CONSTRAINING BLACK HOLE AND GALAXY EVOLUTION

Francesco Shankar

Max-Planck-Institut für Astrophysik

OAT 22/04/09

Massive Dark Objects \rightarrow observed in all bulged-galaxies \rightarrow strong link with the host spheroid M/n/ σ

What are MDOs? How and why are they connected with spheroids and DM? What is their role in shaping galaxies?

SAMs are working hard to understand what is going on...

Malbon et al.

``our knowledge on the Fontanot et al. physics of accretion onto BHs and their interaction with galaxies is still poor to draw firm conclusions"

Lapi et al.

EMPIRICALLY CONSTRAIN BLACK HOLE EVOLUTION IN A STATISTICAL SENSE

TOOLS:

WE USE:
-LOCAL BH
-AGN BOL.
- AGN
- AGN
- OBSERVED

MASS FUNCTION LUM. FUNCTION CLUSTERING DUTY CYCLE

First Step: How many SMBH?How Massive?

For all relations used I convolve with a Gaussian weight to account for intrinsic scatter!

Results: systematic uncertainties!

THE ACTIVE EVOLUTION OF BLACK HOLES: THE AGN LUMINOSITY FUNCTION

Do The Relations Evolve with Redshift?

FS, Bernardi, Haiman 2008

Duty cycles: $U(Mbh,z)=\Phi(L,z)/n(Mbh[L],z)$

Mean Mass Accretion Histories: Evidence for downsizing

Broad Eddington ratio Distributions I

FS, D. Weinberg, J. Miralda-Escude' 2009a

...Same DOWNSIZING....

Broad Eddington ratio Distributions II

Broad Eddington ratio Distributions III

SPECIAL MODELS: λ -dependent Bolometric Correction

Vasudevan & Fabian 2007

Low Radiative Efficiency+Low Eddington ratios

Harder to match the local BHMF: λ<0.1; ε<0.06

The Effect of SMBH Merging...

Negligible effect on accretion histories and duty cycles:

CONCLUDING on THE LMF

How to link Clustering to Accretion

Martini & Weinberg 2001; Haiman & Hui 2001

An Application: The SDSS z~1.5 quasar clustering

Coupling with duty cycle from Continuity Equation breaks some degeneracies!

First Results: large scatter!

46.8

FS, Shen, Weinberg, et al. 2009

Another Application: The SDSS z>3 Quasar Clustering

FS, M. Crocce, J. Miralda-Escude', P. Fosalba, D. Weinberg 2008

The Clustering of "MERGING" Halos

We select the halos from the MS which have recently merged

S. Bonoli, FS, S. White 2009

SO...WHAT DID WE LEARN ABOUT HOW BHS EVOLVE?

ACCRETION: can reproduce the local BH mass function; preferred parameters are 0.5<λ<1 and 0.07<ε<0.1. Multi Edd. Ratios do not change Accreted BHMF.</p>

The <u>Quasar clustering</u>, independent constraints on duty cycle, mean L-Mhalo relation, and scatter, small-scales constraints on the BH triggering mechanisms

Constraints are independent of specific models and can then be used in SAMs