How do galaxies acquire their mass & when do they form their stars?

with

How do galaxies acquire their mass & when do they form their stars?

Andrea CATTANEO Obs. de Marseille

Kristin WARNICK AIP, Postdam

Alexander KNEBE *Univ. Autonoma, Madrid*

How do galaxies acquire their mass Er when do they form their stars?

Andrea CATTANEO Obs. de Marseille

Kristin WARNICK AIP, Postdam

Alexander KNEBE Univ. Autonoma, Madrid

Dylan TWEED Hebrew Univ.

Trinh THUAN Univ. of Virginia

Avishaï DEKEL *Hebrew Univ.*

Primer on galaxy formation

Primer on galaxy formation

Simulation methods

Primer on galaxy formation

Simulation methods

Toy model of galaxy formation: How do galaxies acquire their mass? *motivated by J. Ostriker*

Primer on galaxy formation

Simulation methods

Toy model of galaxy formation: How do galaxies acquire their mass? *motivated by J. Ostriker*

How frequent are young galaxies at z=0? *motivated by T. Thuan*

Primer on galaxy formation

Simulation methods

Toy model of galaxy formation: How do galaxies acquire their mass? *motivated by J. Ostriker*

How frequent are young galaxies at z=0? *motivated by T. Thuan*

Formation of dwarf spheroidal galaxies

A primer on galaxy formation

Nearly homogeneous early Universe

380 thousand years after Big Bang: variations of 1 / 100 000 only!

How to build a galaxy?

Gas accretes into collapsing dark matter potential well Gas cools into molecular clouds Stars form

How to build a galaxy?

Gas accretes into collapsing dark matter potential well Gas cools into molecular clouds Stars form

details poorly understood!

Softly:

by further gas accretion (monolithic collapse)

Softly:

by further gas accretion (monolithic collapse)

In steps: by mergers (hierarchical merging)

Softly:

by further gas accretion (monolithic collapse)

In steps: by mergers (hierarchical merging)

Both

• long cooling time Silk 77; Binney 77; Rees & Ostriker 78

• long cooling time Silk 77; Binney 77; Rees & Ostriker 78

- long cooling time Silk 77; Binney 77; Rees & Ostriker 78
- tidal dissipation of baryonic reservoirs Shaya & Tully 84

- long cooling time Silk 77; Binney 77; Rees & Ostriker 78
- tidal dissipation of baryonic reservoirs Shaya & Tully 84

- long cooling time Silk 77; Binney 77; Rees & Ostriker 78
- tidal dissipation of baryonic reservoirs Shaya & Tully 84
- supernova explosions Dekel & Silk 86

- long cooling time Silk 77; Binney 77; Rees & Ostriker 78
- tidal dissipation of baryonic reservoirs Shaya & Tully 84
- supernova explosions Dekel & Silk 86

- long cooling time Silk 77; Binney 77; Rees & Ostriker 78
- tidal dissipation of baryonic reservoirs Shaya & Tully 84
- supernova explosions Dekel & Silk 86
- AGN jets Silk & Rees 99

M87

- long cooling time Silk 77; Binney 77; Rees & Ostriker 78
- tidal dissipation of baryonic reservoirs Shaya & Tully 84

M87

- supernova explosions Dekel & Silk 86
- AGN jets Silk & Rees 99

- long cooling time Silk 77; Binney 77; Rees & Ostriker 78
- tidal dissipation of baryonic reservoirs Shaya & Tully 84
- supernova explosions Dekel & Silk 86
- AGN jets Silk & Rees 99
- entropy barrier (photoionization of IGM) specific entropy ~ T/n^{2/3}
 Rees 86; Blanchard, Valls-Gabaud & Mamon 92

mixed DM & baryons

- long cooling time Silk 77; Binney 77; Rees & Ostriker 78
- tidal dissipation of baryonic reservoirs Shaya & Tully 84
- supernova explosions Dekel & Silk 86
- AGN jets Silk & Rees 99
- entropy barrier (photoionization of IGM) specific entropy ~ T/n^{2/3}
 Rees 86; Blanchard, Valls-Gabaud & Mamon 92

final from cold IGM

mixed DM & baryons

DM & gas collapse gas dissipates to disk

- long cooling time Silk 77; Binney 77; Rees & Ostriker 78
- tidal dissipation of baryonic reservoirs Shaya & Tully 84
- supernova explosions Dekel & Silk 86
- AGN jets Silk & Rees 99

entropy barrier (photoionization of IGM) specific entropy ~ T/n^{2/3}

initial final from cold IGM final from cold IGM DM & gas collapse gas dissipates to disk Rees 86; Blanchard, Valls-Gabaud & Mamon 92 final from hot IGM DM collapses gas is held by entropy barrier

- long cooling time
- tidal dissipation of
- supernova explo
- AGN jets Silk &

entropy barrier (photoionization of iGivi)

Rees 86; Blanchard, Valls-Gabaud & Mamon 92

accretion shock Dekel & Birnboim 06

- long cooling time
- tidal dissipation of
- supernova explo
- AGN jets Silk &
- entropy barrier (p Rees 8
- accretion shock

- long cooling time
- tidal dissipation of
- supernova explo
- AGN jets Silk &
- entropy barrier (p Rees 8
- accretion shock

\rightarrow same constraint as cooling time = dynamical time

How do galaxies grow?

Semi-analytical modeling

Ab initio galaxy formation model hierarchical structure formation in a cold dark matter dominated Universe

Semi-analytical modeling

Ab initio galaxy formation model hierarchical structure formation in a cold dark matter dominated Universe

- (small) Dark matter halos form first
- small halos merge to larger halos

Semi-analytical modeling

Ab initio galaxy formation model hierarchical structure formation in a cold dark matter dominated Universe

- (small) Dark matter halos form first
- small halos merge to larger halos
- Galaxies form and evolve within DM halos: gas cooling, star formation, galaxy mergers, ...

Soft galaxy formation: by gas accretion

• Progressively : collapse and gas accretion

Soft galaxy formation: by gas accretion

• Progressively : collapse and gas accretion

Soft galaxy formation: by gas accretion

• Progressively : collapse and gas accretion

Soft galaxy formation: by gas accretion

• Progressively : collapse and gas accretion

Filamentary & clumpy accretion?

Direct "satellite-satellite" mergers

Galaxy Mergers

- Direct "satellite-satellite" mergers
- Mergers after obital decay by dynamical friction

Galaxy Mergers

- Direct "satellite-satellite" mergers
- Mergers after obital decay by dynamical friction
- Major mergers: comparable masses (1:1 to 3:1)

major merger: The Mice

6

Galaxy Mergers

- Direct "satellite-satellite" mergers
- Mergers after obital decay by dynamical friction
- ► Major mergers: comparable masses (1:1 to 3:1)
- Minor mergers: very unequal masses (3:1 to 100000...:1)

HST

minor merger: M51

Wet & Dry Mergers

Wet & Dry Mergers

Spiral+Spiral \rightarrow (wet merger) ULIRG \rightarrow Quasar \rightarrow Elliptical

Wet & Dry Mergers

Spiral+Spiral \rightarrow (wet merger) ULIRG \rightarrow Quasar \rightarrow Elliptical

Spiral+Spiral \rightarrow E/S0+E/S0 \rightarrow (dry merger)

Ultraluminous Infrared Galaxies: sites of wet galaxy mergers

Borne et al. 99

Simulation Methods

Hydrodynamical Cosmological Simulations

Gary Mamon (IAP), Oss. Astr. Trieste, 27 Oct 2010, How do galaxies acquire their mass & when do they form their stars?

zoom

Hydrodynamical Cosmological Simulations

Gary Mamon (IAP), Oss. Astr. Trieste, 27 Oct 2010, How do galaxies acquire their mass & when do they form their stars?

zoom

Semi-analytical models

Galaxy formation and evolution model on top of:

1) halo merger tree

2) astrophysics cooling star formation feedback from SNe, AGN, shocks galaxy mergers chemical evolution

. . .

Semi-analytical models

Galaxy formation and evolution model on top of:

1) halo merger tree

2) dark matter cosmological simulation Springel et al. 2005

dark matter

Semi-analytical models

Galaxy formation and evolution model on top of:

1) halo merger tree

2) dark matter cosmological simulation Springel et al. 2005

dark matter

dark matter + galaxies

Semi-analytical models in motion!

Semi-analytical models in motion!

Durham team

tens of thousands of lines of code > 10 parameters

Halo Occupation Distribution

$P(X|M_{halo})$

conditional luminosity function Yang, Mo, van den Bosch 03, 05, 08, 09

How do galaxies acquire their mass? **Previous work**

Toy model, back in 1992

naive galaxy formation: too many stars Blanchard, Valls-Gabaud & Mamon 92 too massive and blue galaxies: Kauffmann et al. 96

Recent work

(dry major) mergers dominate growth of massive ellipticals Maller et al. 06; de Lucia et al. 06; Guo & White 08 (simulations) Bernardi et al. 10ab (SDSS observations)

SDSS trends on ellipticals

SDSS trends on ellipticals

Recent work

(dry major) mergers dominate growth of massive ellipticals Maller et al. 06; de Lucia et al. 06; Guo & White 08 (simulations) Bernardi et al. 10ab (SDSS observations)

but don't see growth by major mergers in high resolution hydro-cosmo simulations Naab et al. 07

How do galaxies acquire their mass? A Toy Model of Galaxy Formation

with

Toy model Cattaneo, GM et al. 10

Suppress (smoothly) accretion when $M_{halo} > M_{shock}$ $m_{accr}^{(1)}=f_{baryons} M_{halo} / (1 + M_{halo} / M_{shock})$ Dekel & Birnboim 06

Suppress (sharply) accretion when $v_{halo} < v_{reion}$ $m_{accr} = [1 - (v_{reion}/v_{halo})^2] m_{accr}^{(1)}$ Thoul & Weinberg 96

Suppress (smoothly) star formation when $v_{halo} < v_{SN}$ $E_{SN} \approx m_{wind} v_{halo}^2 \approx m_{stars} v_{SN}^2$ $m_{wind} + m_{stars} = m_{accr}$ $\Rightarrow m_{stars} = v_{halo}^2 / (v_{halo}^2 + v_{SN}^2) m_{accr}$

Toy model Cattaneo, GM et al. 10

Suppress (smoothly) accretion when $M_{halo} > M_{shock}$ $m_{accr}^{(1)}=f_{baryons} M_{halo} / (1 + M_{halo} / M_{shock})$ Dekel & Birnboim 06

Suppress (sharply) accretion when $v_{halo} < v_{reion}$ $m_{accr} = [1 - (v_{reion}/v_{halo})^2] m_{accr}^{(1)}$ Thoul & Weinberg 96

Suppress (smoothly) star formation when $v_{halo} < v_{SN}$ $E_{SN} \approx m_{wind} v_{halo}^2 \approx m_{stars} v_{SN}^2$ $m_{wind} + m_{stars} = m_{accr}$ $\Rightarrow m_{stars} = v_{halo}^2 / (v_{halo}^2 + v_{SN}^2) m_{accr}$

$$m_{\text{stars}} = f(M_{\text{halo}}, z)$$

Four-parameter toy model of galaxy formation

 $v_c(z) = \left[\frac{\Delta(z)}{2}\right]^{1/6} [GH(z)]^{1/3} M_{\text{halo}}^{1/3}$

Four-parameter toy model of galaxy formation

run on top of 512^3 dark matter cosmological simulation particle mass = $7 \times 10^7 M_{sun}/h$

 $[G H(z)]^{1/3} M_{halo}^{1/3}$

 $v_c(z) = \left\lceil \frac{\Delta(z)}{2} \right\rceil$

build (sub-)halo merger tree AHF Knollmann & Knebe 09

merge galaxies when subhalo merges into halo

delay final merger of unresolved halos by dynamical friction time Jiang et al. 08

apply toy model equation during quiescent phases prevent decrease of stellar mass

tidal strip stellar mass at each orbit

Galaxy formation vs epoch

Accretion + Mergers (w/o starbursts) + quenching of SF by Supernovae, too hot IGM & accretion shock

Tests of Toy Model

Mass distribution: parameters fit to agree with observations

Mass distribution: parameters fit to agree with observations

Evolution of cosmic Star Formation Rate: fair agreement with Wilkins et al. 08

Present-day Galaxy mass vs. Halo (environment) mass

Present-day Galaxy mass vs. Halo (environment) mass

Present-day Galaxy mass vs. Halo (environment) mass

Present-day Galaxy mass vs. Halo (environment) mass

Conditional galaxy mass functions

in narrow bins of M_{halo} : reproduces observed SDSS Yang, Mo & van den Bosch 09 bump for centrals amplitude & position = $f(M_{halo})$

Is lack of mergers at low mass caused by limited mass resolution?

Is lack of mergers at low mass caused by limited mass resolution?

Why mergers are unimportant ay low mass?

decreasing slope of m_{stars} vs M_{halo}
 ⇒ (low mass) centrals in low mass halos acquire relatively lower mass satellites
 ⇒ slower orbital decay by dynamical friction
 ⇒ mergers less important at low mass

Role of galaxy mergers

also De Lucia+06; Bernardi+10ab

small global role for wet (cold-mode) mergers!

important role for wet (cold-mode) mergers making intermediate-mass ellipticals

Role of galaxy mergers

also De Lucia+06; Bernardi+10ab

small global role for wet (cold-mode) mergers!

important role for wet (cold-mode) mergers making intermediate-mass ellipticals

Major vs. Minor Mergers

Absence of gas accretion is built into Toy Model

Interacting galaxies and ULIRGs are frequent at $z \ge 0.7$

Greif et al. 08; Dekel et al. 09 Accreted gas contains clumps (subhalos) \Rightarrow mergers!

Chilingarian 09 Some Dwarf Ellipticals have Kinematically Decoupled Cores

Absence of gas accretion is built into Toy Model but need to quench accretion by shock and/or SF by AGN to avoid blue gEs & cDs

Interacting galaxies and ULIRGs are frequent at $z \ge 0.7$

Greif et al. 08; Dekel et al. 09 Accreted gas contains clumps (subhalos) \Rightarrow mergers!

Chilingarian 09 Some Dwarf Ellipticals have Kinematically Decoupled Cores

Absence of gas accretion is built into Toy Model but need to quench accretion by shock and/or SF by AGN to avoid blue gEs & cDs

Interacting galaxies and ULIRGs are frequent at $z \ge 0.7$ but most of these galaxies later grow by dry mergers

Greif et al. 08; Dekel et al. 09 Accreted gas contains clumps (subhalos) \Rightarrow mergers! but these high z galaxies would be massive today

Chilingarian 09 Some Dwarf Ellipticals have Kinematically Decoupled Cores

Absence of gas accretion is built into Toy Model but need to quench accretion by shock and/or SF by AGN to avoid blue gEs & cDs

Interacting galaxies and ULIRGs are frequent at $z \ge 0.7$ but most of these galaxies later grow by dry mergers

Greif et al. 08; Dekel et al. 09 Accreted gas contains clumps (subhalos) \Rightarrow mergers! but these high z galaxies would be massive today

Chilingarian 09 Some Dwarf Ellipticals have Kinematically Decoupled Cores but most do not + presence of KDC \Rightarrow bulk of mass by mergers

How frequent are Young Galaxies at z=0?

with

Dylan TWEED IAS, Orsay

$Z = Z_{sun} / 50!$

Upsizing of mass Downsizing of star formation

see also De Lucia et al. 06

Hierarchical evolution of halos

early Universe

present-day

use halo merger tree code by Neistein & Dekel 06

Hierarchical evolution of halos

early Universe

present-day

use halo merger tree code by Neistein & Dekel 06

draw 10⁴ trees for 24 final halo masses (7 < log M < 12.75 log spaced) correct to final halo mass function from Millennium simulation

Hierarchical evolution of halos

early Universe

present-day

use halo merger tree code by Neistein & Dekel 06

draw 10⁴ trees for 24 final halo masses (7 < log M < 12.75 log spaced) correct to final halo mass function from Millennium simulation

avoid cluster final mass halos

halo circular velocity vs. time (main progenitor)

49

Baryon mass functions SDSS: stars SDSS: baryons

Galaxy mass accretion histories

individual vs redshift

mean vs lookback time

Galaxy mass accretion histories

individual vs redshift

mean vs lookback time

low mass galaxies stop accreting gas & forming stars at reionization

smallest galaxies must be old!

Fraction of young galaxies

Fraction of young galaxies

up to 1% of young galaxies at $m_{\text{stars}} = 10^8 M_{\text{Sun}}$

too many young galaxies in SDSS at $m_{\text{stars}} = 10^{10} M_{\text{Sun}}$

Conclusions

massive galaxies (ellipticals?) built up by dry major mergers

low mass galaxies built up by gas accretion

dEs in clusters: not built up by mergers... ... by harassment of small spirals? Mastropietro et al. 05

most intermediate galaxies not built by mergers but (most?) intermediate ellipticals built by wet minor mergers

ULIRGs (cold-mode mergers) have log $m_{\text{stars}} \sim 10.5 \pm 0.5$

galaxy stellar mass function suggests late reionization

young galaxies <1% at all masses, prefer log m_{stars} = 8 but 100+ young galaxies expected at log m_{stars} = 10...

less massive galaxies (dSph) are older: upsizing

Galaxy properties versus Mass

galaxy mass