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Supernova Energy Sources

* Core collapse:
E~GM?R ~ 0.1 Mc? ~ 10 ergs
Neutrinos: t ~ 10s
* Radioactivity:
0.07 M _[*®Ni [1 %%Co [] *°Fe] ~ 10*° ergs. Light:
t ~ 3 months

* Kinetic energy:
~10 M, Vg pansion ~ 3000 km/s ~ 10°" ergs ~

1% core collapse. X-
rays: t ~ centuries.
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Kinetic energy:
~10M ,V

expan8|on

3000 km/s ~ 10%" ergs ~ 1% core
collapse.

X-rays: t ~ centuries
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Circumstellar Rings




What we know about the rings

were ejected 20,000 years before
explosion

density ~ 104 cm
ionized mass ~ 0.07 M_

were photoionized by initial X-ray flash (~
1 day)

they are only the inner surfaces of a much
greater mass, ~ several M |
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*Ring brightened by factor ~ 3
*Hotspots still unresolved
*Have not fully merged



HST-STIS Spectroscopy of Spot 1
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Shocked Ring Equatoffal
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What we know about the hot spots

Most spots appeared first on NE and SE
quadrants of ring

Spots now encircle entire ring
Densities ~ 106 cm2 (from forbidden line ratios)
Most are unresolved: < 1 WFPC pixel

Optical emission lines caused by radiative
shocks

Faster non-radiative shocks must be present but
are invisible in optical & UV



X-ray Emission




CHANDRA ATCA GEMINI
12 um

1996

-
1999

¢

2001
2003

2005




r {arcsec)

0

SN1987a expansion measure — lobes
0.76 B S L A S I S| A 2 N

0.74
072

0. 70

125+ 322 km s~ [y’/dof = 1.487]
2+354kms " [y*/dof = 0.5942]

v =3804 % 143 km s~

0.68

I+
L*J

x’/dof = 8.195

5000 5500 6000 6500 7000
Time since 5N (days)



(Gaensler, Staveley-Smith, Aschenbach, Park)
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Days since SN

* X-rays and radio turned on at 1200 d

eratio [hard (> 3keV) X/Radio] remains nearly
constant

* Soft (~0.5 — 2 keV) X-rays increased rapidly after
hotspots appeared)

*Soft X-ray image resembles optical image

9 Radio and hard X-rays come from relatively low
density gas between blast wave and reverse shock

IOptical and soft X-rays come from blast waves
overtaking hotspots



Chandra LETG Spectra Sept. 2004 (Zhekov et al)
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Global fits of NIE models to
Chandra grating spectra

LEG 2004 — solld I _
©  MEG 2007 - L :
: ",mm,_:::, - | * Bimodal temperature
A distribution: ~ 2 keV and
0.5 keV

* Hard component cooled,
intermediate
temperatures filled in
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Shock Kinematics from X-ray Line Profiles
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Radial expansion velocities inferred
from X-ray emission line profiles
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4

Puzzle #1
*Radial expansion velocity of ring inferred from line
profiles (Doppler shifts) ~ 300 km s-1.

*Radial expansion velocity inferred from proper motion
of image ~ 1400 km s-1.

But ring is tilted at ~45°. If X-ray source is the same in
both cases, transverse velocity should be the same as
Doppler velocity. Discrepancy = factor ~ 4.6!

7777



Solution to Puzzle #1

*‘When we look at line
profiles, we are
measuring actual fluid
motion

‘When we ook at
transverse expansion,
we are measuring
barycenter of X-ray
emission, caused by

overtaking blast wave.




Puzzle #2

*Velocity of shocked gas inferred from X-ray line profiles
(Doppler shifts) ~ 300 km s'.

*Temperature of X-ray emitting gas inferred from line
ratios ~ 0.5 — 2 keV

But, shock jump conditions kT = 3/16 mV¢?, and post-
shock gas should be moving with velocity V, = %4 V..
Taking V; ~ 400 km s, jump conditions imply kKT = 0.14
keV. Discrepancy = factor ~ 3.5 - 14.

The shocked X-ray emitting gas is not moving fast
enough to account for its temperature.

7777



Solution to Puzzle #2

Blast wave strikes high density ring, a

goes backwards, slowing the
X-ray emitting gas to the velocity of the
transmitted shock. The twice-shocked gas
has density ~2.5 times greater than the gas
behind the blast wave, and temperature ~2.4
times greater. It dominates the X-ray
emissivity.



What we don’t know

What accounts for the morphology of the
circumstellar rings” Merged binary?

What accounts for the protrusions on the
ring?

What accounts for the EW asymmetry?
Asymmetric explosion?

Where is the compact object?



The Future

5 year forecast: X-rays, infrared, optical, UV will
brighten by another factor ~ 10

10 year forecast: lllumination by X-rays and EUV
from inner ring will cause exterior matter to glow
In narrow emission lines

ALMA will give us a spectacular (~10 mas) view
of the non-thermal radio source.

25 year forecast: will see newly synthesized
material cross reverse shock

Long range forecast: Will remain bright for
decades - centuries



log(Flux [10™"* ergs cm™ s™))

3.5
[ |
[ |
3 1 [
BBMc (n=3x10%cm®) g
2.5 1 m B B g
[ |
[ |

2 1 ]

1.5 - ¢ *
. L 2
L 4
1 - S
L 2
*
* Chandra 0.5 - 2 keV
0.5 - A
* *
L 2
0 ) || || || ] ) ) || L)
4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

days



Thanks to:

Kevin Heng Bob Kirshner and SINS
Svet Zhekov team
Nathan Smith Dick Manchester
Dave Burrows Bryan Gaensler
Sangwook Park Kazik Borkowski

John Blondin

... and many others



Reverse Shock






Line emission and impact
lonization at reverse shock surface

H* O H + hy

Av/Iv =vlc
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Charge Transfer at Reverse
Shock Surface
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La Resonance Scattering
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Magellan/LDSS Ha Observation

(Nathan Smith)
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reverse shock

* Does not have HST spatial resolution, but can still
monitor the time evolution of Ha from the ground.
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