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INTRODUCTION

Galaxy clusters are powerful tools for cosmological
investigation once we know their mass. Key point .
IS comparing the observed mass function, N(M|z),
with the theoretical one (Press & Schechter 74,
Jenkins et al. 01, Sheth & Tormen 99,00).

Measuring the mass(from X-ray, lensing, galaxy

velocities) is a long process. Need of mass proxy!
In next few years large cluster surveys will be

underway, e.g.
eRosita
South PoleTelescope

Dark Energy. Survey
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INTRODUCTION

» We need NOW to understand the
connection between the observable
cluster properties, the intrinsic properties
and the underlying mass distribution.

Not only the M-X relation itself - intercept i
and slope - but also the scatter. |
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*The theoretical mass functlon need to be
convolved with this scatter, the high-tail of the
model grows with the scatter,at a fixed og. An |
overestimate of the scatter turns intoan ~_~— |
underestimate-of-og. st



INTRODUCTION \
» 2 approaches for actual and future
| missions

- small sample (need of control of
systematic errors)

- large statistical sample (need of
proxies and control on the scatter) |
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INTRODUCTION

Need to be ready for both visions .#

1 complicated cluster

-eRosita would not have a spatial resolution as good as
Chandra ->more difficult to classify objects by their morphology.
*\We need to study the impact of scaling relation scatter by

objects which are dynamical unstable
(Rasia,Markevitch,Dolag,Mazzotta,Meneghetti in prep.)

10000 clusters |

-Investigate the systematics that could affect the analysis of real
data |

|
*Provide a concrete theoretical framework for the statistical :
studies |

This entails the multivariate halo function P(Ly, Tx,Y sz, Ty CIM)-
and its evolution |

/ f
(Rasia,.et.al-in.prep.)(Borgani;-Evrard;-Gazzoela;-Mazzotta; NordePearee,Stanek) -




-ray Map Simula

Rasia et al. 07 Gardini et al. 04

Chandra or
XMM-Newton
event files as
output

Hydrodynamical
simulations as
iInput...




SIMULATIONS...

Help us to understand scaling relation
Their scatter
- Their covariance matrix

Now:
Good treatment of the physics
Availability of a big sample of objects

We need to compare simulations and observation 1: 1’
T, (Mazzotta et al.04) & |
X-MAS(Gardini et al.04, Rasia et al. 07) {

- BIG QUESTION: HOW CAN WE(SIMULATOR) HELP T ;'
OBSERVERS /jh
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TEMPERATURES

!
!

simulation X-ray observation

The different degrees of thermal
homogeneity have strong
implications on the temperature
profiles:

!
:

e E T For the perturbed systems, the |

’ spectral and emission—weightedl
temperature profiles are not in f
good agreement

......
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SPECTRAL TEMPERATURE .

e Measuring a projected temperature 1s equivalent to 1
finding a thermal model with a temperature, T
whose spectral properties are as close as possible to the

properties of the proiected spectra

T=8 keV

s/sec’keV
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e The sum of two Bremsstrahlung spectra with similar |
emission but different temperature, T; and T, isno
longer a Bremsstrahlung with a given temperatu/;e’f’:\

~ss(untess-T=T5) e N T T ISR TR (20041



SPECTR/

warf . 508 .fit s (SPECRESP_1-1070)_0

P (cm**2
| | | | |

1) Mixing plasma of
- two temp. (same
normalization)

2) Fitting with ONE
single temperature
model

3) The retrieved
spectral ..
temperature is NOT
the average of the

- two temperatures o
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4) The response of the
- Instrument is
energy dependent
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SIMULATION TEMPERATURE .
MAPS |

Emission-Weighted Spectroscopic-Like
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TEMPERATURE PROFILES |
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Tspecz Data analysis of the
Chandra “observation” of the

simulated cluster obtained with
X-MAS
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TAKE-HOME MESSAGE #1

- WE NEED TO MAKE T
SIMULATION CLOSER AS
POSSIBLE TO
OBSERVATIONS (X-MAS)
OR TO ANALYSE THEM
USING COMPARABLE |
QUANTITIES (T-SL). |
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COSMOLOGICAL
IMPLICATIONS

Simple theoretical

arguments supported by :
hydro N-body 10
simulations suggest the -

alkeV)

existence for virialized g |

gravitational systems e

with a tight relation. : 4
between M and T: e
MSOOZMO(kTSOO/lkeV)a Tsoo.ew(kev)

T, =(0.70+£0.01) T, +(0.29+0.05)

Rasia et al .2005, Kawahara et al. 2007



MASS - TEMPERATURE

+ Rasia et al. 2005




MASS-TEMPERATURE ]
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CONSIDERING REGULAR CLUSTER REDUCED

A LOT THE SCATTER /’}\




TAKE_HOME MESSAGE #2

* NOT ONLY MAKE THE SIMULATIONS
CLOSER TO OBSERVATION BUT
ALSO USING THE SAME ANALYSIS
PROCEDURE.

- IF WE HAVE ENOUGH PHOTON WE
CAN MASK THE IMAGES AND
SUBSAMPLE INTO REGULAR AND
NOT-REGULAR CLUSTERS
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SCALING RELATIONS
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ONE SPECIAL SIMULATED CLUSTER

» Physics: radiative cooling,uniform time-
dependent UV background, star formation
from multi-phase interstellar medium,
galactic winds powered by SN

» Mass resolution: DM particle = 1.74 108
M,,./h GAS particle =2.6 10’ M_/h

» Physical resolution: softening 2.5 kpc/h
- Total mass at R,j,: Myge= 2 10" M, /h

» Active dynamic history and strong mergmg
'(Mach number 2.5) /"\
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VIDEOS

!nﬁoufng DM

GAS

snop: 53, t= 7,625

X~ray S8 (log)

snop: 53, t= 7.625

galaxies -

Courtesy of Klaus Dolag

snop: 50, t= 7,160



SCALING RELATION

- SIMULATION

- All the quantities
(T Mgas’ Yx=Ty
M,.s)computed
inside Ry,
(excluding 0.15
Rs00) With Rsgg
determined from
the simulation

itself

- OBSERVATION
« Cluster processed

through XMAS2 to
obtained X-ray
Images

- Mask blobs
- All the quantities from

X-ray measurements
computed in Ry,
(excluding the core)
estimated from X-ray.

e







T maps

Mushroom
Structure
(Markevitch &
Vikhlinin 07)




T maps



Exabition intrinsic properties .
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E(z)Mtot[1e14 Msun]

SCALING RELATION FROM

Mtot[1e14 Msun]

o
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~ SIMULATIONS

M-Y x

Y X 8% scatter

E{z)(2/5)+ Mtot[1e14 Msu

Tsl*Mgas

Red lines are
the relations ]
proposed by

Kravtsov et al
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SCALING RELATION

SIMULATION

All'the quantities
(Tsl! Mgasv YX=Tsl
M, .s)computed
inside Rz,
(excluding 0.15
Rs00) With Rsgg
determined from
the simulation

itself

OBSERVATION

« Cluster processed

through XMAS2 to
obtained X-ray images

Mask blobs

 All the quantities from X-

ray measurements
computed in Ry,
(excluding the core)
estimated from X-ray.
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X-ray imag




X-ray images




X-ray images




TEMPERATURE

 Mask blobs

Spectra [0.5 7] keV, fitting with
one single-temperature mekal
model (free parameters: T, Z

and K) |

 First measure at R,
~computed directly from L
_Simulation SNBSS NG



TEMPERATURE COMPARISON

1) X-ray temperature at R ¢, centered in the X-ray flux

|

2) The X-ray-temperature is greater due to the masking of all
blobs (which usually are colder the the medium)
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Blu: between 10-20% off



S-B AND GAS DENSITY |

|

- Surface brightness profile: [0.5 2] keV images.
« (Gas density fitting formulae:

n2{(r/rc)3[1+(r/r_,)?]@2-30D[1+(r/rs)9]*9}

+ m{[14(r/r,)? 1222 }

(Vikhlinin et al. 05) |

- With the gas mass profile we calculate Rs,, as
the radius that satisfy at |

4 1/3 500 p(2) rPsoy = 101427 E(Z) 2/5 [Yy(Rgpo)]0-58 é
(Kravtsov et al. 06 ) |
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MASS - TEMPERATURE

SIMULATIONS OBSERVATIONS

E(Z)*Mtot[1 014 Msun]

T, [keV] T, [keV]
The overall behavior of the M-T is changed substantially. Points
are closer to the relatlon by Kravtsov et al. and within 10% of J
SRR St e -

scatter™ [ —



MASS - GAS MASS

SIMULATIONS

101

Mtot[1 014 Msun]

| »

M 014 MSUH]

gos,sim[/l

There is a larger spread in the gas mass computed with
e more points appr

D YK AASOY e

technique, at the same tim
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MASS - YX PARAMETER |

SIMULATIONS OBSERVATIONS

-~

E{z)*(2/5)* Mtot[1e14 Msun]

10—

TslxMgas

The observed Yx parameter is in agreement with Kravtsov 4
relation. /’T\

The -ebserved-scatter™is substantially reduced—s==cmeeme o J



TAKE-HOME MESSAGE #3
* We tested the robustness of the

scaling relation and we find that they
‘are satisfied also in the case of a
strong merger

* The X-ray Temperature is good proxy.
for mass when an accurate masking |
IS done |

» The Y, parameter is very robust again
merger due to the opposne effect that

M.Q.@é and Ty are experiencing
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