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Motivations and Outlook

because we can!

cosmic acceleration

WHY ?

HOW ?

tomographic surveys will map the 
evolution of matter perturbations 

and gravitational potentials from the 
matter dominated epoch until today

what to look for ?

how to be model-independent?

Principal Component Analysis

 modified perturbation 
dynamics

f(R):



SNeIa, CMB, LSS
+

homogeneity and isotropy on large scales

COSMIC ACCELERATION
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Cosmic Acceleration



Cosmic Acceleration:     ?  Modified Gravity ? Dark Energy?�

1. The goal is to determine the very nature of the dark energy that causes the Universe to 
accelerate and seems to comprise most of the mass-energy of the Universe.
 
2. Toward this goal, our observational program must 
a. Determine as well as possible whether the accelerating expansion is consistent with 
being due to a cosmological constant. 
b. If the acceleration is not due to a cosmological constant, probe the  underlying dynamics 
by measuring as well as possible the time evolution of the dark energy by determining the 
function w(a).   
c. Search for a possible failure of general relativity through comparison of the effect of 
dark energy on cosmic expansion with the effect of dark energy on the growth of 
cosmological structures like galaxies or galaxy clusters. 
.....
I. We strongly recommend that there be an aggressive program to explore dark energy as 
fully as possible, since it challenges our understanding of fundamental physical laws and 
the nature of the cosmos.   
 
II. We recommend that the dark energy program have multiple techniques at every stage, at 
least one of which is a probe sensitive to the growth of cosmological structure in the form 
of galaxies and clusters of galaxies. 

from the DETF (Albrecht et al. ‘06)

...cosmic acceleration...
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...cosmic acceleration...

US NATIONAL RESEARCH COUNCIL’S DECADAL SURVEY
(2010)

LSST and WFIRST ranked top of funding 
priority list, respectively in the category of 
large ground- and space-based experiments

Cosmic Acceleration remains one of the 
main challenges for Modern Cosmology



...more...

ESA COSMIC VISION 2020

EUCLID selected as one of the two M-class 
missions

What is the Universe formed of?

...



...more...

ESA COSMIC VISION 2020

EUCLID selected as one of the two M-class 
missions

What is the Universe formed of?

...

EUCLID:   Mapping the geometry of the Universe

1. Together, dark matter and dark energy pose 
some of the most important questions in 
fundamental physics today.
....
Euclid  is a high-precision survey mission 
optimised for two independent cosmological 
probes:
 
1. Weak Gravitational Lensing. 
b. from a high-resolution imaging survey
.....
2. Baryon Acoustic Oscillations
    in Galaxy Clustering measured via a 
massive spectroscopic redshift survey

final approval received June 2012, to be launched in 2019 ...



What can we measure cosmologically?
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A theory of gravity tells us how these functions are related to the 
matter content of the Universe.

... if we knew the matter content of the universe we could
really test the theory ...

and what can we test?



A theory of gravity tells us how these functions are related to the 
matter content of the Universe.

... if we knew the matter content of the universe we could
really test the theory ...

?
?

... short of that, we can either assume 
something on the dark sector or start with a 
test of the cosmological concordance model    

LCDM ...

and what can we test?



LCDM

... it is based on GR : Gµ� =
Tµ�

M2
P

... the energy-momentum tensor is characterized 
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What have we learned 
from

f(R) gravity ?



f(R) Gravity

(S.Carroll, V.Duvvuri, M.Trodden & M.S.Turner, Phys.Rev.D70 043528 (2004),
S.Capozziello, S.Carloni & A.Troisi, astro-ph/0303041)
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f(R) Gravity

The Einstein equations are fourth order !
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f(R) Gravity

dynamical !

The Einstein equations are fourth order !
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Dynamics of Linear Perturbations....Sub-Horizon
F � 1 + fR���

m +
�

1 +
H �

H

⇥
��
m +

k2

a2H2
� = 0

1
F

1 + 4k2

a2
fRR

F

1 + 3k2

a2
fRR

F

time and scale dependent 
rescaling of Newton constant

{k2� = �3
2

Em�m

�
⇥

=
1 + 2k2

a2
fRR

F

1 + 4k2

a2
fRR

F



Dynamics of Linear Perturbations....Sub-Horizon
F � 1 + fR���

m +
�

1 +
H �

H

⇥
��
m +

k2

a2H2
� = 0

1
F

1 + 4k2

a2
fRR

F

1 + 3k2

a2
fRR

F

time and scale dependent 
rescaling of Newton constant

{k2� = �3
2

Em�m

�
⇥

=
1 + 2k2

a2
fRR

F

1 + 4k2

a2
fRR

F



 

 

 

 

 

 



   



 

 

 

 

 

 



   

   

LCDMf(R)

we↵ = �1
f0

R = �10�4
�m(a, k)/a

�m(ai, k)/ai

✓
(�+ )(a, k)
(�+ )(ai, k)

◆

( )

(Pogosian and S., Phys.Rev.D 77(2008))



Characteristic signatures

Overall we observe a scale-dependent pattern of growth

The modifications introduced by f(R) models are similar 
to those introduced by more general scalar-tensor 

theories and models of coupled DE-DM 

The dynamics of perturbations is richer, and different 
observables are described by different functions, not 

by a single growth factor!
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...we shall go beyond the expansion history and 
test:

....therefore...



...we shall go beyond the expansion history and 
test:

....therefore...

...and this will be possible with future tomographic 
surveys

the relation between matter 
and gravitational potential

the relation between the gravitational 
potential and the curvature of space

⇥� �

⇥� �



On Parametrizing

...for each known model of gravity, we could derive 
predictions and compare them with observations...



On Parametrizing

...for each known model of gravity, we could derive 
predictions and compare them with observations...

...or we could determine observationally some “trigger 
parameters” designed to detect a breakdown of the 

cosmological standard model.
Some examples of these are:

Linder’s ϒ: f =
dln�

dlna
� �m(a)�

⇥EG⇤ �
⌅2(� + ⇥)
3H2

0� ⇥/a
Zhang et al.’s EG :

Any disagreement between the observed trigger parameter and its LCDM value 
would indicate some sort of modification of growth

(Astropart.Phys.28 (2007))

(Phys.Rev.Lett.99 (2007))



On Parametrizing

We could be more ambitious and try to perform a global, 
model-independent fit to all the data...

 ...we need a complete and consistent set of equations for calculating 
predictions for all the observables

...a possible set up is the following...



General Dynamics of Linear Perturbations
Scalar perturbations in Newtonian gauge
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gravitational slip



In LCDM μ=1=γ,   however in other models in general 
they are functions of time and space. 

We expect them to differ from unity in:

Scalar-tensor theories (e.g. f(R), Chameleon)

DGP and  higher-dimensional gravity

LCDM + massive neutrinos

DE which clusters and/or carries anisotropic stress

(Afshordi et al.,  Lue et al., Song et al., Cardoso et al., Koyama et al., Maartens et al. )

(Brax et al., Amendola, L., Song et al., Pogosian et al., Bean et al., Tsujikawa)

(Lesgourgues et al., Brookfield et al., Hannestad et al., Melchiorri et al., Pettorino et al.)

(Koivisto et al., Bean et al., Mota et al.)

General Dynamics of Linear Perturbations
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A final note ...

Let me stress that these functions provide us with a consistent set of 
equations to perform a fit to any data and test for potential 

departures from LCDM, however...

THEORYDATA

μ , γ



Searching for modified growth patterns

What is the potential of current and upcoming 
tomographic surveys to detect departures from GR 
(LCDM,quintessence) in the growth of structure?

What is the potential of the surveys to 
constrain the functions μ and γ ? 



We want to stay as much as possible
 model-independent and generic.

 
Therefore we will treat μ and γ as two unknown functions of 

time and scale and determine how many d.o.f. of these functions 
can be (well) constrained by upcoming surveys.

Also, a take-home result will be to determine the “sweet spots” 
in space and time where the experiments are most sensitive to 
departures from GR. Inversely, this can be used to guide survey-

design in order to test specific candidate models. 

For some recent work in this direction see: 

Zhao et al.,PRD 81 (2010)
Daniel et al.,PRD 80 (2009)

Bean,R. et al., PRD 81 (2010)
Guzik et al., PRD 81 (2010)

Pogosian et al.,PRD 81 (2010)

Zhao et al.,PRL 103 (2009)
Daniel et al.,PRD 81 (2010)

How to treat the functions themselves?

Hojjati et al.,PRD 85 (2012)
Baker et al. arXiv:1209.2117

Baker et al. PRD 84 (2010)



Forecasting Constraints

PRINCIPAL COMPONENT ANALYSIS
(A.J.S.Hamilton and M.Tegmark, astro-ph/9905192, MNRAS’00

D.Huterer and G.Starkman, astro-ph/0207517, PRL’03)



Forecasting Constraints

PRINCIPAL COMPONENT ANALYSIS
(A.J.S.Hamilton and M.Tegmark, astro-ph/9905192, MNRAS’00

D.Huterer and G.Starkman, astro-ph/0207517, PRL’03)

Procedure:

discretize μ and γ on a (k,z) grid  

treat their values in each pixel,       and      , as 
free parameters

discretize w on the same grid and treat      as free parameters  

vary the 6 “vanilla” parameters and linear bias parameters 
(one for each bin)

calculate the Fisher Matrix to forecast the covariance 
of ~ 840 parameters

µij �ij

wi



Observables

We wish to combine multiple-redshift information on Galaxy Count, 
Weak Lensing, CMB and their cross correlations

Therefore the observables are the 
ANGULAR POWER SPECTRA:

X(n̂1, z1)

Y (n̂2, z2)

CXY
l = 4�

�
dk

k
�2
RIX

l (k)IY
l (k)

IX
l (k) = cxR

� z�

0
dz W (z)jl[kr(z)]X̃(k, z)

Upcoming and future tomographic surveys will map the 
evolution of matter perturbations and gravitational potentials 

from the matter dominated epoch until today. 



Theory & Surveys

theoretical predictions 
for the observables
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integrator MGCAMB)

(Zhao et al., Phys.Rev.D79 (2008))



Theory & Surveys

theoretical predictions 
for the observables

���
m +H��

m + k2⇥ =0

k2⇥ = � a2

2M2
P

µ(a, k)�m

� = �(a, k)⇥
{THEORY:

 SNeIa ((JDEM)+ CMB (Planck):
expansion history

 Weak Lensing (WL) surveys (DES, 
LSST):

maps of (Φ+Ψ) at different epochs 

Galaxy Number Counts (GC) (DES, , 
LSST): 

maps of Δ at different epochs

Galaxy Number Counts x CMB: 
           ISW effect: (Φ+Ψ)’ at different epochs

SURVEYS:

(from Boltzmann 
integrator MGCAMB)

(Zhao et al., Phys.Rev.D79 (2008))



each eigenmode represents a surface in the (k,z) space

they form an orthonormal basis for the function μ:

µ(k, z)� 1 =
X
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0

the eigenvalues of the PCs correspond to the variances of the expansion coefficients

Principal Components of μ
...marginalizing over the other parameters...

            invert it, consider only its μ block and diagonalize it to find 
uncorrelated combinations of µij

�m = �2(↵m)
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uncorrelated combinations of µij
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WHAT ARE PRINCIPAL COMPONENTS ?

When there is no natural choice of parameters, we’d rather let 
data tell us which  modes of the functions are best measured. 

Therefore we proceed pixelizing our functions and use the PCA 
approach to determine the combinations of pixels which are 

constrained observationally

They are simply a way of understanding a likelihood surface around its 
peak, which is a function of model parameters. By finding the eigen-

values and eigen-vectors of the curvature or Fisher matrix, we can find 
which combinations of parameters are best constrained by a given set 

of observations.



Series of eigenmodes and the 
uncertainty on the corresponding 

expansion parameters



current data
current data

DES

Principal Components of μ

LSST

informative

constrained

-1

0

1

...marginalizing over the other parameters...



Principal Components of γ

current data

DES

LSST

informative

constrained

LSST
DES
Current Data

-1

0

1

...marginalizing over the other parameters...



Information

μ is better constrained (GC)

current data are basically blind to ϒ

μ eigenmodes go deeper in redshift 
(accumulation effect)

data is mostly sensitive to scale-dependent features  
(         non degenerate with w(z)!!!)

LSST will have a higher-sensitivity to MG and will be 
more sensitive to scale-dependent features



What if we want to constrain ANY departure 
from LCDM?

So far we have determined how well we can 
separately constrain μ and γ. 

Therefore we have thrown away all the information 
that cannot distinguish between them.

To determine how well we can constrain any 
departure from LCDM we can keep that info and 

find the combined eigenmodes of μ and γ. 



Combined eigenmodes of μ and γ

informative

constrained

well-constrained

current data

DES

LSST
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Combined eigenmodes of μ and γ

informative

constrained

well-constrained

current data

DES

LSST

!!!

Current data can already put some constraints on the combination of μ 
and γ, and they show consistency with LCDM except for some 

“systematics” in the WL (CFHTLS) data.
(Zhao et al., Phys.Rev.D81:103510 (2010) [astro-ph/1003.0001])



Eigenmodes of ∑

k - z degeneracy (from WL kernel)

peaks at low redshift

k2 (�+ ) = �⌃(a, k) a2

2M2
P

⇢� directly related to WL and ISW



Comparing Uncertainties

(μ,γ)

WL



What happens to the constraints on 
the equation of state w(z)?



Degeneracy with w(z)

letting the MG parameters vary squeezes the best constrained 
eigenmodes of w(z) towards low redshift

overall the effects are not dramatic, and future surveys will 
measure both w(z) and MG functions



Degeneracy with w(z)

letting the MG parameters vary squeezes the best constrained 
eigenmodes of w(z) towards low redshift

overall the effects are not dramatic, and future surveys will 
measure both w(z) and MG functions

LSS



photo-z errors:

multiplicative errors (WL)

additive errors  (GC & WL)

I. distortion of the overall distribution

II. redshift-bin centroids uncertainty

III. z-scatter

Including Systematics

using the model of  Huterer, Takada, Bernstein and Jain, 
MNRAS 366, 101 (2006)



Systematics



Systematics

most of the scale-
dependent info is 

preserved

a noticeable, but not 
dramatic, dilution of 

constraints

errors on best constrained modes are degraded by < 10% 
for both LSST and DES



This model-independent analysis shows that future surveys will offer a 
wealth of information on the relations between mass, gravitational potential 

and curvature of space  

We have developed the 2D Principal Component Analysis of cosmological 
perturbations to study the constraints on modifications of GR that one 

can expect from future data sets:

Data is somewhat more sensitive to scale-dependent than time-
dependent  modifications of growth. 𝛴 is the best constrained

Summary

PCA can also help us determine the optimal number of parameters to fit 
to a set of data. It is also a good way to compress info from surveys

Testing GR on cosmological scales is an exciting prospect that 
will be enabled by upcoming data

Future surveys will measure both w(z) and modified growth

TO DO:  (scale-dependent bias), redshift-space distortion 
measurements to break degeneracies, can we improve parametrization?



In conclusion...



It is both a challenging and an exciting time for Cosmology...a 
wealth of high-precision information will be soon available...we 
should get ready to test it, keeping an eye on both linear and 

non-linear scales.
They offer complementary ways of testing gravity.

For the cosmological tests there is still a lot of work that can 
and should be done, to address systematics, degeneracy among 

parameters, to include other data such as PV, etc..

For smaller scales, screening mechanisms, of which the Chameleon 
is an example, might offer interesting tests  and several scenarios 

need to be analyzed and worked out.



THANK YOU!


