Variability of the proton-to-electron mass ratio on cosmological scales

Quasar absorption line spectroscopy

Martin Wendt – Hamburger Sternwarte

Osservatorio Astronomico di Trieste, November 28th
Overview

• Short introduction of theory behind variation
• How is variation reflected in observations?
• Molecular Hydrogen H₂
• Methods involved
• Analysis
• Summary and Outlook
Theory of shilly-shally constants
Theory of shilly-shally constants

Kaluza-Klein theories

- Theodor Kaluza: generalisation of Einstein’s GTR and the Maxwell equations in five dimensions in 1921
Theory of shilly-shally constants

Kaluza-Klein theories

- Theodor Kaluza: generalisation of Einstein’s GTR and the Maxwell equations in five dimensions in 1921
- Oscar Klein: fifth dimension possibly curled up
Theory of shilly-shally constants

Kaluza-Klein theories

- Theodor Kaluza: generalisation of Einstein’s GTR and the Maxwell equations in five dimensions in 1921
- Oscar Klein: fifth dimension possibly curled up
- fundamental constants only constant in e.g. five-dimensional space
Theory of shilly-shally constants

Kaluza-Klein theories

• Theodor Kaluza: generalisation of Einstein’s GTR and the Maxwell equations in five dimensions in 1921
• Oscar Klein: fifth dimension possibly curled up
• fundamental constants only constant in e.g. five-dimensional space
• observed constants a mere projection

Variability of the proton-to-electron mass ratio on cosmological scales – p.
Theory of shilly-shally constants

Kaluza-Klein theories

• Theodor Kaluza: generalisation of Einstein’s GTR and the Maxwell equations in five dimensions in 1921

• Oscar Klein: fifth dimension possibly curled up

• fundamental constants only constant in e.g. five-dimensional space

• observed constants a mere projection

• another byproduct: scalar field as possible source for acceleration
How to measure variation?

- possible variation of the fine structure constant $\alpha = \frac{e^2}{4\pi \hbar c} \approx 1/137$. Results under heavy debate.
How to measure variation?

• possible variation of the fine-structure constant $\alpha = e^2/4\pi\hbar c \approx 1/137$. Results under heavy debate.

• variation of the gravitational constant G_N. Recent paper last week:
 $\dot{G}_N/G_N \lesssim 10^{-17}\text{yr}^{-1}$.
How to measure variation?
How to measure variation?

- possible variation of the proton-to-electron mass ratio $\mu = \frac{m_p}{m_e}$.

$\mu_0 = 1836.15267261(85)$ (Mohr & Taylor 2000)
How to measure variation?

• possible variation of the proton-to-electron mass ratio $\mu = \frac{m_p}{m_e}$.

$$\mu_0 = 1836.15267261(85) \text{ (Mohr & Taylor 2000)}$$

• laboratory experiments not yet very accurate (5 years)
How to measure variation?

- possible variation of the proton-to-electron mass ratio $\mu = \frac{m_p}{m_e}$.

 $$ \mu_0 = 1836.15267261(85) \text{ (Mohr & Taylor 2000)} $$

- laboratory experiments not yet very accurate (5 years)

- measure possible variation on cosmological scales
How to measure variation?

molecular hydrogen H_2 - energy levels

\[E_{\text{total}} = E_{\text{electronic}} + E_{\text{vibration}} + E_{\text{rotation}} \quad \text{(BOA)} \]
How to measure variation?

molecular hydrogen H_2 - energy levels

- $E_{\text{total}} = E_{\text{electronic}} + E_{\text{vibration}} + E_{\text{rotation}}$ (BOA)
- vibrational: $E_v = \left(v + \frac{1}{2}\right) \bar{\omega}_{\text{osc}}$
How to measure variation?

molecular hydrogen H_2 - energy levels

- $E_{\text{total}} = E_{\text{electronic}} + E_{\text{vibration}} + E_{\text{rotation}}$ (BOA)
- vibrational: $E_v = \left(v + \frac{1}{2} \right) \bar{\omega}_{\text{osc}}$
- with $\omega_{\text{osc}} = \frac{1}{2\pi c} \cdot \sqrt{\frac{k}{\mu}}$
How to measure variation?

molecular hydrogen H_2 - energy levels

- $E_{\text{total}} = E_{\text{electronic}} + E_{\text{vibration}} + E_{\text{rotation}}$ (BOA)

- vibrational: $E_v = \left(v + \frac{1}{2} \right) \bar{\omega}_{\text{osc}}$

- with $\omega_{\text{osc}} = \frac{1}{2\pi c} \cdot \sqrt{\frac{k}{\mu}}$

- the classical oscillation frequency dependent on the *reduced mass* as $\mu^{-\frac{1}{2}}$.
How to measure variation?

molecular hydrogen H_2 - energy levels

- rotational: $I = \frac{m_1 m_2}{m_1 + m_2} r_0^2 = \mu r_0^2$
How to measure variation?

molecular hydrogen H_2 - energy levels

- rotational: $I = \frac{m_1m_2}{m_1+m_2} r_0^2 = \mu r_0^2$

- $E_J = BJ(J + 1); J = 0, 1, 2, 3, \ldots$
How to measure variation?

molecular hydrogen H_2 - energy levels

- **rotational**: $I = \frac{m_1 m_2}{m_1 + m_2} r_0^2 = \mu r_0^2$

- $E_J = BJ(J + 1); \ J = 0, 1, 2, 3, \ldots$

- $B = \frac{h}{8\pi^2 I_c}$
How to measure variation?

molecular hydrogen H_2 - energy levels

- rotational: $I = \frac{m_1 m_2}{m_1 + m_2} r_0^2 = \mu r_0^2$
- $E_J = B J (J + 1); J = 0, 1, 2, 3, \ldots$
- $B = \frac{\hbar}{8\pi^2 I_c}$
- rotational transitions are proportional to μ^{-1}
How to measure variation?

- homonuclear molecule - no detectable mere vibrational or rotational spectrum
How to measure variation?

- homonuclear molecule - no detectable mere vibrational or rotational spectrum
- only observable in combinations with electronic transitions (UV-Band)
How to measure variation?

• homonuclear molecule - no detectable mere vibrational or rotational spectrum
• only observable in combinations with electronic transitions (UV-Band)
• UV radiation is a very efficient dissociator of H_2, so any H_2 that survived would presumably be located inside very dense interstellar clouds.
How to measure variation?

- homonuclear molecule - no detectable mere vibrational or rotational spectrum
- only observable in combinations with electronic transitions (UV-Band)
- UV radiation is a very efficient dissociator of H₂, so any H₂ that survived would presumably be located inside very dense interstellar clouds.
- So far observations have borne out this supposition.
How to measure variation?

molecular hydrogen H_2
How to measure variation?

molecular hydrogen H_2

- electron-vibro-rotational transitions depend on reduced mass of molecule
- different dependence for different transitions
How to measure variation?

molecular hydrogen H_2

- electron-vibro-rotational transitions depend on reduced mass of molecule
- different dependence for different transitions
- distinguish cosmological redshift of a line from the shift caused by possible variation of μ
How to measure variation?

molecular hydrogen H_2

- electron-vibro-rotational transitions depend on reduced mass of molecule
- different dependence for different transitions
- distinguish cosmological redshift of a line from the shift caused by possible variation of μ

$$\lambda_{\text{obs}} = \lambda_{\text{rest}} \times (1 + z_{\text{abs}})(1 + K_i \frac{\Delta \mu}{\mu})$$
How to measure variation?

molecular hydrogen H_2

- electron-vibro-rotational transitions depend on reduced mass of molecule
- different dependence for different transitions
- distinguish cosmological redshift of a line from the shift caused by possible variation of μ

$$\lambda_{\text{obs}} = \lambda_{\text{rest}} \times (1 + z_{\text{abs}})(1 + \left(K_i \frac{\Delta \mu}{\mu}\right))$$
How to measure variation?

molecular hydrogen H_2

- electron-vibro-rotational transitions depend on reduced mass of molecule
- different dependence for different transitions
- distinguish cosmological redshift of a line from the shift caused by possible variation of μ

\[\lambda_{\text{obs}} = \lambda_{\text{rest}} \times (1 + z_{\text{abs}}) \left(1 + K_i \frac{\Delta \mu}{\mu} \right) \]

(Varshalovich & Levshakov 1993)
How to measure variation?

sensitivity coefficient \(K_i = \frac{d \ln \lambda_i^0}{d \ln \mu} \)
How to measure variation?

Sensitivity coefficient \(K_i = \frac{d \ln \lambda_i^0}{d \ln \mu} \)

(Reinhold et al. 2006)
extragalactic H_2

- local observations with UV-satellite COPERNICUS
extragalactic H$_2$

- local observations with UV-satellite COPERNICUS
- the most abundant molecule in space
extragalactic H$_2$

- local observations with UV-satellite COPERNICUS
- the most abundant molecule in space
- formation on dust grains
extragalactic H$_2$

- local observations with UV-satellite COPERNICUS
- the most abundant molecule in space
- formation on dust grains
- shielding from UVB vs. dust obscuration
extragalactic H_2

- local observations with UV-satellite COPERNICUS
- the most abundant molecule in space
- formation on dust grains
- shielding from UVB vs. dust obscuration
- transitions in UV (restframe) – redshifted into visual band
extragalactic H$_2$

- highly inhomogeneous, clumpy distribution

extragalactic H_2

- highly inhomogeneous, clumpy distribution \cite{1}
- observable only in dense systems

Quasar absorption line spectroscopy
Quasar absorption line spectroscopy

- rotating massive black hole
- hot, dense accretion disk
- torus of cooler gas and dust
- small dense emission line clouds
- accelerated jets of relativistic particles
- to large-scale radio lobes

Variability of the proton-to-electron mass ratio on cosmological scales – p. 1
Quasar absorption line spectroscopy
Quasar absorption line spectroscopy

- cosmological redshift z due to expansion of space.
Quasar absorption line spectroscopy

- cosmological redshift z due to expansion of space.

$$\lambda_{\text{obs}} = \lambda_{\text{rest}} \times (1 + z_{\text{abs}})$$
Quasar absorption line spectroscopy

- cosmological redshift z due to expansion of space.
 \[\lambda_{\text{obs}} = \lambda_{\text{rest}} \times (1 + z_{\text{abs}}) \]

- Quasars as bright distant background sources against which intervening gas can be observed.
Quasar absorption line spectroscopy

- cosmological redshift z due to expansion of space.

$$\lambda_{\text{obs}} = \lambda_{\text{rest}} \times (1 + z_{\text{abs}})$$

- Quasars as bright distant background sources against which intervening gas can be observed.

 e.g., the Lyα transition at $\lambda_{\text{rest}} = 1215.67$ Å
Quasar absorption line spectroscopy

(Springel et. al 2006)
Quasar absorption line spectra - probing the universe

Q 0347−383

Variability of the proton-to-electron mass ratio on cosmological scales – p. 18
Quasar absorption line spectra - probing the universe

Q 0347–383
Quasar absorption line spectra - probing the universe
Quasar absorption line spectra - probing the universe

- H$_2$ lines in DLA systems
Quasar absorption line spectra - probing the universe

- H$_2$ lines in DLA systems
- contaminated continuum
Quasar absorption line spectra - probing the universe

- H_2 lines in DLA systems
- contaminated continuum

Variability of the proton-to-electron mass ratio on cosmological scales – p. 20
Quasar absorption line spectra - probing the universe

- H$_2$ lines in DLA systems
- contaminated continuum

(Ivanchik et al. 2005)
Quasar absorption line spectra - probing the universe

simulated fits to estimate accuracy
Quasar absorption line spectra - probing the universe

simulated fits to estimate accuracy

Variability of the proton-to-electron mass ratio on cosmological scales – p. 21
Quasar absorption line spectra - probing the universe

simulated fits to estimate accuracy
Variability of the proton-to-electron mass ratio on cosmological scales – p. 22
\[b = (1 + z_{\text{abs}}) \times \frac{\Delta \mu}{\mu} \]
\[b = (1 + z_{\text{abs}}) \times \frac{\Delta \mu}{\mu} \]

corresponding to \(\frac{\Delta \mu}{\mu} = 2.1 \pm 1.4 \times 10^{-5} \)

(Reinhold et al. 2006: \(\frac{\Delta \mu}{\mu} = 2.0 \pm 0.6 \times 10^{-5} \))
\[b = (1 + z_{\text{abs}}) \times \frac{\Delta \mu}{\mu} \]
\[b = (1 + z_{\text{abs}}) \times \frac{\Delta \mu}{\mu} \]
\[b = (1 + z_{\text{abs}}) \times \frac{\Delta \mu}{\mu} \]
\[b = \left(1 + z_{\text{abs}}\right) \times \frac{\Delta \mu}{\mu} \]

Merely transitions with high vibrational quantum numbers in the first rotational level contribute to a positive result.
News or noise?
no detectable correlation in a 85% subset
News or noise?

No detectable correlation in a 85% subset

\[|\Delta \mu / \mu| \leq 4.9 \times 10^{-5} \text{ over the period of } \approx 11.5 \text{ Gyr} \]
Outlook
Outlook

- line lists of required accuracy just available
 ⇒ increased need for high resolution
Outlook

• line lists of required accuracy just available ⇒ increased need for high resolution

• in general attach more importance to data reduction
Outlook

• line lists of required accuracy just available ⇒ increased need for high resolution
• in general attach more importance to data reduction
• search for more quasar spectra with DLA and H$_2$ signatures
Outlook

• line lists of required accuracy just available
 ⇒ increased need for high resolution
• in general attach more importance to data reduction
• search for more quasar spectra with DLA and H_2 signatures
• further simulations of detectability of variation
Outlook

• line lists of required accuracy just available ⇒ increased need for high resolution
• in general attach more importance to data reduction
• search for more quasar spectra with DLA and H$_2$ signatures
• further simulations of detectability of variation
• better understanding of the nature of DLAs
The Ratio of Proton and Electron Masses

FRIEDRICH LENZ
Düsseldorf, Germany
(Received April 5, 1951)

The most exact value at present\(^1\) for the ratio of proton to electron mass is 1836.12±0.05. It may be of interest to note that this number coincides with \(6\pi^5=1836.12\).

\(^1\)Sommer, Thomas, and Hipple, Phys. Rev. 80, 487 (1950).
Nine separately observed spectra with errorbars and exemplary fit of L1R1.
Variability of the proton-to-electron mass ratio on cosmological scales – p. 29