Cluster density profiles and orbits of galaxies from dynamical analysis

Andrea Biviano, INAF/Oss.Astr.Trieste

Collaborators & papers:

on the observational side:

A.B. & M. Girardi 2003,
P. Katgert, A.B. & A. Mazure 2004,
A.B. & P. Katgert 2004,
A.B. & P. Salucci 2006,
A.B., G. Mamon, T. Ponman in prep.,
A.B., A. Diaferio, K. Rines in prep.

on the numerical side:

A.B., G. Murante, S. Borgani, A. Diaferio, K. Dolag, & M. Girardi 2006 & in prep.

Aims:

1. Constrain M(r) of galaxy systems

central cusp or core?
external slope?
influence of baryons?

2. How do galaxies move in their systems?- evidence of infall?- relaxation processes?

Tracers of the grav. potential: galaxies

Observables:

R_i radial distance of i-th galaxy from the cluster center V_i rest-frame l.o.s. velocity wrt the cluster <V>

Because of poor sampling of single clusters and deviation from spherical symmetry... $\rightarrow \begin{array}{l} \textbf{Combine many clusters using M}_{200} \\ R_n = R/r_{200} & V_n = (V-\langle V \rangle)/v_{200} \\ M_{200} & from \sigma_v \text{ (virial theorem)} \\ \text{or } T_x \text{ (scaling relations) when } N_{gal} \text{ small} \end{array}$ Why using the cluster galaxies to determine the total mass profile? - less direct than lensing and X-ray

sample mass profile to larger radii
IC gas not fully thermalized (?)

(Rasia et al. 2004, Faltenbacher et al. 2005)

- lensing inefficient for nearby clusters (Natarajan & Kneib 1997)

...and in any case, 3 is better than 1!

METHODS

An example of YDS climbing class 1

M(<r): methods:

(e.g. Binney & Tremaine 1987; see also Mamon & Boué 2007

- Works better in central cluster regions

- Degeneracy mass profile - velocity anisotropies

2. Caustic method (Diaferio & Geller 1997; see also Diaferio 1999)

Works better in external cluster regions
Only mild dependence on velocity anisotropies

M(<r) from the Jeans analysis Assumes dynamical equilibrium of the system I(R) and $\sigma_p(R) \leftrightarrow v(r)$, $\sigma_r(r)$, M(<r), through $\beta(r)$ or, more generally: $f_p(R,v) \leftrightarrow \Phi(r) + f(E,L^2)$

Mass – orbits degeneracy: given R,v the M(<r) solution depends on β (r) (β (r) \equiv 1 - σ_t^2/σ_r^2 , velocity anisotropy profile)

Our adopted solutions to this problem:
analysis of the shape of the velocity distribution
Use ≥ 2 independent tracers of the cluster potential

The Jeans equation

$$M(r) = -\frac{r < v_r^2 >}{G} \left(\frac{d\ln\nu}{d\ln r} + \frac{d\ln < v_r^2 >}{d\ln r} + 2\beta\right)$$

r, clustercentric radial distance $\langle v_r^2 \rangle$, or σ_r , radial component of velocity dispersion *v*, number density of cluster galaxies β , velocity anisotropy:

$$\beta(r) \equiv 1 - \frac{\langle v_t^2 \rangle}{\langle v_r^2 \rangle}$$

M(<r) from the caustic method: Based on num.sims.: from caustic amplitude A(r) $\rightarrow \Phi(r)$ through F(Φ,β,r) \approx const ...outside the center, indipendent of dynamical status of the cluster

Galaxy orbits: methods: 1. Inverse Jeans analysis (Binney & Mamon 1982, see also Solanes & Salvador-Solé 1990) Given M(r), invert Jeans eq. $\Rightarrow \beta(r)$

2. Moments of velocity distribution (e.g. Merritt 1987, see also van der Marel et al. 2000)

Determine 4th and 6th moments by Gauss-Hermite polynomial decomposition

SAMPLES

An example of YDS climbing class 2

Samples (all at <z>≈0): 1. ENACS (Katgert et al. 1996) 59 clusters, $<\sigma_v>=699$ km/s, \approx 2700 gal.s within r_{200} 2. CIRS (based on SDSS; Rines & Diaferio 2006) 65 clusters, $\langle \sigma_{v} \rangle = 617$ km/s, ≈ 3300 gal.s within r_{200} 3. 2dFGRS (B. & Girardi 2003) 43 clusters, $\langle \sigma_v \rangle = 490$ km/s, ≈ 700 gal.s within r_{200} 4. GEMS (Osmond & Ponman 2002) 31 groups with measured T_x , $<\sigma_{v}>=370$ km/s, \approx 700 gal.s within r_{200}

Stacked CIRS cluster in R_n,V_n space

Stacked CIRS cluster in R_n,V_n space

Stacked CIRS cluster in R_n,V_n space

MASS PROFILES cored or cuspy? external slope?

An example of YDS climbing class 3

Fit models to the V_c(r) profiles

The cuspy model of NFW, motivated by cosmological num. simulations with CDM:

$$\rho_{NFW}(r) = \frac{\rho_0}{(r/r_s)(1 + r/r_s)^2}$$

...vs. the cored model of Burkert (1995), motivated by the problems of NFW on galactic scales (e.g., de Blok et al. 2003, Gentile et al. 2004):

$$\rho_{Burkert}(r) = \frac{\rho_0}{(1 + r/r_0)[1 + (r/r_0)^2]}$$

ENACS

ENACS: $\rho(r) \propto r^{-2.4 \pm 0.4}$ at $r = r_{200}$

Fitting models: NFW Burkert 95 Isothermal gives poor fit

CIRS: individual cluster mass profiles

Fitting models: Solid lines: NFW c=3,5,10 Short dashed: Hernquist Long dashed: SIS

From Rines & Diaferio (2006)

2dFGRS: combine the two methods:

The caustic M(r) nicely continue the M(r) found with the Jeans solution, $\rho(r) \sim r^{-3}$ at large r

MASS PROFILES the baryonic components

An example of YDS climbing class 4

ENACS: M(<r) subdivided into its components

c for DM only > c for total M(r) (but only slightly)

c for DM only > c for total M(r) (but only slightly)

c for DM only > c for total M(r) (but only slightly)

MASS PROFILES c=c(M)

An example of YDS climbing class 5

NFW c=c(M): observations vs. theoretical predictions (/\CDM; Dolag et al. 2004)

GALAXY ORBITS i.e. velocity anisotropy profiles $\beta'(r) \equiv \sigma_r(r)/\sigma_t(r)$

An example of YDS climbing class 5.3

Must distinguish red (early-type) from blue (late-type) galaxies because they have different R_n, V_n distributions (hence different orbits may be expected given the same mass profile)

CIRS

Red galaxies move on ≈ isotropic orbits

S, caustic M(r) from ss & Diaferio (2006)

Isotropic orbits for red gal.s: *≠* samples

CIRS vs. ENACS

Isotropic orbits for red gal.s: *≠* methods

CIRS: Jeans vs. Gauss-Hermite

Blue galaxies move on more radial orbits

CIRS: red vs. blue galaxies

Radial orbits for blue gal.s: *≠* samples

CIRS vs. ENACS

Substructures (groups in clusters): tangential anisotropy

ENACS

Gal.s in small σ_v groups: energy dissipation?

GEMS:

7 out of 31 groups have very small σ_v given their T_x:

their galaxies move on slightly tangential orbits

SHOULD WE TRUST **THESE RESULTS?** cmp with numerical simulations: masses and mass profiles

An example of YDS climbing class 5.6

compare to clusters extracted from cosmological simulations (from Borgani et al. 04) and projected

Virial mass estimates \approx unbiased for $N_{part} \geq 60$

compare to clusters extracted from cosmological simulations and projected

Virial mass estimates \approx unbiased for $N_{part} \geq 60$

For smaller N_{gal} select 'old' (red) galaxies

⇒ Global dynamical estimates for clusters are OK: M_{200} can be used for scaling vel.s and radii (unless N_{gal} very small: groups; use T_x)

Apply the Jeans method to projected data: M(r)($\beta(r)$ from projected velocity distribution moments)

Stacked cluster from Borgan ulations, ≈4000 objs

Determine M(r) with the caustic method:

SHOULD WE TRUST **THESE RESULTS?** cmp with numerical simulations: velocity anisotropy profiles (orbits)

An example of YDS climbing class 5.9

Stacked cluster from Borgani et al.'s simulations: true velocity anisotropy profile cmpd to profile obtained from the analysis

of the velocity moments of projected data (Gauss-Hermite)

Stacked cluster from Borgani et al.'s simulations: true velocity anisotropy profile cmpd to profile obtained from Jeans analysis

of projected data, given M(r)

Overestimate probably due to unidentified interlopers in (R,v) space

True velocity anisotropy profile *cmpd to profiles obtained from Jeans analysis, using true* M(r), **isotropic M(r) Jeans solution**, *and* **anisotropic**

M(r) Jeans solution (as obtained from Gauss-Hermite analysis)

→Accurate β'(r) determination requires accurate M(r) determination

ORBITS OF GALAXIES IN CLUSTERS: EVOLUTION

Compare ENACS vs. CNOC

Number density profiles for early- (empty symbols) and late- (filled symbols) cluster galaxies

Compare ENACS vs. CNOC

 $\sigma_{p}(R)$ profiles for early- (empty symbols) and late- (filled symbols) cluster galaxies Early-type galaxies at z≈0 & z≈0.3: isotropic orbits (Katgert, B. & Mazure 04; van der Marel et al. 00) Late-type galaxies at z≈0: radial orbits (B. & Katgert 04)

No evolution of (R,v) distributions of early- and late-type galaxies from z≈0 to z≈0.3 (Carlberg et al. 97 vs. B. & Katgert 04)

⇒ late-type galaxies at z≈0.3 must also be on radial orbits like late-type galaxies at z≈0

The late-type -galaxy fraction increases with z, hence more cl. galaxies are on radial orbits at higher z ⇒ the infall rate increases with z (in agreement with Ellingson et al. 2001)

CONCLUSIONS

An example of YDS climbing class 6

DM more concentrated than baryons (→effectiveness of dyn. friction & adiabatic contraction)

Groups: higher concentration than predicted by ΛCDM? dissipation processes at work? (...TBC: need better statistics)

DM more concentrated than baryons (→effectiveness of dyn. friction & adiabatic contraction)

Groups: higher concentration than predicted by ΛCDM? dissipation processes at work? (...TBC: need better statistics)

DM more concentrated than baryons (→effectiveness of dyn. friction & adiabatic contraction)

Groups: higher concentration than predicted by ΛCDM? dissipation processes at work? (...TBC: need better statistics)

DM more concentrated than baryons (→effectiveness of dyn. friction & adiabatic contraction)

Groups: higher concentration than predicted by ΛCDM? dissipation processes at work? (...TBC: need better statistics)

 The best fitting Burkert core-radius is small, 0.1 r₂₀₀ ~ size of central cD → DM scattering cross section <2 cm² g⁻¹ (By comparison with simulation res. of Meneghetti et al. 2001)

Much smaller than the 5 cm²g⁻¹ needed to fit dwarf galaxy mass density prof., Davé et al. (2000)

DM is *more* concentrated than the total matter

Dynamical friction mechanism ineffective in transferring galaxy energy to DM in clusters or counteracted by adiabatic contraction (e.g. Zappacosta et al. 2006)

Future work

Num.simulations: investigate physics of evolution of orbits of galaxies in clusters and find optimal algorithm for M(r), β(r) (ongoing collaboration with Borgani, Dolag, Mamon, Murante et al.)

More data: Improve current constraints on cluster M(r) and β(r) by combining existing data-bases and using new ones
(e.g.: W I N G S, see A. Cava's poster, ongoing collaboration with Bettoni, Cava, D'Onofrio, Fasano, Moles, Poggianti, Ramella, Varela)

Higher z: Evolution of M(r) and β(r), extend the analysis to higher-z cluster samples (e.g.: I C B S, possible collaboration with Dressler, Poggianti et al.)

Thank you for your attention!

An example of YDS climbing class 7 (...my favorite!)