Cosmology and astrophysics with Planck Satellite, instruments and data processing

Aniello Mennella

Università degli Studi di Milano - Dipartimento di Fisica

Osservatorio Astronomico di Trieste 25 July 2007

Particular thanks for some of the material to:

- Fabrizio Villa and Maura Sandri (INAF-IASF Bologna) for material on optics
- Gianluca Morgante (INAF-IASF Bologna) and JPL team for material on Sorption Cooler
- ESA for material on orbit and scanning strategy

Outline

Overall description of Planck

From the scientific goals to technology requirements

Orbit and scanning strategy

Optics

Telescope Feed horns

Instruments

High Frequency Instrument Low Frequency Instrument

Thermal design

Passive thermal design Active cooling The Planck sorption cooler

Data processing

The Planck satellite

The Planck satellite

A. Mennella (UniMi)

25 Jul. 2007 4 / 41

esa 🗐

Planck instruments

Planck instruments - LFI

Overall description of Planck

Planck instruments - HFI

From science to technology

25 Jul. 2007 6 / 41

Sources of uncertainties - sample variance

At low multipoles only a limited number of samples are available for C_{ℓ} estimation

$$\delta C_{\ell} = \sqrt{\frac{2}{(2\ell+1)}}C_{\ell}$$

Sources of uncertainties - sample variance

- At low multipoles only a limited number of samples are available for C_{ℓ} estimation
- If only a fraction of the sky is observed then the uncertainty increases

$$\delta C_\ell = \sqrt{rac{2}{(2\ell+1)f_{sky}}} C_\ell$$

Sources of uncertainties - noise and beam size

At high multipoles the accuracy is limited mainly by noise and beam size

$$\delta C_\ell = \sqrt{rac{2}{(2\ell+1)f_{sky}}} \left(C_\ell + rac{A\sigma_{
m pix}^2}{N_{
m pix}W_\ell^2}
ight)$$

with
$$W_{\ell}^2 = \exp[-\ell(\ell+1)\sigma_B^2]$$
 and $\sigma_B = \theta_{FWHM}/\sqrt{8\ln(2)}$

Requisites for Planck

Other sources of uncertainty

Optimal foreground subtraction with wide range of frequencies spanning more than 1 order of magnitude in frequency

Other sources of uncertainty

Systematic effects must be controlled at the level of ${\sim}3\text{-}4~\mu\text{K}$ on the final sky pixel

A. Mennella (UniMi)

25 Jul. 2007 10 / 4

Orbit and scanning strategy

 $\begin{array}{l} \mbox{Primary aperture of 1.5 m} \\ \mbox{provides} \sim 9 \mbox{ arcmin} \\ \mbox{angular resolution at 100} \\ \mbox{GHz} \end{array}$

Aplanatic design minimises beam aberrations

- Telescope realised in CFRP (Carbon Fiber Reiforced Plastic) for optimal weight and best thermal performances
- Hexagonal cell structure
- Surface made of aluminum coated by silicon oxide
- Emissivity < 1%</p>

Underillumination \rightarrow poor angular resolution

$Overillumination \rightarrow improved \ resolution \ but...$

Overillumination \rightarrow improved resolution but... sensitivity to straylight

A. Mennella (UniMi)

Feed-horns [R.Nesti (LFI), B. Maffei (HFI)]

Dual profiled corrugated horns have been selected as the best solution in terms of:

- level of cross polarization
- level of sidelobes
- return and insertion losses
- shape of the main lobe
- Iow weight
- compactness

Optics Feed horns

Feed-horns [R.Nesti (LFI), B. Maffei (HFI)]

High Frequency Instrument

- Array of 52 bolometric detectors cooled at 0.1 K in 6 frequency bands between 100 and 857 GHz
- Focal plane feed horns cooled at 4 K
- Sensitive to polarisation at four lower frequencies
- Developed by consortium lead by IAS-Orsay (P.I. J-L. Puget, I.S. J-M. Lamarre)

High Frequency Instrument - details

High Frequency Instrument - performances

HFI Performance Goals ^a							
Instrument Characteristic	CENTER FREQUENCY [GHz]						
	100	143	217	353	545	857	
Spectral resolution $\nu/\Delta\nu$	3	3	3	3	3	3	
Detector technology	Spider-web and polarisation-sensitive bolometers						
Detector temperature	0.1 K						
Cooling system	$20\mathrm{K}$ Sorption Cooler + $4\mathrm{K}$ J-T + $0.1\mathrm{K}$ Dilution						
Number of spider-web bolometers	0	4	4	4	4	4	
Number of polarisation-sensitive bolometers	8	8	8	8	0	0	
Angular resolution [FWHM arcminutes]	9.5	7.1	5.0	5.0	5.0	5.0	
Detector Noise-Equivalent Temperature $[\mu K s^{0.5}]$	50	62	91	277	1998	91000	
$\Delta T/T$ Intensity ^b [10 ⁻⁶ μ K/K]	2.5	2.2	4.8	14.7	147	6700	
$\Delta T/T$ Polarisation (U and Q) ^b [10 ⁻⁶ μ K/K]	4.0	4.2	9.8	29.8			
Sensitivity to unresolved sources [mJy]	12.0	10.2	14.3	27	43	49	
ySZ per FOV [10 ⁻⁶]	1.6	2.1	615	6.5	26	605	

^a Goal sensitivities. All subsystems have been designed to reach or exceed the performances of this table, which are expected to be achieved in orbit. Sensitivity requirements are a factor of two worse, and would still achieve the core scientific objectives of the mission.

^b Average 1σ sensitivity per pixel (a square whose side is the FWHM extent of the beam), in thermodynamic temperature units, achievable after 2 full sky surveys (14 months).

High Frequency Instrument - performances

_ 5	FI Perform	ance Go	ALS ^a				
		CENTER FREQUENCY [GHz]					
4	5	100	143	217	353	545	857
۲ (3	3	3	3	3	3
		Spid	er-web ar	ıd polaris	ation-sens	sitive bolo	meters
		$\dots 0.1 \text{ K}$ $\dots 20 \text{ K}$ Sorption Cooler + 4 K J-T + 0.1 K Dilution					
(p ^m		$20\mathrm{K}$	Sorption	Cooler +	4K J-T	+ 0.1 K D	lution
		0	4	4	4	4	4
	3	8	8	8	8	0	0
		9.5	7.1	5.0	5.0	5.0	5.0
	$\langle s^{0.5} \rangle$	50	62	91	277	1998	91000
2 0.04		2.5	2.2	4.8	14.7	147	6700
]	4.0	4.2	9.8	29.8		
ο <i>γ</i> 10 11 12 Α(arcmin)		12.0	10.2	14.3	27	43	49
		1.6	2.1	615	6.5	26	605

^a Goal sensitivities. All subsystems have been designed to reach or exceed the performances of this table, which are expected to be achieved in orbit. Sensitivity requirements are a factor of two worse, and would still achieve the core scientific objectives of the mission.

^b Average 1σ sensitivity per pixel (a square whose side is the FWHM extent of the beam), in thermodynamic temperature units, achievable after 2 full sky surveys (14 months).

Low Frequency Instrument

- Array of 44 radiometric detectors cooled at 20 K in 3 frequency bands centred at 30, 44 and 70 GHz
- Sensitive to polarisation at all frequencies
- Developed by consortium lead by INAF-IASF (P.I. R. Mandolesi, I.S. M. Bersanelli)
- Thales Alenia Space (formerly Laben) - Milan as industrial partner

Low Frequency Instrument - flight hardware

Low Frequency Instrument - flight hardware

Four outputs: R0D0, R0D1, R1D0, R1D1

$$\Delta V(t) = V_{sky}(t) - r imes V_{load}(t)$$

 $r \sim \langle V_{sky} \rangle / \langle V_{load} \rangle$

A. Mennella (UniMi)

25 Jul. 2007 24 / 41

Low Frequency Instrument - performances

	Cente	R FREQUE	JENCY [GHz]	
Instrument Characteristic	30	44	70	
InP HEMT Detector technology	М	MMIC		
Detector temperature	$20\mathrm{K}$			
Cooling system	H_2 Sorption Cooler			
Number of feeds	2	3	6	
Angular resolution [arcminutes FWHM]	33	24	14	
Effective bandwidth [GHz]	6	8.8	14	
Sensitivity $[mKHz^{-1/2}]$	0.17	0.20	0.27	
System temperature [K]	7.5	12	21.5	
Noise per 30' reference pixel $[\mu K]$	6	6	6	
$\Delta T/T$ Intensity ^b [10 ⁻⁶ μ K/K]	2.0	2.7	4.7	
$(\Delta T/T)$ Polarisation (Q and U) ^b [μ K/K]	2.8	3.9	6.7	
Maximum systematic error per pixel $[\mu K]$	< 3	< 3	< 3	

^a All subsystems are designed to reach or exceed the performances of this table.

^b Average 1σ sensitivity per pixel (a square whose side is the FWHM extent of the beam), in thermodynamic temperature units, achievable after 2 full sky surveys (14 months).

Cold is cool!

A cold and stable environment is key for telescope, focal plane and instruments:

- High sensitivity requirements call for cold optics and detectors
- Bolometric detectors need to be cooled at sub-K level to work (0.1 K for Planck-HFI)
- Stringent systematic effect control requires stable thermal conditions.

Cold is cool!

A cold and stable environment is key for telescope, focal plane and instruments:

- High sensitivity requirements call for cold optics and detectors
- Bolometric detectors need to be cooled at sub-K level to work (0.1 K for Planck-HFI)
- Stringent systematic effect control requires stable thermal conditions.

Planck is an extraordinary technological challenge from the thermal point of view

The Planck cryo-chain

Passive cooling

- About 16 m²
- Open Honeycomb, black painted
- Reflection of thermal IR to space
- Cryocoolers heat exchangers on V-grooves
- Cryo structure support by fiberglass struts
- Parasitics interception of harness, struts, waveguides

The HFI cold stages (4K, 1.6K and 0.1K)

25 Jul. 2007 29 / 4

Active cooling

The 4 K mechanical cooler [RAL - UK]

Mechanical compressor

A. Mennella (UniMi)

Cosmology and astrophysics with Planck

25 Jul. 2007 30 / 4

Thermal design

Active cooling

The 4 K mechanical cooler [RAL - UK]

J-T cold end

- Vibrations active control
- Heatlift 14mW @ 4.5K
- Input power 60W
- Total mass 40kg

A. Mennella (UniMi)

Active cooling

The 0.1 K dilution cooler

- Capillary dilution, open cicle
- Heatlift 100 nW at 100 mK
- Built by Air Liquide
- Precooling at 50K, 20K, 4K.
- J-T expansion at 1.6K
- 4 tanks of 51 l at 295b (1 for 3He, 3 for 4He)

The Planck Sorption Cooler

JPL has a pioneering heritage on hydrogen sorption coolers:

- 10K prototype demostrator in 1992 (single shot)
- BETSCE 10K solid H2 tested on Space Shuttle in 1996 (single shot)
- Planck SCS first H2 continuous cycle chemi-sorption cooler used in space
- Engineering Breadboard & FM's

A. Mennella (UniMi)

25 Jul. 2007 33 / 41

How the Sorption Cooler works

Each compressor element is a tube containing a metal hydride that absorbs or releases hydrogen depending on its temperature

How the Sorption Cooler works

Six compressors alternatatively warming up and cooling down generate a constant high pressure hydrogen flow

🔷 🌑 esa 🐠

How the Sorption Cooler works

- Hydrogen flows in the Cooler piping from SVM to payload
- Three thermal interfaces with V-grooves precool the fluid
- Hydrogen expands and cool in two heat exchangers connected to HFI and LFI

Sorption cooler temperature stability

A. Mennella (UniMi)

Cosmology and astrophysics with Planck

25 Jul. 2007 35 / 41

Data processing - from time ordered data ...

Data processing

Data processing - ... to components maps ...

A. Mennella (UniMi)

Cosmology and astrophysics with Planck

25 Jul. 2007 37 / 4

Data processing - ... to cmb map ...

Data processing

Data processing - ... to power spectrum

A. Mennella (UniMi)

25 Jul. 2007 39 / 41

Level 1: telemetry processig, generation of TOIs, instrument health checks

- Level 1: telemetry processig, generation of TOIs, instrument health checks
- Level 2: TOI processing, calibration and systematic error removal

- Level 1: telemetry processig, generation of TOIs, instrument health checks
- Level 2: TOI processing, calibration and systematic error removal
- Level 3: Map generation at various frequencies, component separation

- Level 1: telemetry processig, generation of TOIs, instrument health checks
- Level 2: TOI processing, calibration and systematic error removal
- Level 3: Map generation at various frequencies, component separation
- Level 4: Generation of final products

The Planck collaboration

