From Stellar Spectra To Chemical Abundance Analysis

INAF - Osservatorio Astronomico di Trieste

Kutluay YÜCE

Ankara University, Faculty of Science Dept. of Astronomy and Space Sciences

OUTLINE

 From 1-d spectra of the stars to abundance analyses normalization measurement determination of atmosphere parameters abundance analyses using EWs and LTE model atmospheres

 Introduce to the Coude Echellé Spectra of 1.5-m at TÜBİTAK National Observatory (TUG) reduction data within the orders characterictics of the orders abundance analyses of the individual stars comments

Detailed Spectral Analyses

Virtually all our knowledge about stars is derived from the analysis of their radiation, which is emitted in the outermost layers, the stellar atmosphere.

"Spectral analysis" is performed by investigation of the stellar spectra.

"Detailed spectral analysis" gives us information about the elements & their proportions in the stellar atmospheres.

A common approach for spectral line analyses (in particular for abundance analyses) is to measure and model the integrated line profile, which is expressed in terms of the *equivalent width*, defined by $W = \int_{W}^{\infty} F_{c} - F_{\lambda + 1} V$

$$W_{\lambda} = \int_0^{\infty} \frac{F_{\rm c} - F_{\lambda}}{F_{\rm c}} \,\mathrm{d}\lambda$$

a) Spectral measurements

i) continuum adjustment

¹⁴ April 2010

To compare "Obs-Comp": the rotational velocity from line widths

R122_99_11903

1357C<X>S^VLMNOPT%&W,~=b/w,#=d pt,R=replot,D=new,H=hard,A=all,/=S/N,@l+-,E=End

R122_99_11903

R122_99_11903

from determining each profile

[∧] obs(Å)	W_{λ} (mÅ)	Depth	FWHM		
		•••			
4257.827	25.5	0.053	0.45	f	
4258.742	8.7	0.018	0.45	f	
4260.149	7.9	0.016	0.45	f	
4261.547	19.0	0.039	0.45	f	
4263.522	11.7	0.024	0.46	f	
4266.819	81.9	0.129	0.60		
4267.465	16.8	0.035	0.46	f	
4268.880	5.7	0.012	0.46	f	
4269.392	7.6	0.016	0.46	f	

3800 Å ~5000 line profiles were derived for a type F2 III, ~1500 line profiles for a late B type supergiant

4930 Å

iii) wavelength shift

From identifying some of the spectral features, the radial velocity can be found.

using unblended lines

$$V_{r} = [(\lambda_{obs} - \lambda_{lab}) / \lambda_{lab}].c$$

correctedwavelengths

λ _{obs(} Å)	₩₂ (mÅ)	Depth	FWHM		λ _{ιοττ} (Å)	
4257.827	25.5	0.053	0.45	f	4258.190	
4258.742	8.7	0.018	0.45	f	4259.105	
4260.149	7.9	0.016	0.45	f	4260.512	
4261.547	19.0	0.039	0.45	f	4261.910	
4263.522	11.7	0.024	0.46	f	4263.885	
4266.819	81.9	0.129	0.60		4267.183	
4267.465	16.8	0.035	0.46	f	4267.829	
4268.880	5.7	0.012	0.46	f	4269.244	

iv) Line Identifications

λ _{obs(} Å)	₩₂ (mÅ)	Depth	FWHM		λ _{ιοιι} (Å)	identification	
4257.827	25.5	0.053	0.45	f	4258.190	Fe II (28)4258.155(3)	
4258.742	8.7	0.018	0.45	f	4259.105	SII (66)4259.146(16),	(Mn II (I)42
4260.149	7.9	0.016	0.45	f	4260.512	Fel (152)4260.4744(3	5)
4261.547	19.0	0.039	0.45	f	4261.910	Cr II (31)4261.92(30)	
4263.522	11.7	0.024	0.46	f	4263.885	Fe II(J)4263.895(1)	
4266.819	81.9	0.129	0.60		4267.183	C II(6)4267.003,.258(1	8,20)
4267.465	16.8	0.035	0.46	f	4267.829	SII (49)4267.759(21),	(Fe (482)-
4268.880	5.7	0.012	0.46	f	4269.244	Cr II (31)4269.29(10)	
4269.392	7.6	0.016	0.46	f	4269.756	S II (49)4269.724(18)	

Basic source: Moore (1945, 1972)

The stellar lines identified from the observed spectra tell us the elements/species in the stellar atmosphere.

4 Lac : H I, He I, C II, N II, O I, O II, Mg I, Mg II, AI I, AI II, AI II, Si II, Si III, S II, A II, Ca I, Ca II, Sc II, Ti II, V II, Cr II, Mn I, Mn II, Fe I, Fe II, Fe III, Ni II, Sr II, Y II, Zr II, Ba II

v Cep : H I, He I, C I, C II, N I, N II, O I, Mg I, Mg II, AI I, AI II, Si II,
 S II, Ca I, Ca II, Sc II, Ti I, Ti II, V II, Cr I, Cr II, Mn I, Mn II,
 Fe I, Fe II, Fe III, Ni I, Ni II, Sr II, Y II, Zr II, Cd I, Ba II, Eu II

In the BA-type supergiants these are: the light elements helium, carbon, nitrogen and oxygen (CNO), the α -process elements (Ne, Mg, Si, S, Ca), the iron group elements, s-process elements (Sr, Ba) and several other species.

for detailed spectral analyses

After the line profile mesurements using high resolution spectra & state of the art measurement techniques, ...

we deduced their effective temperatures, surface gravities, and the microturbulent velocities which characterize their atmospheres to perform the abundance analysis using the spectra of both supergiants and ATLAS9 LTE model atmospheres with solar abundances for all elements (Kurucz 1993).

Here, the two of the sample stars are the supergiant star. Supergiants in the literature :

B and A type supergiants are in the visual the brightest stars in those galaxies that are currently forming many stars, that is in spiral and irregular galaxies. Consequently, they are potantially attractive distance and abundance indicators being among the most easily observed stars. Their spectroscopic analyses should provide to information about their parent galaxies.

A summary of BA-type supergiant studies in the early epoch is given by de Jager (1980), Underhill & Doazan (1982) and Wolff (1983).

With the current atmosphere models, some stars have been studied. In the pioneering study of Venn (1995a,b) over twenty Galactic A-type supergiants were analysed for abundances, in part using non-LTE methods. She limitted the sample to lower luminosity supergiants (Ib and II) to improved the accuracy of LTE assumptions made in the atmospheric analysis; i.e.., the A-type supergiants are difficult stars to work with since their large, tenuous atmospheres and high luminosities put them near the limits of radiative and hydrostatic equlibrium.

Classical LTE models are found to be a fairly good representation for the atmospheres of the majority of main sequence stars, except for the hottest objects, where non-LTE becomes important. In the case of supergiants, however, a full account of the effects of spherical extension, velocity fields and deviations from LTE would be desirable, as clear evidence for their presence is found in observed spectra. Emission lines and an IR-excess in the continuum radiation indicate spherical extension; the presence of lines with P-Cygni profiles tells of velocity fields associated with mass-loss; finally, abundances in individual stars depend on the strength of the lines analysed, or abundances in an ensemble of stars correlate with stellar temperature or with luminosity (i.e. surface gravity), which all point to deviations from LTE. Such models has been currently under development (Aufdenberg 2000). He presents a preliminary spherical non-LTE model atmosphere for Deneb (α Cyg, A2 Iae) using the PHOENIX code. But, he used solar abundances and did not consider how changing the photospheric abundances from these values would affect the atmosphere.

		Non-LTE model atoms
For supergiants the quantitative spectroscopy have been done by Przybilla et al. (2001a,b,c,):	Ion H	Source Przybilla & Butler (2004)
 Model atoms Model atmospheres Quality of observed spectra Quantitative analysis (atmosphere pamaters adopted) Other input (EWs,) 	He I C I/II N I/II O I Mg I/II S II Ti II Fe II	Przybilla (2005) Przybilla et al. (2001b), Nieva & Przybilla (2006, 2008) Przybilla & Butler (2001) Przybilla et al. (2000) Przybilla et al. (2001a) Vrancken et al. (1996), with updated atomic data Becker (1998) Becker (1998)

Model atmospheres for Hot Stars

Stellar parameters (T_{eff} , log g, ξ) are derived for individual stars.

...uses criteria such as fitting the energy distributions and Balmer line profiles as well as ionization equilibria for several elements with two stages of ionization - eg. Fe, Cr, Ti, Mg, ...

Ionization Equilibria :

 The abundances obtained from different ionization stages of the an element must agree: for example; Fe I/II, Mg I/II

$$log \epsilon(Fe I) = log \epsilon(Fe II)$$
$$log \epsilon(Mg I) = log \epsilon(Mg II)$$

Very useful diagnostic

• in theory all diagnostics should give unique T_{eff} and log g solution.

 \bullet in practice there is a region in ${\cal T}_{\rm eff}$ and log g space that contains the solution and its uncertainty.

(b) Ionization equilibrium using Fe I/II, Fe II/III and Si II/III

• Iron: $\log \varepsilon(\text{Fe I}) = \log \varepsilon(\text{Fe II})$ $\log \varepsilon(\text{Fe II}) = \log \varepsilon(\text{Fe III})$ Silicon: $\log \varepsilon(\text{Si II}) = \log \varepsilon(\text{Si III})$

- Comparison of observed and theoretical profiles of H_β and H_γ

4 Lac, Kiel Diagram

 $T_{eff} = 10350 \text{ K} \log g = 1.92$

(b) Ionization equilibrium using Fe I/II and Cr I/II

• **Iron:** $\log \varepsilon(\text{Fe I}) = \log \varepsilon(\text{Fe II})$

Chromium: $\log \varepsilon(Cr I) = \log \varepsilon(Cr II)$

- Comparison of observed and theoretical profiles of H_β and H_γ

v Cep, Kiel Diagram

$T_{eff} = 8500 \text{ K} \log g = 1.25$

Spectral line broadenings also due to turbulence motions (Struve & Elvey 1934). The motions of the photospheric gases introduce Doppler shifts which broaden spectral lines. Astronomers use two asymptotic approximations:

a) the size of the turbulent elements is small compared with unit optical depth, the microturbulence limit, and

b) the size of the turbulent elements is large compared with unit optical depth, the macroturbulence limit. However, in reality, there is a range of turbulence element sizes which affect the observed line profiles.

Microturbulent velocity; ξ

This changes the equivalent width of a line profile.

The elemental abundances are calculated using the EWs. Thus the determination of microturbulence is important for the atmosphere analysis.

To determine the microturbulent velocity we derived abundances for Fe I, Fe II, Ti II and Cr II lines for a range of *assumed microturbulent values* using WIDTH9 (Kurucz 1993). The adopted ξ values for each species resulted in no dependence of the derived abundances on equivalent width.

Equivalent width

		scope= 0	2960E-03	73 lines						
4.94			2	x		I				
4.34		•	•	•	•	⊥ I -	•	· ·	•	•
3.74		•		•	•	I I		· · ·	• •	
3.15		•		•	. х	l I		· · · ·	· ·	
2.55		•	•	•	•	I I T	•	· ·	•	•
1.95 .				· - ·		I – – – –				
1.35		•	•		•	I I	•	· ·	•	•
0.76		•	•	•	•	I X	•	· ·	•	•
0.16		•		•	•	X X		· · ·	•	•
9.56		•		•	•	I		· · ·		•
8.96						IXX X X -		·		
8.37				•		I T		· · ·		
7.77						± I T		· · ·		
7.17		•		•		I X	•	· ·		
6.57		•			•	т Т	•	· · ·		
5.98						I T X				
5.38		•	•	• 24	•		K	· ·	•	
4.78		•	•	•		Í Í T	•	· ·	•	
4.18		•	•	•	. X	Í T		· ·	•	
3.59		•	•	•	2	IX TX	.x x	· ·	•	
2.99 .				x	:	x	x x x			
2.39		•	•	• • • ×	. X	I T X	. x x	••••	•	
1.79		•	•	 	. X X	IX X X X	. X .X X	· ·	•	•
1.20		•	•	. X X XX	.xx xxx	IX TXX	. X	· ·	•	•
0.60		•		. XX X	XXXX	I XX	. X	· ·	•	•
0.00	. 	 4.01	-4.21	-4.41 -4	. 61 - 4	- I – – – – 81 – – –		· · · · · · · · · · · · · · · · · · ·	 1 -5 61	
0.0	-								1	$o\sigma N/N$

4 Lac: Fe II lines; Abundances & EW; using EW's and atomic data by WIDTH9 program ($T_{eff} = 10350^{\circ}$ K, log g = 1.92, $\xi = 2.7$ kms⁻¹)

		minimum							
		slope			scatter				
Tablo. M	likroturbulences				ļ				
	Ion	n	ξ1	log N/N _T	ξ2	log N/N _T			
		(kı	$m s^{-1}$)	(k	$(m s^{-1})$				
4 Lac	Fe II	71	2.5	-4.8±0.2	2.8	-4.8±0.2			
		adopted	Ę	$s = 2.7 \text{ km s}^{-1}$					
v Сер	Cr II	30	5.2	-6.4±0.2	5.1	-6.4±0.2			
	Ti II	39	5.5	-7.4±0.2	5.5	-7.4 ± 0.2			
	Fe II	61	4.8	-4.5 ± 0.2	5.5	-4.5 ± 0.2			
		adopted	٤ ٤	$\xi = 5.2 \text{ km s}^{-1}$					

Table	Table 5. Comparison of abundances for 4 Lac, ν Cep and the Sun.									
		4 Lac			ν Cep	$\mathbf{Sun^1}$				
Species	n	$\log N/N_H$	$[X]^2$	n	$\log N/N_H$	$[X]^2$				
He I	9	-0.82 ± 0.06	+0.18	5	-0.87 ± 0.02	+0.13	-1.00			
CI	_			1	-3.52	-0.07	-3.45			
СП	1	-3.47	-0.02	1	-3.43	+0.02	-3.45			
ΝI	_		-	2	-3.99 ± 0.05	+0.04	-4.03			
NII	8	-3.04 ± 0.17	+0.99	-	-	-	-4.03			
ΟI	3	-3.27 ± 0.14	-0.15	2	-3.33 ± 0.18	-0.21	-3.12			
Mg II	9	-4.56 ± 0.12	-0.14	6	-4.45 ± 0.05	-0.03	-4.42			
AŬII	1	-5.53	0.00	1	-5.43	+0.10	-5.53			
Si II	3	-3.87 ± 0.14	+0.58	7	-4.26 ± 0.22	+0.19	-4.45			
Si III	3	-3.90 ± 0.09	+0.55	—	_	_	-4.45			
S II	21	-4.45 ± 0.18	+0.22	7	-4.52 ± 0.15	+0.15	-4.67			
Ar II	2	-4.75 ± 0.24	+0.73	—	-	-	-5.48			
Ca I	1	-4.64	+1.00	2	-4.99 ± 0.17	+0.65	-5.64			
Sc II	2	-8.63 ± 0.17	+0.20	4	-9.34 ± 0.22	-0.51	-8.83			
Ti II	19	-7.50 ± 0.17	-0.52	47	-7.27 ± 0.26	-0.29	-6.98			
VII	3	-8.20 ± 0.19	-0.20	18	-8.06 ± 0.22	-0.06	-8.00			
Cr I				2	-6.44 ± 0.03	-0.11	-6.33			
Cr II	17	-6.83 ± 0.21	-0.50	36	-6.29 ± 0.22	-0.04	-6.33			
Mn II	7	-6.44 ± 0.27	+0.17	17	-6.40 ± 0.21	+0.21	-6.61			
Fe I	8	-4.66 ± 0.17	-0.16	54	-4.47 ± 0.23	+0.03	-4.50			
Fe II	73	-4.70 ± 0.24	-0.20	72	-4.40 ± 0.20	+0.10	-4.50			
Fe III	4	-4.36 ± 0.14	+0.14	1	-4.61	-0.11	-4.50			
Ni II	7	-5.95 ± 0.20	-0.20	4	-5.79 ± 0.02	-0.04	-5.75			
Sr II	2	-9.40 ± 0.00	-0.37	-		_	-9.03			
Y II	-	_	-	2	-10.06 ± 0.13	-0.30	-9.76			
Zr II	_	_	-	5	-9.51 ± 0.26	-0.11	-9.40			

The detailed spectral analyses of the individual supergiants help to illuminate the evolution of massive stars.

There are several evolutionary scenarios based on the abundances of *carbon&nitrogen&oxygen*.

These models depend on whether or not the surface abundances reflect CNO-core processed material in the photosphere.

 The CNO surface abundances of a supergiant are its ZAMS surface values that have possibly been modified by mixing (dredge-up) between the interior and outer envelope of a star. Since CNO elements only act as catalysts during hydrogen burning for a massive main sequence star, the reduction of abundances of C and to a lesser extent of O, and the increase of the abundance of N with the sum of nuclei remaining constant is predicted.

Another model suggests that the stars iniae helium core burning without visiting the red giant branch , hence such stars evolve directly from the main sequence. After He ignition in the core, the star is essentially in thermal equilibrium throughout He-core burning and remains a blue supergiant. In this scenario, no mixing with deeper layers is anticipated, hence the CNO abundances should be solar (e.g., like those of main sequence B-type stars) (Stothers & Chin 1991, Chiose & Summa 1970, Iben 1966)

Positions of the both two supergiants and some comparison stars in the T_{eff} vs. log g plane.

Locations of the two stars on the theoretical evolutionary paths of Schaller et al. (1992)

Their parents Lac OB1 : 16-25x10⁶ year (Blaauw 1958) Cep OB2 : 7-3x10⁶ year, Simon & Greve 1976) Another sample star : 20 CVn is in the region of classical Cepheid instability strip in the HR diagram. The stars in the region exhibit variety about the chemical abundances. The instability strip is a very suitable laboratory of asteroseismology (Breger 2000). Asteroseismology, an analogon to geoseismology, makes it possible to "look" into the stellar interior by measuring the oscillation of the star.

An accurate atmosphere parameter obtained from detailed spectral analysis is also important to determine pulsation constant which is valuable parameter of asteroseismology.

✓ The stars HgMn (♦) & Am (▲) and 20 CVn from DAO spectra and using the same technique (Adelman and collobrators), locations on the Schaller et al. (1992)'s theoretical evolutionary paths.

The abundance analysis is also used to test the stellar evolutionary status

For example, Adelman et al. (2003) found that the coolest HgMn stars evolved into the hottest Am stars. Studies of elements other than Hg show that the elemental abundance values are similar across the supposed HgMn-Am star boundary. Adelman & Unsuree (2007) found near spectral type A0 that the normal and Am star abundances showed not clear break. Further work in this regard is needed in the middle A stars where there are few normal sharp-lined A stars and near spectral type F0 where most normal stars are also delta Scuti stars. The few analyses of the later stars are consistant with results similar to that of Adelman & Unsuree (2007), but more stars are needed to confirm this interpretation.

The time-scale for the peculiarities to be developed remain unclear since the results of studies of evolutionary status of chemically peculiar stars of different type show somewhat contradictory results (Gonzalez, Hubrig, Castelli, 2010). Comment about this part :

As some stars have atmospheric abundances close to those of the sun, codes such as ATLAS9 use scaled solar compositions to precompute the line and continuum opacities in the form of opacity distribution functions. ATLAS12 uses opacity sampling to permit one to arbitrarily compute a model atmospheres with an arbitrary compositon.

With the synthetic spectra and with improved atomic data using much larger wavelength coverage (~3050-10000Å) the atmosphere analyses clarify the nature of the stellar atmosphere.

Introduction to TUG RTT150 CES

1.5-m Russian-Turkish Telescope at the Turkish National Observatory in Antalya where is at the south of Turkey.

www.tug.tubitak.gov.tr

AIMS OF OUR INVESTIGATION (Yüce, Adelman, & Gürol)

I- Goals concerning the quality of the spectra: It provides some information about the characteristic of TUG spectrograms :

a. Compare several stars with those of Drs. Saul J. Adelman and Austin F. Gulliver are observing to high S/N. We want to get data with S/N = 250+. Measurements show the relations of the equivalent width taken with the Coude Echellé Spectrometer RTT150 and with the DAO coude spectrograph.

b. Determine the instrumental line profile from the ThAr arc spectrum.

c. Determine how long one can observe and still be able to remove cosmic rays successfully from the raw spectra. The suggestion by that this time is about 30 minutes is plausible.

d. Want to see how large S/N can be reached by coadding the spectra. Gulliver advised Dr. Olga Pintado (CASLEO) concerning doing this in raw space.

II- Scientific case : Elemental abundance analyses of Normal A, F and Am stars

We should know the characteristic of RTT150-CES;

1) S/N variations and spectral line profile characteristics at the red, blue and center of orders,

2) S/N variations with single spectrum and coadded spectra of star,

3) Characteristics of the telluric lines for orders,

4) The equivalent width measurement comparison of weak and strong metal lines with respect to those published in literature,

5) Radial velocity variations within CES orders,

6) Spectral quality: the results of our experiments in taking multiple bias, flat & star exposures.

Observations - RTT150 CES

The RTT150 CES is operating with R = 40000 resolution and nowly 2k x 2k Russian made liquid nitrogen cooled CCD. The spectral range of $\lambda\lambda$ 3800-10000Å is covered in one frame. Echelle spectral orders overlap in wavelength in the 3800- 8000 Å region with small gaps in 8000-10000 Å region. (www.tug.tubitak.gov.tr)

chosen stars: I-V luminosity class 0-6 mag.

General inf	ormation	from	<u>our fir</u>	<u>'st observat</u>	tion run.

star	m _v	max S/N	SpT
Vega	0 .03	Co500-600	A0 V
Deneb	1.3	Co500-650	A2 Iae
γ Gem	1.9	140, 250	A0 IV
HR 4128	2 .0	350, 450	G9 <mark>II</mark> -III
38 Tau	3 .9	250, 435	A0.5 Va
v Cep	4 .3	220, Co375	A2 Iab
4 Lac	4.5	325	B9 Iab
64 Tau	4.8	225	A7 V
29 Psc	5 .1	180	B7 III-IV
HR6455	5.3	160	A3 III
53 Cas	5.6	320	B8 Ib
42 Cyg	5.9	200	A1 Ib
HR 7545	5.9	240	A2 III
HD 207673	6 .4	140	A2 Ib

Observer: Kutluay Yüce

Reduction : IRAF (Image Reduction and Analysis Facility) program

The spectral images were corrected for bias, dark, and flat field effects. After this correction we extract 1-d spectra of the targets and the Th Ar arcs using IRAF routines. The wavelength calibrations had at most rms ≈ 0.004 [unit in Å]. The wavelengths of the stellar spectra were corrected for the motions of the Earth about the solar center.

X Maxim DL 4 - 64TAU001.FTS	Store in the
Eile Edit View Analyze Process Filter Color Plug-in Window Help	Eine Profile
	20000 15000 15000 10000 5000 0 250 5000 750 10000 1250 Pixel Location Along Y
	Vertical Line 💌 x = 466 Settings
	Export C S
	TS Header for 64TAU001.FTS
	/iew Fdit
	SIMPLE = T / Standard FITS file BITPIX = 16 / No. of bits per pixel NAXIS = 2 / No. of axes in matrix NAXIS = 1040 / No. of pixels in X NAXIS2 = 1160 / No. of pixels in X NAXIS2 = 1160 / No. of pixels in Y CRVAL1 = 0 / Offset in Y DATE = '2007-09-17' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE-OBS = '2007-09-17' / DATE (YYYY-MM-DD) OF OBS. TELESCOP = 'RTT150' / TELESCOPE NAME INSTRUME = 'Coude-echelle spec' / INSTRUMENT OBSERVER = 'B. Gurol, K. Yuce, M. Parmaksizo' / OBSERVERS OBJECT = '64tau' / NAME OF IMAGE AUTHOR = B. Gurol / AUTHOR OF PROGRAM BSCALE = 1.00 / REAL = TAPE*BSCALE + BZERO BZER0 = 32768.0 / DATAMAX = 55959.0 / MAX PIXEL VALUE DATAMIN = 244.0 / MIN PIXEL VALUE FILENAME = '64TAU001.FTS' / original name of input file IMAGETYP = 'object' / object, flat, dark, bias, scan, eta, neon, push

🕅 Maxim DL 4 - DENEB003.FTS	
Eile <u>E</u> dit <u>V</u> iew <u>A</u> nalyze <u>P</u> rocess Fil <u>t</u> er <u>C</u> olor Pl <u>ug</u> -in <u>W</u> indow <u>H</u> elp	X Line Profile
🖆 🖬 🕤 🔁 🖪 🕸 🛷 🍘 🔍 🔍 100% 🔽 🕺 🙄 🙄 🙄 😂 🎽 🍅 🎁 👹 🗿 🎇	30000
🚥 點 晶 自 + 👢 團 🕼 舗 🖿 🖫 🗖 🗆 📼 🗖 / 🖽 🖉 鈴 合 唱 🛍 深 品 唱 💋 ひ 音	25000
Ω Δ 🕾 🖾 ⊗ 🚱 🍕 / <i>A</i> A 🛁 🚼 🗖 🖓 🖓 🖬 🖕 = = A 🖶 M 🚥 Q, Q, Q, [
DENEB003.FTS	20000
DENEBO03.FTS	
	1500 10000 10000 10000 1000 1000 1000 1250 1000 1250 1000 1250 1000 1250 1250 1000 1250 1250 1000 1250 1250 1000 1250 1250 1000 1000
	FITS Header for DENEB003.FTS
	View Edit
	CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE-OBS = '2007-09-16' / DATE (YYYY-MM-DD) OF OBS. TELESCOP = 'RTT150' / TELESCOPE NAME INSTRUME = 'Coude-echelle spec' / INSTRUMENT OBSERVER = 'B.Gurol, K. Yuce, M. Parmaksizo' / OBSERVERS OBJECT = 'deneb' / NAME OF IMAGE AUTHOR = 'B.Gurol' / AUTHOR OF PROGRAM BSCALE = 1.00 / REAL = TAPE*BSCALE + BZERO BZERO = 32768.0 / DATAMAX = 53006.0 / MAX PIXEL VALUE DATAMAX = 53006.0 / MAX PIXEL VALUE DATAMAX = 50003.FTS' / original name of input file IMAGETYP = 'object' / object, flat, dark, bias, scan, eta, neon, push OBSERVAT = 'TUG, Turkey' / observatory TCTAPT = '20.008 / camera temperature (C) DETECTOR = 'ISD17A' / detector RATE = 50.0 / readout rate (KPix/sec)

🔉 Maxim DL 4 - DENEBOO3.FTS	
Eile Edit <u>V</u> iew <u>A</u> nalyze Process Fil <u>t</u> er <u>C</u> olor Pl <u>ug</u> -in <u>W</u> indow <u>H</u> elp	X Line Profile
	60000
DENEBUUS.FIS	
DENEBOO3.FTS	
	20000 20000 10000 250 500 750 1000 1250 Pixel Location Along Y Vertical Line x = 520 Settings Mean Minimum Export Std. Dev.
	FITS Header for DENEB003.FTS
	FITS Header for DENEB003.FTS
	FITS Header for DENEB003.FTS
	FITS Header for DENEBO03.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y
	FITS Header for DENEBO03.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file DATE = '2007-09-16' / ACOUNCITION SYSTEM
	FITS Header for DENEBO03.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE-OBS = '2007-09-16' / DATE (YYYY'-MM-DD) OF OBS.
	FITS Header for DENEBO03.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE-0BS = '2007-09-16' / DATE (^YYY-MM-DD) OF OBS. TELESCOP = 'R'TOurde-echelle spec' / INSTEN INSTEN INSTRUME = 'Courde-echelle spec' / INSTEN INSTRUMENT
	FITS Header for DENEBO03.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / DATE-OBS = '2007-09-16' DATE-OBS = '2007-09-16' TELESCOP = 'RTT150' / TELESCOP = 'RTT150' / DSERVER = 'B.Gurol, K. Yuce,M.Parmaksizo' / OBSERVERS
	FITS Header for DENEBO03.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE-0BS = '2007-09-16' / DATE (YYYY-MM-DD) OF OBS. TELESCOP = 'RTT150' / TELESCOPE NAME INSTRUME = 'Coude-echelle spec' / INSTRUMENT OBSERVER = 'B.Gurol, K. Yuce,M.Parmaksizo' / OBSERVERS OBJECT = 'deneb' / NAME OF IMAGE AUTHOR = 'B.Gurol' / AUTHOR OF PROGRAM
	FITS Header for DENEBO03.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE = '2007-09-16' / DATE (^YYY-MM-DD) OF OBS. TELESCOP = 'RTT150' / TELESCOPE NAME INSTRUME = 'Coude-echelle spec' / INSTRUMENT OBSERVER = 'B.Gurol, K. Yuce, M. Parmaksizo' / OBSERVERS OBJECT = 'deneb' / AUTHOR OF PROGRAM BSCALE = 1.00 / REAL = TAPE*BSCALE + BZERO
	FITS Header for DENEBOO3.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE = '2007-09-16' / DATE (TYY-MM-DD) OF OBS. TELESCOP = 'RTT150' / TELESCOPE NAME INSTRUME = 'Coude-echelle spec' / INSTRUMENT OBSERVER = 'B.Gurol, K. Yuce,M.Parmaksizo' / OBSERVERS OBJECT = 'deneb' / AUTHOR OF PROGRAM BSCALE = 1.00 / REAL = TAPE*BSCALE + BZERO BZERO = 32768.0 / DATAMAX = 53006.0 / MAX PIXEL VALUE
	FITS Header for DENEBO03.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE-0BS = '2007-09-16' / DATE (YYYY-MM-DD) OF OBS. TELESCOP = 'BTT150' / TELESCOPE NAME INSTRUME = 'Coude-echelle spec' / INSTRUMENT OBSERVER = 'B.Gurol, K. Yuce, M. Parmaksizo' / OBSERVERS OBJECT = 'deneb' / NAME OF IMAGE AUTHOR = 'B.Gurol' / AUTHOR OF PROGRAM BSCALE = 1.00 / REAL = TAPE'BSCALE + BZERO BZER0 = 32768.0 / DATAMAX = 53006.0 / MAX PIXEL VALUE DATAMAX = 53006.0 / MAX PIXEL VALUE DATAMAX = 53006.2 TS' / consist from the file
	FITS Header for DENEBO03.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE-0BS = '2007-09-16' / DATE (YYYY-MM-DD) OF OBS. TELESCOP = 'RTT150' / TELESCOPE NAME INSTRUME = 'Coude-echelle spec' / INSTRUMENT OBSERVER = 'B.Gurol, K. Yuce,MParmaksizo' / OBSERVERS OBJECT = 'deneb' / AUTHOR OF PROGRAM BSCALE = 1.00 / REAL = TAPE*BSCALE + BZERO BZERO = 32768.0 / DATAMIX = 33006.0 / MAX PIXEL VALUE DATAMIX = 251.0 / MIN PIXEL VALUE FILENAME = 'DENEB003.FTS' / original name of input file IMAGETYP = 'object' / object, flat, dark, bias, scan, eta, neon, push
	FITS Header for DENEBO03.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE = '2007-09-16' / DATE (^YYY-MM-DD) OF OBS. TELESCOP = 'RTT150' / TELESCOPE NAME INSTRUME = 'Coude-echelle spec' / INSTRUMENT OBSERVER = 'B.Gurol, K. Yuce,M. Parmaksizo' / OBSERVERS OBJECT = 'deneb' / AUTHOR OF PROGRAM BSCALE = 1.00 / REAL = TAPE*BSCALE + BZERO BZER0 = 32768.0 / DATAMAX = 53006.0 / MAX PIXEL VALUE DATAMAX = 53006.0 / MAX PIXEL VALUE FILENAME = 'DENEB003.FTS' / original name of input file IMAGETYP = 'object' / object, flat, dark, bias, scan, eta, neon, push OBSERVAT = '11.11'9' / object, flat, dark, biast, time (local) (httrmm:ss)
	FITS Header for DENEBOO3.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE = '2007-09-16' / DATE ("TYY-MM-DD) OF OBS. TELESCOP = 'RT1150' / TELESCOPE NAME INSTRUME = 'Coude-echelle spec' / INSTRUMENT OBSERVER = 'B.Gurol, K. Yuce, M. Parmaksizo' / OBSERVERS OBJECT = 'deneb' / AUTHOR OF PROGRAM BSCALE = 1.00 / REAL = TAPE*BSCALE + BZERO BZER0 = 32768.0 / DATAMAX = 53006.0 / MAX PIXEL VALUE DATAMAX = 53006.0 / MAX PIXEL VALUE FILENAME DENEBO03.FTS' / original name of input file IMAGETYP = 'object' / object' ark, bias, scan, eta, neon, push OBSERVAT TUG, Turkey' / object, flat, dark, bias, scan, eta, neon, push OBSERVAT = 120.000 / actual integration time (sec)
	FITS Header for DENEBO03.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSITION SYSTEM DATE-0BS = '2007-09-16' / DATE (YYYY-MM-DD) OF OBS. TELESCOP = RTT150' / TELESCOPE NAME INSTRUME = 'Coude-echelle spec' / INSTRUMENT OBSERVER = 'B.Gurol / AUTHOR OF IMAGE AUTHOR = 'B.Gurol' / AUTHOR OF PROGRAM BSCALE = 1.00 / REAL = TAPE*BSCALE + BZERO BZER0 = 32768.0 / DATAMAX = 53006.0 / MAX PIXEL VALUE DATAMAX = 53006.0 / MIN PIXEL VALUE DATAMAX = 53006.0 / MOX PIXEL VALUE DATAMAX = 10.0 / REAL = TAPE*BSCALE + BZERO BSERVAT = 10.0 / MIN PIXEL VALUE DATAMAX = 53006.0 / MAX PIXEL VALUE DATAMAX = 10.0 / AUTHOR OF IMOX PIXEL VALUE
	FITS Header for DENEBOO3.FTS View Edit CRVAL1 = 0 / Offset in X CRVAL2 = 0 / Offset in Y DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSTION SYSTEM DATE = '2007-09-16' / Creation data of this file ORIGIN = 'DinaSystem v1.1' / ACQUSTION SYSTEM DATE = '2007-09-16' / DATE (YYYY-MM-DD) OF OBS. TELESCOP = 'BTT150' / TELESCOPE NAME INSTRUME = 'Coude-echelle spec' / INSTRUMENT OBSERVER = 'B.Gurol, K. Yuce, M.Parmaksizo' / OBSERVERS OBJECT = 'deneb' / AUTHOR OF PROGRAM BSCALE = 1.00 / REAL = TAPE*BSCALE + BZERO BZER0 = 32768.0 / DATAMAX = 53006.0 / MAX PIXEL VALUE DATAMAX = 5300.0 / MAX PIXEL VALUE DATAMAX = 5000.7 measurement start time (local) (hh:mm:ss) EXPTIME = 120.000 / actual integration time (sec) CAMTEMP = 120.005 / camera temperature (C) DETECTOR = ISD17A' / detector RATE = 50.0 / readout rate (KPix/sec)

Data of orders 1-30 ($\lambda\lambda$ 5600-8700) are affected by the telluric lines, which means that the number of stellar lines are reduced due to blending for use in chemical abundances analyses.

order	comment	order	comment	order	comment
1	-	11	crowded	21	in the red part
2	crowded	12	crowded	22	-
3	crowded	13	few	23	few
4	crowded	14	all	24	-
5	crowded	15	half of the order in the red	25	-
6	-	16	few	26	few
7	few	17	few	27	few
8	all	18	few	28	-
9	few	19	central of the order	29	few
10	few	20	few	30	few

The S/N was determined from the apparently cleanest regions at the continuum level, which are significiantly different in the blue,

red, & *central* parts of each order.

• That the noise scatters are greater in both the blue and in red than in the central region reflects the lower S/N of the edges.

• The values are higher for the coadded spectra.

•S/N values were found 400+ for the orders 15-50 (λ 4500-6500Å) from codded spectra of the bright stars Vega (0^m) and Deneb (1^m.2).

•For HD 4128, 38 Tau, v Cep, 53 Cas, 4 Lac the values are 200+, and for other seven stars in our program they have the spectra of nearly 100+.

14 April 2010

14 April 2010

We compared the FWHM and EWs derived by IRAF program with those of 4 Lac & v Cep (Yüce 2005) (in the section of $\lambda\lambda$ 3830-4930Å, Dominion Astrophysical Observatory, S/N 200+, REDUCE program)

NOAO/IRAF V2.12.2-EXPORT root@astro-216 Mon 14:17:16 07-Jan-2008 [f_deneb06.ec.imh[*,53]]: deneb 120. ap:53 beam:107

14 April 2010

NOAO/IRAF V2.12.2-EXPORT root@astro-216 Mon 14:05:02 07-Jan-2008 [f_deneb06.ec.imh[*,52]]: deneb 120. ap:52 beam:106

14 April 2010

EW(RTT) = b + EW(DAO)x

a least-sequares comparison of the EW's measured on RTT150 CES exposures.

• For v Cep the radial velocity variation was calculated as -21.07±1.79 kms⁻¹ from our data at RTT150 CES. The radial velocity values are given between -11 and -26 kms⁻¹ from DAO spectra of 1999-2000 (Yüce 2005).

DISCUSSIONS

• We experimented our spectra with IRAF reduction techniques.

• The optimal number of bias frames is 20 as beyond 20 the standard deviation of the mean does not increase. As in the reduction procedure the bias is subtracted, the error in the bias is added to the final result.

• In the reduction procedure, the flat field is divided in spectrum after the bias is subtraced, the error in the flat field contributes as a fractional error to the final result

• Coadding spectra increases the final S/N values.
• The edge regions near the **blue** & **red** ends of the order have lower S/N values than the **central** regions. Thus detection of weak lines is best in the center. It is important for especially determine&identify of weak lines of CNO, heavy and rare earth group elements...

• Comparison is made of certain sections with spectra obtained with the long camera of the DAO coude spectrograph for two supergiants. Analyses show that especially the central parts of the orders permit comparison of CES and DAO equivalent widths. The figures suggests that RTT equivalent widhts are approximately 0.9% larger than their DAO values. S/N is not sufficient for the line profile measurements in especially at the red and blue of the orders. The best orders to measure all spectral lines in an order are between 50 and 55.

• Line profiles are sufficient for spectral analyses with 200+ in the central parts of the orders, but to analyse weaker lines the S/N ratios need to greater than 200 for most of the orders.

1357C<X>S^VLMNOPT%&W,~=b/w,#=d_pt,R=replot,D=new,H=hard,A=all,/=S/N,@l+-,E=End

1357C<X>S^VLMNOPT%&W,~=b/w,#=d pt,R=replot,D=new,H=hard,A=all,/=S/N,@l+-,E=End

14 April 2010

HD39866-52

Fix parameter mode

Our detailed spectral analysis results obtained from our individual stars shows that the spectra appeared to be suitable stellar studies especially of their chemical abundances.

The MSc theses supervised by KutluayYüce at the Ankara University.

1. Tolgahan Kılıçoğlu (completed in 2008) "An Elemental Abundance Study of the Low Amplitude δ Scuti Star 20 CVn"

2. Canan ŞAHİN (completed in 2008) "Spectral measurements of HD 43836 (B9 II) using TÜBİTAK National Observatory-Coude Echellé Spectra"

3. Başak EMİNOĞLU (completed in 2009) "Chemical Abundance Analysis of HD 39866 (A2 II) using TÜBİTAK National Observatory-Coude Echellé Spectra"

4. Sıla ERYILMAZ (started on October 2009) "Spectral Reductions and Chemical Abundance Analyses of the Stars 29 And & 89 Cet using TÜBİTAK National Observatory - Coude Echellé spectra"

