT an ion tail (poor fit)

The lifetime of water ions @ 0.2 AU = 1 hr(of CO⁺ ions = 2 hr)

All ions have been photodissociated before they exit the diamagnetic cavity about 10⁵ km wide

Atom dynamics.....

The motion of a neutral atom depends on the solar gravity (sun-pointing) and on the momentum transfer of solar photons (anti-sun-pointing)

$$F_{grav} = rac{G \ m_{at} \ M_{\odot}}{N_{Av} \ r^2} \qquad F_{rad} = rac{(1AU)^2}{r^2} \sum_i rac{h \
u_i}{c} \ g_i$$

Total anti-sun-pointing force acting on the atom:

$$F_{tot} = (\beta - 1) F_{grav} \qquad \qquad \beta = \frac{n (1AU)^2 N_{Av} \sum_i \frac{M_i}{\lambda_i}}{G m_{at} M_{\odot}}$$

Total spectral power emitted by the atoms:

$$E = \frac{c \ G \ m_{at} \ M_{\odot} \ \beta}{(1AU)^2 \ N_{Av}}$$

 $I (1 ATT) 2 M \sum q_i$

If r is the sun-comet vector of absolute value |r|, atom's motion becomes

$$\ddot{r} = G M_{\odot} \left[\beta \left(\frac{r \dot{r}}{|r|} \right) - 1 \right] \frac{r}{|r|^3}$$

Sodium (32 resonant transitions)

Alluminium (43 resonant transitions)

Iron (229 resonant transitions)

Neutral Iron Tail fits all STEREO observations

Observed Lifetime = 180 hr @ 1 AU

atom column density =

$$10^{14} \text{ m}^{-2} @ \text{ x} = 1.5 \ 10^7 \text{ km}$$
 $\delta(x) = \frac{Q_{Fe} \ \exp{-\frac{t_{obs} - t(x)}{\tau}}}{2 \ V_{rad} \ [t_{obs} - t(x)] \ \dot{x}_{sky}}$
 $V_{rad} = 1.5 \text{ km/s}, \text{ Q}_{Fe} = 10^{30} \text{ s}^{-1}$

TABLE 1

Computed Equivalent Constant β and Photoionization Lifetimes

		Photoionization Lifetime (s) at 1 AU			
Атом	Equivalent β	Huebner et al. (1992)	This Letter		
H C N O O Na Mg Mg Al Si Si Si Ar K	$\begin{array}{r} 0.20 \pm 0.15 \\ (1.15 \pm 0.05) \times 10^{-3} \\ (5 \pm 1) \times 10^{-5} \\ (4 \pm 2) \times 10^{-5} \\ 75 \pm 5 \\ 1.3 \pm 0.3 \\ 5 \pm 2 \\ (7 \pm 1) \times 10^{-2} \\ (6 \pm 1) \times 10^{-4} \\ (4 \pm 1) \times 10^{-8} \\ 56 \pm 2 \end{array}$	$ \begin{array}{r} 1.4 \times 10^{7} \\ 2.4 \times 10^{6} \\ 5.4 \times 10^{6} \\ 4.7 \times 10^{6} \\ 6.2 \times 10^{4} \\ \end{array} $ $ \begin{array}{r} \\ \\ 9.4 \times 10^{5} \\ 3.3 \times 10^{6} \\ 4.3 \times 10^{4} \\ \end{array} $	$7.8 \times 10^{6} \\ 1.1 \times 10^{6} \\ 2.0 \times 10^{6} \\ 2.0 \times 10^{6} \\ 1.9 \times 10^{5} \\ 2.1 \times 10^{6} \\ 1.4 \times 10^{3} \\ 4.4 \times 10^{4} \\ 4.2 \times 10^{5} \\ 1.4 \times 10^{6} \\$		
Ca Fe	40 ± 10 6.0 ± 0.5	 	1.4×10^4 5.1 × 10 ⁵		

Is the observed iron loss rate consistent with data on comet nuclei ?

Let's start with Comet Hale-Bopp...

@ 1 AU, a surface of pure water ice ejects $Q_{H2O} = 10^{22} \text{ s}^{-1} \text{ m}^{-2}$

After we assume a "typical" dust to gas ratio DGR = 10, we obtain a nucleus of surface 10^{10} m², i.e. R = 30 km

@ q, McNaught dust loss rate 10 times bigger than Hale-Bopp's. HOWEVER, @ 0.17 AU ice ejects 30 times more water than @ 1 AU, so that R = 10 km

Hale-Bopp's water loss rate @ q: $Q_{H20} = 10^6$ kg/s, so that DGR = 10 implies $Q_{dust} = 10^7$ kg/s. Then McNaught dust loss rate @q becomes $Q_{dust} = 10^8$ kg/s. C/2006P1 has lost a dust "cube" of 3km edge in a week (a shell 25m thick)

@ q, McNaught ejected $Q_{H2O} = 10^{32} \text{ s}^{-1}$, so that $Q_{Fe} = 0.1\% Q_{dust}$

According to Stardust data, almost all Fe is going into the Fe Tail

Table 1. Quantitative energy-dispersive x-ray spectral analyses (atomic %) of two GEMS-like objects embedded in the aerogel of track 35 (GEMS 1 and 2) compared with actual GEMS in a chondritic IDP and CI chondrite (CI) abundances.

Element	GEMS-like 1 (60 nm in diameter)	GEMS-like 2 (100 nm in diameter)		GEMs in IDPs			CI (39_40)
(atom 70)		(100 mm m	ulullicter/		(0)		(37, 40)
0	64.95	65.8	65.7	75.3	61.9	56.2	49.7
Mg	6.3	3.5	4.6	1.2	2.9	22.3	10.3
Si	26.4	28.4	26.0	19.1	16.9	13.3	11.5
S	1.75	1.65	2.7	1.2	6.1	3.2	5.7
Ca	0.1	0.1	0.15	Nd	0.15	nd	0.3
Cr	trace	trace	trace	0.2	0.3	0.1	0.3
Mn	0.1	0.1	0.15	0.1	nd	nd	0.2
Fe	0.3	0.2	0.5	2.2	11.1	4.2	20.0
Ni	0.1	0.1	0.2	0.4	nd	0.1	1.1
Al	nd	nd	nd	0.5	0.8	0.6	0.9

Problem: Sublimation does not work, requiring T > 1200K

Coma chemistry seems a much more efficient Fe source

Pollack (1984) shows that all metallic Fe from supernovae goes into troilite

Fe + H₂S --> FeS + H₂ when T goes below 680K at almost every P

Since in comae we have NOT H_2 , is the possible reaction $H_2O + FeS + C --> Fe + H_2S + CO$ when T goes above 680K?

10% of all H_2S and 1% of all CO from such a reaction ?

In Earth, this reaction works in serpentinite with liquid water Which T in coma pressure ?? Chemistry specialists at work....

Meanwhile.....

SOHO observes both the "white" Fe tail, and the "yellow" Na tail (15 Jan 2007 01h-02hUT)

And comet NEAT in 2003? (SOHO image of 19 feb 12hUT)

