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A B S T R A C T

Il modello ⇤CDM o Lambda-CDM è il modello su cui si basa attualmente la
cosmologia moderna, esso rappresenta una versione del modello cosmologico
del Big Bang per la quale l’universo conterrebbe una costante cosmologica,
⇤, materia oscura fredda (Cold Dark Matter), barioni e radiazione. Il modello
prevede un evento originario, il "Big Bang", o singolarità iniziale. Questo sarebbe
stato seguito da un’accelerazione esponenziale, chiamata inflazione, che avrebbe
generato fluttuazioni di densità primordiali. Le previsioni di tale modello sono
state confermate dai dati provenienti da accurate misurazioni delle anisotropie
nella radiazione cosmica di fondo (CMB) e dalle misurazioni delle fluttuazioni
di densità di materia nella struttura su grande scala dell’Universo, quest’ultime
ottenute da osservazioni della distribuzione di galassie, delle foreste Lyman-↵,
del weak lensing gravitazionale e dell’evoluzione della popolazione di ammassi
di galassie. Le varie componenti dell’Universo (materia ed energia oscura, fotoni,
barioni e neutrini) infatti imprimono sullo spettro delle fluttuazioni alcune
impronte caratteristiche legate alle modalità con cui interagiscono e alla diversa
storia termica, descritta dall’ equazione di stato. Le oscillazioni acustiche nel
fluido fotoni-barioni generate prima del disaccoppiamento dei fotoni, a redshift
z = 1088 (circa 300.000 anni dopo il Big Bang), che sono state osservate sia nello
spettro di potenza del CMB che nella distribuzione delle galassie.

Tuttavia questo grande numero di successi conferma ancora una volta la nostra
scarsa comprensione dell’Universo. Le conoscenze attuali della cosmologia infatti
ci dicono che l’Universo si è evoluto da uno stato omogeneo iniziale fino ad
arrivare alle attuali strutture cosmologiche che oggi osserviamo nel cielo, grazie
ad un processo di crescita gerarchico. Ad ogni modo questo scenario si basa
su due assunzioni che riguardano le condizioni iniziali dell’universo, la natura
della gravità stessa e delle componenti di energia e materia oscura. E’ per
questo motivo che uno degli obiettivi principali della cosmologia moderna, e
delle future survey cosmologiche è quello di investigare su queste componenti
“oscure”. Se da una parte infatti, si è fiduciosi che gli acceleratori di particelle di
nuova generazione, come il Large Hadron Collider (LHC), possano aiutare nello
studio delle particelle candidate a contribuire alla materia oscura, dall’altra le
proprietà dell’energia oscura possono essere vincolate solamente da osservazioni
cosmologiche, come l’evoluzione delle strutture cosmiche, o la distanza di
luminosità delle supernove di tipo Ia, grazie alla quale è stata scoperta l’energia
oscura.

Grandi survey come l’anglo australiana 2dF galaxy redshift survey o la Sloan
Digital Sky Survey (SDSS) hanno giocato un ruolo importante nel dare forma ai
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vincoli del modello cosmologico. Sono state in grado infatti di dare delle precise
stime sulla statistica standard utilizzata per quantificare la struttura a grande
scala (funzione di correlazione e spettro di potenza) e hanno quantificato diverse
proprietà riguardo la distribuzione di galassie. Le future survey cosmologiche
come EUCLID, BOSS (Baryon Oscillation Spectroscopic Survey), VIPERS (VIMOS
Public Extragalactic Redshift Survey) e DES (Dark Energy Survey) infieriranno
vincoli ancora più stringenti sui parametri cosmologici. La loro strategia è
quella di osservare aree di cielo sempre più vaste, ottenendo misure di alta
accuratezza a bassi redshift, z ⇠ 1, dove la crescita delle perturbazioni in un
universo piatto è rallentata dalla presenza dell’energia oscura. In questo modo
la misura della crescita delle perturbazioni nell’intervallo di redshift da 0 a 1-2
permetterebbe di porre stretti vincoli all’equazione di stato dell’energia oscura
e darebbe una prova di un’eventuale evoluzione oltre una semplice costante
cosmologica. La futura survey EUCLID, ad esempio, coprirà un’area di cielo
di 15,000 deg2 e arriverà ad un livello di profondità tale da raggiungere circa z
⇠ 1 ed oltre. EUCLID è una missione di classe media, recentemente approvata
dall’Agenzia Spaziale Europea (ESA) nell’ambito del programma Cosmic Vision
2015-2025, con l’obbiettivo principale di comprendere l’origine dell’espansione
dell’Universo. Equipaggiato con due strumenti che lavorano nel visuale e nel
vicino infrarosso, questo telescopio sarà in grado di misurare l’effetto della
lente debole sulla forma di miliardi di galassie e di misurare con accuratezza
il redshift di decine di milioni di galassie. Queste osservazioni, oltre a dare
la possibilità di mappare la distribuzione di materia tramite il weak lensing
e la distribuzione delle galassie tramite redshift fotometrici e spettroscopici,
permetteranno di identificare oltre 60,000 ammassi di galassie. Questi sono gli
oggetti gravitazionalmente legati più massivi dell’Universo e la distribuzione
della loro popolazione conserva l’impronta della statistica delle fluttuazioni
primordiali e della loro successiva crescita. Questo fa degli ammassi di galassie
un ottimo strumento per poter porre vincoli ai parametri cosmologici.

Le incertezze sulle stime dei parametri fisici dagli osservabili è però larga-
mente dominata da effetti sistematici legati alla sample variance e al bias con cui
le galassie tracciano la loro massa. Un’accurata valutazione di questi errori sis-
tematici richiede l’uso di simulazioni numeriche per poter generare distribuzioni
non lineari di materia oscura e modelli per poter popolare i risultanti aloni di
materia oscura con cataloghi di galassie. Anche assumendo che la struttura a
larga scala possa essere accuratamente descritta dall’evoluzione di pura materia
non collisionale e che la generazione di di galassie da aloni di materia oscura
sia sotto controllo, i requisiti di una singola simulazione N-body necessari per
generare un catalogo simulato del genere di EUCLID, sono piuttosto elevati.
Tali simulazioni avrebbero bisogno di più di 1010 particelle e più di 100 outputs
per generare il merger tree e cataloghi di coni luce. In questo caso le esigenze di
hardware in termini di ram e disco fisso diventano onerose e creano maggiorni
problemi rispetto a quelli legati ai tempi di calcolo necessari per far generare
una singola simulazione. La questione si complica maggiormente quando si ha
necessità di un elevatissimo numero di realizzazioni (maggiori di 1000), come
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nel caso della stima della matrice di covarianza dello spettro di potenza delle
galassie o per statistiche a più alti ordini di grandezza.

Queste problematiche hanno spinto lo sviluppo di approcci approssimati
basati sulla Teoria delle Perturbazioni Lagrangiana, ovvero sulle soluzioni per-
turbative di un sistema di equazioni per il calcolo del displacement di elementi
di massa dalle loro posizioni iniziali. Con l’LPT è possibile riprodurre accurata-
mente il campo di densità di materia su grande scala, ma occorre un approccio
diverso per la ricostruzione degli aloni di materia oscura.

Circa 10 anni fa Monaco P. ed altri collaboratori hanno scritto un codice,
PINOCCHIO, acronimo per PINpointing Orbit-Crossing Collapsed HIerarchical
Objects, capace di generare, con limitate risorse computazionali, cataloghi di
aloni di materia oscura di cui sono note le masse, le posizioni e le velocità,
a partire dalla realizzazione di un campo di densità gaussiano distribuito su
una griglia cubica. Le condizioni iniziali sono quelle utilizzate dalla maggior
parte delle simulazioni e sfruttano l’approssimazione di Zel’dovich (primo
ordine dell’LPT). L’algoritmo su cui si basa il codice di PINOCCHIO ha radici
nell’approccio dell’ Extended Press and Schechter e nella sua estenzione al
collasso non sferico. PINOCCHIO è in grado di riprodurre la statistica degli
aloni di materia oscura (funzione di massa e funzione di correlazione a due
punti) con un’accuratezza del ⇠ 10 - 20 per cento, ma è anche in grado di
generare aloni di materia oscura in accordo con quelli simulati anche al livello
object-by-object. Il codice è stato aggiornato nel tempo. Attualmente la versione
più recente è la terza che è stata ottimizzata per l’utilizzo di moderni computer
massivamente paralleli, permettendo la generazione di grandi cataloghi di aloni
di materia oscura con un tempo di calcolo dell’ordine di qualche frazione di
un’ora.

L’obiettivo di questa tesi è sviluppare il codice di PINOCCHIO in due princi-
pali direzioni. Nella prima direzione siamo intervenuti con l’intenzione di soddis-
farre una particolare esigenza del codice. La versione originale di PINOCCHIO
calcolava le grandezze cosmologiche con delle soluzioni analitiche, andando
così a considerare solo particolari casi in cui queste erano ammesse. Abbiamo
quindi implementato nelle routine cosmologiche le soluzioni numeriche delle
diverse grandezze focalizzandoci con maggiore attenzione al calcolo del tasso di
crescita lineare della perturbazione al primo ordine e del tempo cosmico. Abbi-
amo esteso le routine aggiungendo le soluzioni numeriche del tasso di crescita
lineare della perturbazione al secondo ordine dell’LPT e della distanza propria.
Avendo analizzato l’accuratezza con cui le soluzioni numeriche riproducevano
quelle analitiche, questo primo approccio al calcolo numerico, ha comunque
contribuito ad una maggiore completezza del codice, garantendo soluzioni per
diversi modelli cosmologici, inclusi quelli con un’ equazione di stato dell’energia
oscura diversa da quella standard. Nella seconda direzione siamo intervenuti
nel codice per la produzione in outputs di cataloghi di coni-luce-passati di
materia oscura, individuando l’instante in cui gli aloni li attraversano. Il criterio
di selezione individua quegli aloni la cui luce emessa ha tempo di raggiungere
l’osservatore. Successivamente abbiamo stimato l’incertezza sulla sample vari-
ance e sul rumore Poissoniano per una singola realizzazione del cono luce e
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per diversi modelli cosmologici, mediante lo studio della statistica di number
counts. Abbiamo generato diverse realizzazioni di uno stesso campione di vol-
ume dell’Universo di 153 Gpc3 e di volume pari a quello che coprirà la missione
EUCLID, cambiando le condizioni iniziali della simulazione. In questo modo
PINOCCHIO potrà essere utilizzato per poter dare previsioni sulla distribuzione
di aloni in funzione del redshift o per poter dare una stima sulle incertezze
degli osservabili di cataloghi reali che possono essere prodotti da future survey
cosmologiche come EUCLID.

Entrando più nel dettaglio nel primo capitolo esponiamo delle nozioni base di
cosmologia sulla formazione ed evoluzione delle strutture cosmiche, discutendo
brevemente del modello cosmologico standard e trattando la teoria lineare e non
lineare delle perturbazioni in particolare per la componente di materia oscura.
Nel secondo capitolo descriviamo il codice PINOCCHIO, l’algoritmo sui cui si
basa, e le sue potenzialità legate alle limitate richieste computazionali, rispetto
alle simulazioni N-body. Negli ultimi due capitoli, fulcro della tesi, si descrivono
gli sviluppi del codice per la realizzazione di cataloghi di cono luce e i risultati
delle stime delle incertezze legate alla sample variance e al rumore Poissoniano.
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I N T R O D U C T I O N

⇤CDM is the concordance model of the modern cosmology. In this model the
Universe is described as made of cold dark matter, baryons, radiation, neutrinos
and a component of energy due to the so-called cosmological constant, described
by the parameter ⇤.

This model has been tested by means of accurate observations of the anisotropies
in the cosmic microwave background radiation (hereafter CMB), as well as by
means of the measure of the matter density fluctuations on the large scale struc-
ture of the Universe. Such fluctuations have been obtained from the distribution
of galaxies, from the Lyman-↵ forest, from weak lensing and from the evolution
of the galaxy cluster population.

The different components of the Universe, namely dark matter and energy,
photons, baryons and neutrinos, leave their imprint on the power spectrum of the
CMB and in the galaxy distribution through the baryonic acoustic oscillations
(hereafter BAOs). BAOs are oscillations of the fluids made of photons and
baryons, generated before the decoupling of baryons and photons, happened
at a redshift z = 1088 (approximately 380,000 years after the Big Bang). Such
imprint is due to the way these components interact among themselves, as well
to the thermal history of the Universe, described by means of the equation of
state of the different components.

The modern cosmological model describes an Universe evolved from an initial
homogeneous state up to the present cosmic structures that we are today able to
observe, through a hierarchical growth process. Such scenario relies upon some
assumption concerning the initial conditions of the Universe generated by the
inflation and the nature of the gravity itself, as well as the dark component of
energy and matter. Understanding these dark components is the goal of modern
cosmology, and is the target addressed by future surveys, as described below.

The new generation of particle accelerators, such as the Large Hadron Collider
(LHC), can help to study the particles candidate to be the dark matter particles.
On the other hand the properties of the dark energy can be constrained only
through cosmological observations, such as the growth of cosmic structures or
the luminosity distance of the the first place.

Large surveys, like the anglo-australian 2 degree Field Galaxy Redshift Survey
and the Sloan Digital Sky Survey (SDSS hereafter), played a fundamental role in
putting constraints on the cosmological models. These surveys provided precise
estimates of the standard statistics used to characterize the large scale structure
of the Universe, namely the correlation function and the power spectrum, as well
as the properties of the galaxy distribution. Future surveys like EUCLID, BOSS
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(Baryon Oscillation Spectroscopic Survey), VIPERS (VIMOS Public Extragalactic
Redshift Survey) and DES (Dark Energy Survey) will put even tighter constraints
on the cosmological parameters. In order to achieve such goals, these surveys
will observe larger and larger areas of the sky, measuring with higher and higher
precision the objects at low redshift, z ⇠ 1, where the growth of perturbations
in a flat Universe should be slowed down by the presence of the dark energy.
This kind of measures might put strong constraints on the equation of state of
the dark energy, eventually probing an evolution of this component, pushing
toward more complex models beyond the cosmological constant.

More in detail, Euclid is a middle class mission, recently approved by the
European Space Agency (ESA) as part of the Cosmic Vision 2015-2025 program,
with the goal of understanding the origin of the expansion of the Universe. It
will cover an area of the sky of 15,000 deg2, going as deep as z & 1. Equipped
with two instruments, working in the visual and near infrared wavelengths,
it will be able to measure the weak lensing effect on the shape of billions of
galaxies, precisely measuring the photometric and spectroscopic redshift of tens
of thousands of galaxies. This way more than 60,000 galaxy clusters will be
observed. Galaxy clusters are the most massive gravitationally bound objects in
the Universe, and their distribution carries the information on the primordial
fluctuations and their subsequent growth. This makes galaxy clusters an ideal
tool to constrain cosmological parameters.

Despite the high precision that will be achieved in the future surveys, the
reliability on the estimates of physical parameters from observables will be
dominated by systematical effects due to the sample variance and the bias
with which galaxies trace the gravitational potential. A precise study of these
errors requires the use of numerical simulations in order to generate non linear
distributions of dark matter, and models to populate the dark matter halos
with galaxies. Even assuming that the large scale structure can be accurately
described by the evolution of purely non collisional matter, and even assuming
to have a good control on the formation of dark matter halos and their galaxies,
the requirements for a N-body simulations to generate a catalogue comparable
to what Euclid will observe are extremely high. In fact a simulation of this kind
would require more than 1010 particles, with the outputs stored at more than
100 instants during the evolution of the simulated Universe in order to generate
the merger trees and the light cone catalogues. The hardware requirements,
such as RAM and hard disk memory, would be extremely high, being even
more problematic of the speed of computation itself. The problems become even
more problematic if a huge number (more than 1000) of Universe realizations
must be generated, like in the case of the computation of the covariance ma-
trix of the power spectrum of galaxies. These issues led to the development of
approximated approaches based on the Lagrangian Perturbation Theory (LPT
hereafter), that is the perturbative solutions of a system of equations for the
computation of the displacement of mass elements from their initial positions.
With the LPT it is possible to accurately reproduce the density field of matter
on large scale, although it requires a different approach as far as the reconstruc-
tion of the dark matter halos is concerned. About 10 years ago, Monaco and
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collaborators proposed the PINOCCHIO algorithm, acronyms for PINpointing
Orbit-Crossing Collapsed HIerarchical Objects. This code is able to generate, with
small computational resources, catalogues of dark matter halos, for which the
masses, positions and velocities are known, starting from a gaussian density
field distributed on a cubic grid. The initial conditions are those used by most of
the numerical simulations and use the Zel’dovich approximation (first order of
the LPT). The PINOCCHIO algorithm has its origin in the Extended Press and
Schechter formalism and its extension to non-spherical collapse. PINOCCHIO is
able to reproduce the mass function and the two points correlation function of
dark matter halos, with a ⇠ 10- 20% accuracy, as well as to generate dark matter
halos in agreement with the simulated ones at a object-by-object level. The latest
version of the code, the third one, has been optimized for the use on the modern
massively parallel computers, generating large catalogues of dark matter halos
in a computing time of the order of fractions of hour. The aim of this Thesis

is the development of the PINOCCHIO code following two main directions
of development. The first direction aims at fixing particular limitations of the
code. The original version of PINOCCHIO computed cosmological quantities
using analytical solutions, therefore considering only particular cases in which
these were known. Hence in the cosmological routines we have implemented
numerical solutions of the different quantities, focusing in particular on the com-
putation of the first order linear growth rate and on the cosmic time. We have
also added the numerical solutions of the linear growth rate of the LPT second
order perturbation and the proper distance. These modifications contribute to
an improved generality of the code, now able to examine different cosmological
models, including those with an equation of state for the dark energy different
from the standard one.

The development in the second direction is the production past-light-cones
catalogues of dark matter halos. The selection criterion consists in finding the
halos whose light has enough time to reach the observer. Afterwards we have
estimated the uncertainties on the sample variance and on the Poissonian noise
for a single realization of the light cone and for different cosmological models,
by using the number count statistics. We have generated many realizations,
differing in the initial conditions, of the same volume of the Universe, 153 Gpc3,
corresponding to the same volume that will be covered by the Euclid mission.
This way PINOCCHIO is able to provide forecasts for the distribution of halos
as a function of redshift, as well as to provide estimates on the uncertainties of
the observable quantities of the real catalogues that will be produced by future
surveys like Euclid.

In the first chapter of this Thesis we will introduce some basics on the cosmo-
logical formation and evolution of cosmic structures. The standard cosmological
model will be briefly discussed, as well as the linear and non linear theory of
perturbation, focusing on the dark matter component. In the second chapter
we will present the PINOCCHIO code, the algorithm and its advantages due
to the limited required computational resources with respect to the numerical
N-body simulations. In the last two chapters the developments of the code for
the realization of light cone catalogues will be described, as well as the results
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of the estimates and uncertainties dealing with sample variance and Poissonian
noise.
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1
F O R M AT I O N A N D
E V O L U T I O N O F C O S M I C
S T R U C T U R E S

The ⇤CDM scenario assumes the gravitational instability paradigm: the cosmic
structures in the Universe were formed as a consequence of the growth of
primordial tiny fluctuations (for example seeded in the inflationary epoch) by
gravitational instability in an expanding frame. The fluctuation or perturbation
is characterized by its density contrast, with respect to the average density of
the Universe.

The early universe, where very high densities and temperatures dominate,
can be treated by using fluid thermodynamics. At origin the perturbations of
the cosmic fluid have small amplitudes, with a density contrast relative to the
background much smaller than unity: we are in the so called linear regime. This
is well described by the Newtonian perturbation theory when structures have
sizes much smaller than the horizon size, so that causality can be considered
instantaneous. The relativistic theory of small perturbations is required when
considering perturbations larger than the horizon size or when the matter
content of the perturbations cannot be treated as a non-relativistic fluid. We will
not treat this last one, because we will focus on the behavior of perturbations
inside the horizon, in particular on the dark matter perturbations.

Nevertheless the linear regime is not enough to explain the formation of many
objects in the present-day Universe, including galaxies and clusters of galaxies.
In fact they have densities orders of magnitude higher than the average density
of the Universe. These objects are thus in the highly nonlinear regime. Therefore
to complete our description of structure formation in the Universe,we need to go
beyond perturbation growth in the linear regime and address the gravitational
collapse of overdensities in the nonlinear regime.

It’s possible to find a deeper discussion of these arguments, in tex book of
cosmology like Principles of Physical Cosmology by Peebles (1993), Cosmologi-
cal Physics by Peacock (1999), Galaxy Formation and Evolution by Mo et al.
(2010), Galactic dynamics by Binney and Tremaine (1987) and The Origin and
evolution of cosmic structures by P.Coles (2002)).

In this chapter, in section §1.1 we briefly describe the cosmological standard
model (⇤CDM), in the sections§1.2 and §1.3 we examine respectively the linear

2
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regime and the non-linear regime for the component of Dark matter perturba-
tions.

1.1 standard cosmological model

The ⇤CDM is a version of the Big Bang cosmological model in which the
universe contains a cosmological constant, denoted by ⇤, cold dark matter,
baryons and radition.

The model deals with a single originating event, the "Big Bang" or initial
singularity. This was immediately followed by an exponential expansion of space,
called inflation that generated fluctuations. The early universe remained hot for
several hundred thousand years, a state that is detectable as a residual cosmic
microwave background or CMB, a very low energy radiation emanating from
all parts of the sky. The "Big Bang" scenario, with cosmic inflation, is the current
cosmological model consistent with the observed continuing expansion of space,
the observed distribution of lighter elements in the universe (hydrogen, helium,
and lithium), and the spatial texture of minute irregularities (anisotropies) in
the CMB radiation.

The model is based on the cosmological principle. It is the assertion that:
on sufficiently large scale (beyond those traced by the large scale structure of
the distribution of galaxies), the Universe is both homogeneous and isotropic.
The Universe is clearly not exactly homogeneous, so cosmologists define homo-
geneity in an average sense: the Universe is taken to be identical in different
places when one looks at sufficiently large pieces. This amounts to the strongly
philosophical statement that the part of the Universe which we can see is a fair
sample, and that the same physical laws apply throughout.

The assumptions of homogeneity and isotropy permit to define the comoving
system: a "comoving" coordinate, the coordinate of observers moving along
with the Hubble flow perceiving so the universe as isotropic; and a comoving
time coordinate, the elapsed time since the Big Bang according to a clock of a
comoving observer (it is the measure of cosmological time). Together, they form
a complete coordinate system, giving us both the location and time of an event.
The dependence of time of the mutual physical distance (proper distance) is
given by the scale factor a(t).

The model assumes General Relativity is the correct theory of gravity on
cosmological scale, it uses the Einstein field equations (EFE), the Friedmann–
Lemaître–Robertson–Walker metric (FLRW) metric, the Friedmann equations
and the cosmological equations of state to describe the observable universe from
right after the inflationary epoch to present and future time (qui).

So the model includes an expansion of metric space that is well documented
both as the red shift of spectral absorption or emission lines in the light from dis-
tant galaxies and as the time dilation in the light decay of supernova luminosity
curves.

The dark energy is the name that has been attributed to explain the force
that causes accelerated expansion. Two proposed forms for dark energy are:
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Figure 1: Time line of Universe ( NASA/WMAP).

the cosmological constant,⇤, a constant term inserted by Albert Einstein in his
relativity equations of fields interpreted as a constant energy density filling space
homogeneously; scalar fields such as quintessence, dynamic quantities whose
energy density can vary in time and space. Actually there is no observational
evidence against a cosmological constant, for that reason the model is ⇤CDM.

Another component of the energy density of the Universe is dark matter.
Dark matter is described as being cold (i.e. its velocity is non-relativistic at the
epoch of decoupling), non-baryonic (consisting of matter other than protons
and neutrons), dissipationless (i.e. does not involve the dissipation of energy)
and collisionless. It is introduced to explain the low anisotropy level of the CMB
and permits to describe the structure of the universe on large scales and how
galaxies form within that structure.

The remaining component of matter is the ordinary matter observed and
almost 0.1 per cent of relic neutrinos.

Also, the radiation component is today negligible but, it was much more
important in the distant past, dominating the matter at redshift > 3200.

1.1.1 The EFE, the FLRW metric, the Friedmann equations and the cosmological
equations of state

The simplifying assumption that the universe is approximatively spatially ho-
mogeneous and isotropic, i.e. the Cosmological Principle, empirically justified
approximatively on scales larger than ⇠ 100Mpc, implies that the metric of uni-
verse background must be of the form of Friedman Lamatre Robertson Walker
(FLRW) metric:

ds2 = c2dt2 - a2(t)


dr2

1-Kr2
+ r2(d#2 + sin2 #d'2)

�
(1.1)

where c is the speed of light, (r, #, ') the comoving coordinates and t the proper
time or cosmic time. The costant K, can assume values 0, 1,-1, linked to the
Universe geometry; respectively: for K = 0 the space is flat, for K = 1 the space
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has positive curvature and for K = -1 the space has negative curvature. Finally
the function a(t) represent the cosmic scale factor on cosmic time t. This one
contains the information of the expansion of Universe in the different epochs.
This factor is linked to the redshift by the relation

a(t) = a
0

/(1+ z). (1.2)

with a
0

= 1, while the cosmic time t is given by:

t(z) =

Z1

z

dz

(1+ z 0)H(z 0)
=

Z (1-1/a)

1

da

H(a)a
(1.3)

where H is the Hubble parameter. The EFE equate spacetime curvature (ex-
pressed by the Einstein tensor) are written in the form:

R
µ⌫

-
1

2
g
µ⌫

R+ g
µ⌫

⇤ =
8⇡G

c4
T
µ⌫

(1.4)

where R
µ⌫

, is the Ricci curvature tensor, R, the scalar curvature, g
µ⌫

, the metric
tensor, ⇤, is the cosmological constant, G, is Newton’s gravitational constant, c,
the speed of light in vacuum, and T

µ⌫

, the stress–energy tensor.
Alexander Friedmann in 1922 got a set of equations obtained by solving the

Einstein field equations, considering the energy tensor of a perfect fluid. The
Friedmann equations describe therefore the expansion of space of the universe
within the context of general relativity for which the structure of space time is
determined on the distribution of the matter-energy inside it.

There are two independent Friedmann equations for modeling a homoge-
neous, isotropic universe. The first is given by:

H2(t) =

✓
ȧ

a

◆
2

=
8⇡G

3
⇢-

kc2

a2

(1.5)

or, expliciting the different component of density by:

H2(t) =

✓
ȧ

a

◆
2

=
8⇡G

3


⇢
m0

⇣a
0

a

⌘
3

+ ⇢
r0

⇣a
0

a

⌘
4

+ ⇢
⇤0

�
-

Kc2

a2

(1.6)

which is derived from the 00 component of Einstein’s field equations and where
the parameter ⇢

i

is the i-th component of the total density of matter-energy: m
is the non-relativistic matter, r for relativistic matter, and ⇤ for the cosmological
costant.

The second Friedmann equation is given by:

ä

a
= -

4⇡G

3

✓
⇢+

3p

c2

◆
+

⇤c2

3
(1.7)

or by:

Ḣ(t) +H2(t) =
ä

a
= -

4⇡G

3

✓
⇢+

3p

c2

◆
. (1.8)

H ⌘ ȧ

a

is the Hubble parameter, G, ⇤, and c are universal constants (G is
Newton’s gravitational constant, ⇤ is the cosmological constant, c is the speed
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of light in vacuum). k

a

2

is the spatial curvature in any time-slice of the universe.
The subscript “0“ near a letter indicates the quantity measured at the actual time
t

0

.
The Hubble parameter can change over time if other parts of the equation

are time dependent (in particular the mass density, the vacuum energy, or the
spatial curvature). Evaluating this parameter at the present time yields Hubble’s
constant which is the proportional constant of Hubble’s law i.e. v = H

0

D where
v is the the recessional velocity, and D the obseerved distance of structure.
For the parametration of the uncertainty on the experimental measure, it’s
used to express the quantities that depend of the value of H

0

, as a function of
h ⌘ H

0

/(100kms-1Mpc-1).
It is used to express the Friedmann equations as a function of the parameter

density of the different components of matter-energy, ⌦
i0

given by:

⌦
i0

⌘ ⇢
i0

⇢
cr

, con i = r,m,⇤. (1.9)

where ⇢
cr

is the critical density:

⇢
cr

= 3H2/8⇡G (1.10)

Therefore the first Friedmann equation can be recasted in the form:

E2(a) =
H2

H2

0

= ⌦
r0

⇣a
0

a

⌘
4

+⌦
m0

⇣a
0

a

⌘
3

+⌦
k0

⇣a
0

a

⌘
2

+⌦
DE

⇣a
0

a

⌘
3

exp(-3

Z
a

1

dP

d⇢

da0
a0 .

(1.11)

where ⌦
r

is the radiation paramenter, ⌦
m

is the matter (dark plus baryonic)
parameter, ⌦

k

= 1-⌦ is the "spatial curvature” parameter and ⌦
DE

is the dark
energy paramenter. The value of the factor scale at z = 0, a

0

is usually fixed
to 1, normalizing each quantities with respect to present time. The integrand
contains the equation of state of the dark energy,dP

d⇢

, where P is the pressure
and ⇢ is density. It is usually parameterized as:

dP

d⇢
= w

0

+w
1

(1- a) (1.12)

where w
0

and w
1

are parameters, w
1

takes into account the dipendence of the
time dependence of the equation. The case with w

1

= 0, w
0

= -1 correspond to
assume as the dark energy component, the cosmological constant (⌦

DE

= ⌦
⇤

).
Considering the flat concordance model of ⇤CDM, the equation (1.11) becames
for the different epochs:

radiation dominated era (rd). For z � z
eq

the radiation dominates, we
have:

a

a
0

=

✓
32⇡G⇢

r

3

◆
1/4

t1/2. (1.13)
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matter dominated era (md). After the equivalence (z ⌧ z
eq

), the radia-
tion doesn’t influence very much the global dynamic, and we can neglect
the ⌦

⇤0

= 0 contribution:
✓
ȧ

a

◆
2

= H2

0

⌦
m0

⇣a
0

a

⌘
3

, (1.14)

that has as solution:

a

a
0

=

✓
3

2
H

0

t

◆
2/3

. (1.15)

This is the solution for the Einstein-de Sitter (EdS) model of Universe.

dark energy era (ded). Per 1+ z .
⇣
⌦

m0

⌦

⇤0

⌘-1/3

the cosmological constant
is not negligible anymore and we have:

✓
ȧ

a

◆
2

= H2

0


⌦

m0

⇣a
0

a

⌘
3

+⌦
⇤0

�
. (1.16)

Because 0 < ⌦
m0

< 1 and H
0

⌘ ȧ/a > 0, we obtain the solution:

a

a
0

=

✓
⌦

m0

⌦
⇤0

◆
1/3


sinh

⇣3
2
⌦

1/2

⇤0

H
0

t
⌘�2/3

, (1.17)

For early time the solution becomes the Eds solution, a / t2/3, while
for large t it approximates the solution for a De Sitter model, a /
exp(⌦1/2

⇤0

H
0

t).

1.2 linear theory of perturbations

The astrophysical objects we observe today are the result of the evolution of the
primordial fluttuations. A key concept in the theory of gravitational instability
is the Jeans length. Fluctuations on scales larger than the Jeans length are
unstable against contraction under gravity, while fluctuations on smaller scales
are supported against further collapse by pressure forces. Fluctuations on scales
larger than the size of the horizon grow through self-gravity. As the universe
grows older, the horizon expands and encompasses density fluctuations on
progressively larger scales.

Fluctuations that enter in the horizon when the density of radiation is driving
the expansion of the universe are effectively frozen until the matter and radiation
densities become equal. This effect is called Meszaros effect. The radiation
density effectively acts as a pressure that prevents the further collapse of any
perturbation in the matter density (barion and dark matter). Due to the Meszaros
effect, the spectrum of perturbations entering the horizon before the redshift of
equivalence between radiation and matter z

eq

, is distorted.
Perturbations which always stay outside the horizon don’t produce distortion

of the power spectrum.
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Figure 2: Evolution of the matter components as a function of time. The perturba-
tions of dark matter start to grow after the redshift of equivalence, the bar-
ionic ones only after the redshift of decoupling (that is very closed to the
redshift of recombination) falling later in the dark matter potential holes
(http://www.merate.mi.astro.it).

After the redshift of equivalence, i.e. during the matter dominated era, the
fluctuations made of collisionless matter, i.e. nonbaryonic dark matter, that
entered in the horizon, can gravitationally grow, to collapse then later into a
complex network of dark matter halos. While the baryonic or collisional matter,
can grow only after the decoupling (when the Jeans mass in baryons falls by
many orders of magnitude at a redshift of around z ⇠ 1100) finding the potential
wells of the dark matter, it falls inside them (see figure 2).

1.2.1 Newtonian perturbation theory: equation of evolution of perturbations for the
CDM component

In this section we describe the equation of the evolution of perturbations of
the CDM component, i.e. the cold, non relativistic, collisionless, pressurless,
component of the matter of the Universe, inside the horizon, until the amplitude
of the perturbations are small (� ⌧ 1). The Newtonian approach considers the
dark matter component as a fluid. This assumption is valid as long as the local
velocity dispersion of the dark matter particles is sufficiently small respect the
scale of interest (particle diffusion can be neglected on the scales of interest). We
are under these conditions.

So consider the density ⇢ and velocity field u under the influence of a gravi-
tational field with potential �. The time evolution of the fluid is given by the
equation of continuity (which describes mass conservation), the Euler equations
(the equations of motion) and the Poisson equation (describing the gravitational
field):

@�

@t
+

1

a
r · [(1+ �)v] = 0 (continuity), (1.18)

@v

@t
+

ȧ

a
v +

1

a
(v ·r)v = -

r�

a
(Euler), (1.19)

r2� = 4⇡G⇢̄
m

a2� (Poisson) (1.20)
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where r ⌘ r
x

and v = aẋ, with x = r/a(t) comoving coordinates. The equations
are expressed as a function of the density contrast �, defined as:

�(x, t) =
⇢(x, t)- ⇢̄(t)

⇢̄(t)
(1.21)

with ⇢̄ the average density of the Universe*. Combining them, in the hypotesis of
small perturbations (� ⌧ 1), it is possible to linearize the equations by neglecting
all the second order terms in � and v. In this case, we obtain:

@2�

@t2
+ 2

ȧ

a

@�

@t
= 4⇡G⇢̄

m

� (1.22)

The term on the right-hand side is the gravitational term, which causes pertur-
bations to grow via gravitational instability.

In the linear regime, the equations governing the evolution of the perturbations
of dark matter, are all linear in perturbation quantities. It is then useful to expand
the perturbation fields in some suitably chosen mode functions. If the curvature
of the Universe can be neglected, as is the case when the Universe is flat or when
the scales of interest are much smaller than the horizon size, the mode functions
can be chosen to be plane waves and the perturbation fields can be represented
by their Fourier transforms. For example for the density field �, we have:

�(x, t) =
X

k

�
k

(t) exp(ik · x); (1.23)

where V
u

is a portion of space large enough within which the fluctuations are
assumed periodic that in the limit of V ! 1 gives:

�(x, t) = V

Z
d3k

(2⇡)3
�
k

(t)exp(ik · x). (1.24)

If we calculate the Fourier trasformation of the equation (1.22), we obtain the
equation of the evolution of each of the different modes k; where r is replaced
by ik, and r2 by -k2, the equation of evolutionof dark matter becomes:

d2�
k

dt2
+ 2

ȧ

a

d�
k

dt
= 4⇡G⇢̄

m

�
k

(1.25)

We will mainly focus on the evolution of this component, that is particulary
important for this work.

We will find that some modes are amplified during the linear evolution while
others are damped. The evolution therefore acts as a filter of the primordial
density perturbations generated at some time in the early Universe.

We can demostrate that if �
1

(t) and �
2

(t) are two solutions of the differential
equation 1.25 then:

�
2

�̇
1

- �
1

�̇
2

/ a-2, (1.26)

* The presence of a relativistic background has effect only on the variation of the expanding
Universe rate, i.e.a(t)
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Thus, if one solution of equation (1.25) is known, the other one can be obtained
by solving this first-order differential equation. To solve (1.25), we recall that
the Hubble constant, obeys:

dH
dt

+H2 = -
4⇡G

3
(⇢̄

m

+ 2⇢
⇤

), (1.27)

given by the second Friedmann equation (1.8); because ⇢̄
m

/ a-3 and ⇢
⇤

are
costant, when we derive with respect to t the relation above we obtain:

d2H

dt2
+ 2

ȧ

a

dH
dt

= 4⇡G⇢̄
m

H, (1.28)

i.e. both H(t) that �
k

(t) obbey to the same equation. Since H(t) decreases with
time (see equation (1.6)),

�- / H(t) (1.29)

represent the decreasing solution. If we replace this solution in the equation
(1.25), the growing mode can be written as

�+ / H(t)

Z
t

0

dt 0

a2(t 0)H2(t 0)
/ H(z)

Z1

z

1+ z 0

E3(z 0)
dz 0, (1.30)

where E(z) is given by equation (1.11), expressed as a function of the redshift z
(see equation (1.2) for the relation beween the scale factor and the redshift). In
general the growing mode can be obtained by the equation (1.30) numerically
for a generic cosmology in which the Dark energy term is described by the
cosmological constant.

In figure 3 is shown the linear growing mode as a function of the scale
factor for different models calculated numerically by PINOCCHIO. We notice
that the growth is more rapid in the EDS model, while the development of the
perturbations is slower in the case of open Universe (⌦

⇤

= 0). The model with
cosmological costant gives an intermediate evolution between the other ones.

1.2.2 Linear power spectrum, transfer function and correlation function

The amplitude of fluctuations at different wave numbers (k) is described by the
power spectrum. In section 1.2.1 we have seen that it is possible to expand the
perturbation as a superposition of modes with different wave numbers:

�(x, t) = V

Z
d3k

(2⇡)3
�
k

(t)exp(ik · x). (1.31)

At each mode k it is possible to associate a length scale (�), k = 2⇡�-1. The
power spectrum is defined as:

P(k) =
⌦
|�
k

(t)2|
↵

(1.32)

in the limit in which the volume V
u

tends to inifinity (see previous section),
V
u

! 1 The power spectrum so describes the amplitude of the perturbations.
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Figure 3: The top panel shows the linear growth factor, here noted as D, as a function
of scale factor for different cosmological models, calculated numerically by
PINOCCHIO.
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Figure 4: Examples of power spectra for universes with the critical density in mass. Long
dashed line: the Harrison Zeldovich form of the primordial power spectrum;
dotted line: power spectrum in a universe with the critical density in cold dark
matter; solid line: power spectrum when baryons contribute all the critical den-
sity; short dashed line: universe in which all the mass is in the form of massive
neutrinos. The points show a measurement of the power spectrum of galaxy
distribution (C. Baugh, http://www.astro.caltech.edu/ george/ay21/eaa/eaa-
powspec.pdf.
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The power spectrum is the quantity predicted directly by theories for the
formation of large scale structure. In the case of a density field in which the
fluctuations are drawn from a Gaussian distribution, the power spectrum gives
a complete statistical description of the fluctuations. The power spectrum gen-
erated by the inflaction at a given k is usually assumed to have a power law
dependence on scale:

|�(k, t)|2 / P(k) = Akn (1.33)

A popular choice is the scale-invariant spectrum with spectral index n = 1,
proposed independently by Zeldovich and Harrison, while A is a constant.

The rate at which fluctuations grow on different scales is determined by an
interplay between self-gravitation, pressure support and damping processes.
These effects lead to a modification of the form of the primordial power spectrum
that is expressed in terms of a transfer function T(k, z):

P(k, z) = AknT(k, z). (1.34)

where A is a costant of normalisation. To determine the shape and amplitude (A)
of the linear power spectrum is one of the most important tasks of observational
cosmology. One historical prescription for normalizing a theoretical power
spectrum involves the variance of the galaxy distribution when sampled with
randomly placed spheres of radii R. The predicted variance of the density field
for a given radius R is related to the power spectrum by

�2(R) = �2

R

1

2⇡

Z
dkk2Ŵ2

R

(k)P(k) (1.35)

where

Ŵ2

R

(k) =
3

(kR)2
[sin(kR)- kRcos(kR)] (1.36)

is the Fourier transform of the spherical top-hat window function:

W
R

(r) =
3

4⇡R3

⇥(R- r) (1.37)

where ⇥(R- r) is the Heaviside step function. The value of �(R) derived from
the distribution of galaxies, is about unity for R = 8h-1Mpc. Thus, one could
in principle normalize the theoretical power spectrum by requiring �

8

⇠ 1 at
R = 8h-1Mpc. However, there are several problems with this approach. First
of all, since �(R) ⇠ 1 we are not accurately probing the linear regime for which
� ⌧ 1. Secondly, this normalization is based on the assumption that galaxies are
accurate tracers of the fluctuations in the mass distribution. This may not be true
if, for example, galaxies formed preferentially in high density regions. Indeed,
if we adopt the less restrictive assumption that the fluctuations in the galaxy
distribution are proportional (but not necessarily equal) to the fluctuations in
the mass distribution, then:

�
gal

= b�
m

(1.38)
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where b = constant is a bias parameter whose value depends on how galaxies
have formed in the mass density field.
In this case �

m

(8h-1Mpc) =
�

gal

(8h-1

Mpc)
b

= 1/b. The value of b is still
uncertain, since an accurate theory for galaxy formation is still lacking at the
present time. In fact b is found to be a function of various galaxy properties,
such as luminosity and color. To accurately normalize the linear power spectrum
thus requires a method that is not affected by nonlinear evolution and that
does not depend on the assumption of galaxies tracing the mass distribution.
It is important to realize that �

8

is evaluated from the initial power spectrum
evolved to the present time according to linear theory. Since perturbations on
scales of 8h-1Mpc may well have gone nonlinear by the present time, this is not
necessarily the same as the variance of the actual, present-day mass distribution.

The power spectrum has another important caracteristics: it is linked by the
Fourier transform to the correlation function ⇠(r), that is a measure of the degree
of clustering in the spatial distribution of structures. The spatial two-point or
autocorrelation function is defined as the excess probability, compared with that
expected for a random distribution, of finding a pair of objects (galaxies, cluster
of galaxies . . . ) at a given separation r

12

. On small scales, 0.1h-1Mpc 6 r 6
10h-1Mpc, the spatial correlation function is well described by a power law
form ⇠(r) = (r

0

/r)� with � ⇠ 1.8 and a correlation length r
0

⇠ 5h-1Mpc The
power spectrum P(k) is related to the two-point correlation function by:

⇠(r) =
1

2⇡2

Z
dkk2P(k)

sin(kr)
kr

(1.39)

1.3 non linear theory of perturbations

The evolution of a small amplitude density fluctuation on a particular scale can
be followed independently of fluctuations that may exist on other length scales
using linear perturbation theory. In the later stages of collapse, fluctuations
on different length scales become coupled and the subsequent evolution is
non-linear. While the linear theory provides exact solutions, it’s impossible
to follow the non-linear stage in an analytical way. So one is forced to use
approximated tecniques like higher order perturbation methods or numerical
N-body simulations. Non-linear evolution of density fluctuations, changes the
shape of the power spectrum. To complete our description of the role of dark
matter in structure formation in the Universe, we therefore need to go beyond
perturbation growth in the linear regime, discussed in the previous section, and
address the gravitational collapse of overdensities in the non-linear regime.

1.3.1 Lagrangian perturbation theory (LPT)

In the previous section we have described the evolution of linear perturbations in
an Euleurian approach, i.e. we have considered volumes of fluid fixed in space,
of which we have studied the variations of the density and the velocity at fixed
spatial position. A first possible extension of the linear Eulerian theory would be
increasing the order in expansion of �(x) and v(x). However while this approach
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is cleary wrong for �(x) ⇠ 1, the series of expansion are not guaranted to
converge already at �(x) . 1. Zeldovich in 1970 proposed a kinematical approach
as an alternative description to the formation of structure. The approximation
proposed, was just the first order of the Lagrangian perturbation theory. Later
other authors (Buchert et al., 1994; Moutarde et al., 1991; Buchert and Ehlers,
1993), considered higher orders of the Lagrangian perturbation theory. The
advantage of the Zeldovich approximation is that it normally breaks down later
than Eulerian linear theory.

In the Lagrangian perturbation theory the dynamical variable is the La-
grangian displacement field s(q, t) of a mass element:

r(q, t) = a(t)[x(q, t)] = a(t)[q + s(q, t)]. (1.40)

where, in fluid-mechanical terminology, x is said to be the Eulerian position,
and q the Lagrangian position, r is the proper coordinate. Initially s(q, t) = 0

so that q is the same as the usual comoving cordinate at initial time t = 0 The
particle trajectory in the expanding universe is:

d2

x(t)

dt2
+ 2H(t)

dx(t)

dt
= -

r�

a
(1.41)

This is the Eulerian equation (1.19) reported as function of the comoving
cordinate x and considering the total time derivative instead of the partial one.
We find the same equation of motion by a Lagrangian approach, using the
Lagrangian equation for a particle and applying the variational principle of
Hamilton. Taking the divergence of the previous equation, using the Poisson
equation (1.20), expressing the density as a function of the critical one (see
equation (1.10)) and as a function of the density contrast (equation (1.21)) we
obtain:

r
x

·

d2

x(t)

dt2
+ 2H(t)

dx(t)

dt

�
= -

r2

x

�

a
=

3a2(t)H2(t)⌦
m

�(x(t))

2
(1.42)

The particle density in Lagrangian coordinates, of course is the same as the
average density of the Universe, so for mass conservation we have:

⇢̄(t)d3q = ⇢(x(t))d3x = ⇢̄(t) = ⇢̄(t)[1+ �(x, t))]d3x (1.43)

x is always function of q and t in this approach. In this way taking into account
of the equation (1.40) and (1.42), we can relate the eulerian density constrast to
the lagrangian displacement:

1+ �(x, t) = |
d3q

d3x
|= 1/[det(�

ij

+ s
i,j(q, t)] = 1/J(q, t) (1.44)

where J(q, t) is the jacobian of the Lagrangian to Eulerian coordinate mapping
and, s

i,j(q, t) = ds
i

(q,t)
dq

j

.
Now replacing the equation (1.44) for the density contrast in the equation of

motion, the equation of motion for the displacement s(q, t) is:

J(q, t)[�
ij

+ s
i,j(q, t)]-1


d2s

i,j(q, t)
dt2

+ 2H(t)
ds

i,j(q, t)
dt

�
=

3a2(t)H2(t)⌦
m

[J(q, t)- 1]

2
.
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(1.45)

This last equation is the master equation of the Lagrangian perturbation theory.
To have the perturbative solution, in s(q, t):

s(q, t) = s

(1)(q, t) + s

(2)(q, t) + . . . (1.46)

1.3.1.1 First order LPT: Zeldovich approximation

In the Lagrangian scenario a simple and elegant approximation to describe the
non-linear stage of gravitational evolution has been developed by Zel’dovich
(1970) (see the review by Shandarin and Zeldovich, 1989, for an exhaustive
description of the Zeldovich approximation). In this approach, the initial matter
distribution is considered to be homogeneous and collisionless.

Let’s consider the initial displacement of particles and that they continue to
move in the initial direction. Then the comoving cordinate is given by:

r(q, t) = a(t)[x(q, t)] = a(t)[q + s

(1)(q, t)]. (1.47)

This corresponds to a truncation at the first order of the perturbative expansion of
equation (1.40). The Zeldovich approximation consists in assuming small values
for the displacement vector s(q, t), therefore only the first term of equation (1.46)
is considered. Under this condition is possible to factorize the displacement in
the time dependence and in the q-dependence:

s

(1)(q, t) = D(1)(t)p(1)(q) (1.48)

The inverse of the Jacobian we find in equation (1.45) becomes:

[�
ij

+ s
i,j(q, t)]-1 ' �

ij

- s
i,j(q, t) = �

ij

-D(1)(t)
dp(1)

j

(q)

dq
i

(1.49)

where the term
dp(1)

j

(q)

dq
i

is called deformation tensor. The master equation of the
motion becomes:

1+ s
k,k(q, t))[�

ij

- s
i,j(q, t)


d2s

i,j(q, t)
dt2

+H(t)
ds

i,j(q, t)
dt

�
=

=
3a(t)2H(t)2⌦

m

s
k,k(q, t)

2
i.e.

(1.50)

"
d2s

(1)
i,i (q, t)
dt2

+H(t)
ds

(1)
i,i (q, t)
dt

#

=
3a(t)2H(t)2⌦

m

s
(1)
i,i (q, t)

2
(1.51)

Because of the factorization and the curl free condition of the Lagrangian
displacement, that is irrotational, it’s possible to write the spatial function
p(1)(q) = -r�(1)(q) and s

(1)(x, t) = -D(1)(t)r�(1)(q). Using the previous
expression and the relation for the density contrast (see equation (1.44)) 1+
�(1)(x, t) = J-1 ' 1- s

i,i(q, t). The linear solution becomes:

r
q

· s

(1)(x, t) = -�(1)(x, t) = -D(1)(t)r2

q

�(1)(q) (1.52)
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where the r�(1) is is the linear Lagrangian potential, which is related to the
linear density field. The time evolution of �(1)(x, t) obeys to the equation:

d2D(1)(t)

dt2
+ 2H(t)

dD(1)(t)

dt
=

3a(t)2H(t)2⌦
m0

2
D(1)(t) (1.53)

that is equivalent to the equation (1.22), of the eulerian theory, so, with the same
solutions. D(1) corresponds to the linear growing mode. The particle position
and the corrisponding velocity in the ZA is given by:

x = q -D(1)(t)r�(1)(q) (1.54)

v = a(t)
dx

dt
= -a(t)

dD(1)(t)

dt
r�(1)(q) (1.55)

(1.56)

which are also written respectively as:

x = q - v

(1)t (1.57)

v = a(t)f1H(t)
dD(1)(t)

dt
(1.58)

(1.59)

where f1 is dlnD(1)/dlna. The second expression for the position of the particle
approximates the motion of a fluid element in a laminar flow, with no inter-
section of the trajectories. Under this approximation, the fluid element feels an
initial acceleration proportional to the gradient of the potential �(1)(q) only
at the beginning. The density diverges as the Jacobian determinant vanishes,
forming a caustic. In this case the trasformation between the Eulerian coordi-
nate x and the Lagrangian one q becomes multivalued, i.e particles undergo
orbit crossing (OC). The OC defines the time in which the collapse of the fluid
element occurs. In this condition the Zel’dovich approximation breaks down.
When overdensities grow, the non-linear effect due to the selfgravity of the per-
turbation, is not properly reproduced. The particles continue their initial motion
determined by the equation (1.55), instead of experiencing the effect determined
by the generated overdesities, then crossing the caustics. The first perturbations
to collapse and to condense as a selfgravitating structure, are the small scale
ones, later become larger ones. The advantage of this approximation is that it
normally breaks down later than Eulerian linear theory. As a consequence of
such an approximation, the theory predict what’s called Zel’dovich pancake.
The deformation tensor is diagonalizable, because p(q), as we’ve seen, is the
gradient of a scalar function, so it is real and symmetric. Let ↵(q), �(q), �(q) be
the eigenvalues associated to the eigenvectors of the strain tensor that define a
set of three principal (orthogonal) axes, which give the contraction or expansion
along the three principal axes. The density can be written:

⇢(q, t) =
⇢̄

[1-D(1)(t)↵(q)][1-D(1)�(q)][1-D(1)�(q)]
. (1.60)

If the eigenvalues are ordered such that ↵(q) > �(q) > �(q), when D(1)(t
1

) =
↵-1

max

, a first singularity in equation (1.60) occurs. This corresponds to the
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formation of a pancake (sheet-like structure) by contraction along one of the
principal axes. For this reason, Zeldovich argued that pancakes are the first
structures formed by gravitational clustering. Other structures like filaments
and knots come from simultaneous contractions along two and three axes,
respectively. The Zeldovich approximation predicts the first non-linear structure
to arise in correspondence of the high peaks of the ↵(q) field and represents a
significant step forward with respect to linear theory. It has been successfully
applied for example to generate the initial conditions of simulations (see e.g.
Villumsen, 1989; Pauls and Melott, 1995; Seto, 1998).

1.3.1.2 Second order LPT

It has been proven that high-order corrections of the Lagrangian perturbation
theory improve the result obtained from first order solution up to OC (Buchert
et al., 1994; Moutarde et al., 1991; Buchert and Ehlers, 1993), . The second order
Lagrangian solution has been derived for specific cosmologies: for generic non
flat Friedmann models without cosmological constant by Buchert et al. (1994),
with the same cosmology but with a different formalism by Catelan (1995), for
flat model with no cosmological constant by Bouchet (1996), with a relativistic
approach in an expanding universe by Matarrese et al. (1994). We are here more
interested for this work more at the general equation of evolution of the grow at
the second order rather than to the solutions for a particular cosmology.

Similarly to first order, the the displacement of the second order can also be
factorized:

s(2)(q, t) = D(2)(t)p(2)(q, t

i

) (1.61)

Proceeding for the first order LPT, we consider for the second order the
Jacobian of equation (1.44) and the equation of motion (1.45). Using the
solution for s

(1)(q, t), and the simmetry s
(1)
i,j (q, t) = s

(1)
j,i (q, t), it’s possible to

verify that the time dependent part of s

(2), D(2)(t), that is the growing mode of
the perturbation at the second order, solution of:

d2D(2)(t)

dt2
+2H(t)

dD(2)(t)

dt
-

3a(t)2H(t)2⌦
m0

2
D(2)(t) = -

3a2(t)H2(t)⌦
m

2
[D(1)(t)]2

(1.62)

Buchert et al. (1994) found the analytical solution for a flat ⇤CDM universe
D(2)(t) ' -3(D(1)(t))2⌦1/143

m

/7 that approximates the exact solution for D(2)

betten than 6 per cent. Because of the factorization and the curl free condition of
the Lagrangian displacement s

(2)(q, t) = D(2)(t)p(2)(q, t
i

), it’s possible to write
the spatial function p(2)(q, t

i

) = -r�(2)(q, t
i

). The spatial part of the second
order solution describes the effect of the second order gravitational tidal field:

p

(2)(q, t
i

) =
1

(D(1)(t
i

))2
1

2

X

i 6=j

⌦
s
(1)
i,i (q, t

i

)s(1)
j,j(q, t

i

)- s(1)
i,j(q, t

i

)s(1)
j,i(q, t

i

)
↵

(1.63)



1.3 non linear theory of perturbations 19

We recall that s
(1)
j,i (q, t

i

) = D(1)(t
i

)
dp(1)

i

(q)
dq

i

. Multiplying this last equation by
D(2)(t) we can have an approximation for the displacement to second order,
using the approximation for D(2)(t) by Bouchet (1996). Finally, the solution for
the position and for the velocity up to second order is given by:

x(q, t) = q+ s(1)(q, t) + s(2)(q, t)

= q-D(1)(t)p(1)(q) +D(2)(t)p(2)(q)
(1.64)

v(q, t) = a(t)
dx

dt
=

= a(t)f
1

H(t)
dD(1)(t)

dt
+ a(t)f

2

H(t)
dD(2)(t)

dt

(1.65)

where f
i

= dlnD
i

/dlna that is well approximated by: f
1

' [⌦
m

(z)]5/9 and
f
2

' 2[⌦
m

(z)]6/11.

1.3.2 The collapse stage: spherical and ellipsoidal collapse

As already emphasized, nonlinear gravitational dynamics is difficult to deal
with analytically. However, if simple assumptions are made about the symmetry
of the system, analytical models can still be constructed. Although these models
are not expected to give accurate descriptions of the true nonlinear problem of
gravitational collapse, they provide valuable insight into the complex processes
involved.

1.3.2.1 Spherical collapse

Spherical symmetry is one of the few cases in which gravitational collapse can
be solved exactly (Peebles, 1980). In fact, as a consequence of Birkhoff’s theorem,
a spherical perturbation evolves as a FRW Universe with density equal to the
mean density inside the perturbation. The simplest spherical perturbation is
the top-hat one, i.e. a constant overdensity � inside a sphere of radius R; to
avoid a feedback reaction on the background model, the overdensity has to be
surrounded by a spherical underdense shell, such to make the total perturbation
vanish. This approach is based on assuming the perturbation as a closed Universe
in itself and imposing that the border speed of the perturbation is zero at an
initial time t

i

.
In EDS Universe (⌦

m

= 1), the above assumptions give the relation D(t
i

) =
(3/5)�(t

i

), between the linear growing mode and the initial overdensity. In order
for the perturbation to collapse, it’s necessary that its inizial density paramenter
⌦

p

(t
i

) = ⌦(t
i

)(1 + �
i

) is larger than 1. The evolution of a the perturbation
radius depends therefore only on its initial overdensity and is then given by
a Friedmann equation. In the Einstein-de Sitter background, any spherical
overdensity reaches a singularity (collapse) at a final time:

t
c

=
3⇡

2

✓
5�t

i

3

◆-3/2

t
i

(1.66)



1.3 non linear theory of perturbations 20

By that time its linear density contrast reaches the value:

�
l

(t
c

) = �
c

=
3

5

✓
3⇡

2

◆
3/2

= 1.686 (1.67)

In an open Universe not all overdensities will collapse: for this to happen
the initial density contrast has to be such that the total density inside the
perturbation overcomes the critical density. This can be quantified (not exactly
but very accurately) as follows: the growing mode saturates at D(t) = 5/2(⌦-1

m

),
so that a perturbation ought to satisfy �

l

> 1.69 · 2(⌦-1

m

)/5) to be able to collapse.
Of course, collapse to a singularity is not what really happens in reality. It is
typically supposed that the structure reaches virial equilibrium at that time. In
this case, arguments based on the virial theorem and on energy conservation
show that the structure reaches a radius equal to half its maximum expansion
radius, and a density contrast of about �

vir

⇠ 178.
Equation (1.67) gives a quite important quantity that is used also to describe

the mass function of the virialized halos. In fact it gives the density contrast
for a perturbation in the initial density field to evolve in a collapsed virial-
ized structure. One of the advantages of spherical symmetry is that, because
of Birkhoff’s theorem, it is possible to introduce in a background metric a
perturbation without affecting the rest of the Universe, provided any positive
perturbation is compensated for by an (outer) negative one, such to make the
total mass perturbation vanish. This is necessary to ensure the self-consistency
of the problem: the background has to evolve as if it were unperturbed. This
reasoning is not valid any more when introducing a triaxial perturbation in an
unperturbed background: this is going to influence the background, through
non-linear feedback effects.

1.3.2.2 Ellipsoidal collapse

The convenience in using the homogeneous ellipsoid collapse model resides in
the fact that it can easily be solved by means of a numerical integration of a
system of three second-order ordinary differential equations.

A homogeneous triaxial ellipsoid is characterized by its mean overdensity
and its axial ratios; it can experience a global expansion, a deformation or a
global rotation. A homogeneous ellipsoid possesses a “minimal” geometric
complexity which makes its structure analogous to that of a mass element. As a
matter of fact, it is possible to write down evolution equations for a Newtonian
homogeneous ellipsoid.

The fundamental difference between a homogeneous ellipsoid and a generic
mass element is in the role of the potential, a quadratic form in the first case
and a whole random (Gaussian) field in the other. To extract an ellipsoid from
a perturbed potential field (Bond and Myers, 1996a) in a point, it suffices to
expand the potential around that point in a Taylor series.

To use ellipsoidal collapse in a cosmological context, the correct strategy is not
to try to insert an ellipsoid in a uniform background, but to extract an ellipsoid
from a perturbed FRW Universe (Monaco, 1998).
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The dynamical variables of ellipsoidal collapse are the three axes a
i

(t) of the
ellipsoid; they are normalized as the scale factor: a

i

(t) = a(t) if the ellipsoid is
a sphere with null density contrast. Their evolution equations are, in a open and
flat Universe with cosmological constant (the EdS is obtained considering the
present parameter density ⌦

m0

= 1 ):

d2a
i

da2

- (2a(1+⌦-1

m0

)a)-1
da

i

da
+(2a2(1+⌦-1

m0

)a)-1a
i


1

3
+

�

3
+

b0
i

2
+ �0

vi

�
= 0;

(1.68)

d2a
i

da2

-
1- 2⌦-1

m0

a3

2a(1+ (⌦-1

m0

- 1)a3)

da
i

da
+(2a2(1+⌦-1

m0

)a)-1a
i


1

3
+

�

3
+

b0
i

2
+ �0

vi

�
= 0.

(1.69)

respectively, where the density contrast � is given by:

� =
a3

a
1

a
2

a
3

- 1, (1.70)

while the quantities b 0
i

and � 0
vi

are defined as:

b 0
i

=
2

3
[a

i

a
j

a
k

R
D

(a2

i

,a2

j

,a2

k

)- 1] i 6= j 6= k (1.71)

(where the R
D

is the Carlson’s elliptical integral

R
D

(x,y, z) =
3

2

Z1

0

d⌧

(⌧+ x)1/2(⌧+ y)1/2(⌧+ z)3/2
, (1.72)

and

� 0
vi

= -
a

a
0

✓
�

3
- a

0

�
i

◆
.. (1.73)

The three coupled second-order ordinary differential equations, given by the
(1.68) or (1.69), can be solved numerically, by means of standard routines.

The ellipsoidal collapse is used to describe the evolution of a mass element
at early times. Until the time the collapse happens on its shortest axis, its

principal axis are given by the deformation tensor
dp(1)

j

(q)

dq
i

(see 1.3.1.1). Under the
assumption that the evolution of the ellipsoid is independent of the cosmology,
a good approximation of its evolution it is given by the LPT up to third order
(Monaco, 1998).

The homogeneous ellipsoid collapse model has been used in different cosmo-
logical context to estimate collapse times: by Bond and Myers (1996a), Bond
and Myers (1996b), Bond and Myers (1996c)), White and Silk (1979)), Monaco
(1998).
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1.3.3 Statistic of the hierarchical clustering

The scenario presented in the previous chapters describes the current theory of
hierarchical clustering, according to which structures grow hierarchically from
initial gaussian density fluctuations. We now turn to the statistical treatment
of hierarchical clustering. A first attempt to analytically describe complessively
the statistic of the hierarchical clustering, was made by Press and Schechter
(1974) (PS). Despite its semplicity, the PS formalism allows one to calculate many
properties of the population of dark matter halos, such as their mass function,
the mass distribution of their progenitors, their merger rate.The analytic nature
of the extended Press–Schechter (EPS) formalism helps us to understand how
the properties of the halo population are related to the cosmological framework.

Its not-rigorous nature implies, however, that its predictions should always
be checked using other methods, primarily numerical N-body simulations of
cosmic structure formation. This approach has developed in the two last decades
thanks to huge advancement in computer tecnology. The approach consists in
reproduce a simulation of a dynamical system of particles under the gravity
force of gravity.

1.3.3.1 The Mass Function: the Press-Schechter formalism

In this section we focus on the statistical properties of the dark matter halos.
Clearly, since dark matter halos are the hosts of galaxies, these properties will
have a direct link to the clustering properties of galaxies.

Let’s consider a density field �(x, t), that in linear regime evolves as �(x, t) =
�
0

(x)D(t), where �
0

(x) is the overdensity linearly extrapolated until today, and
D(t) the linear growing mode nomalized to 1 at t

0

. According to the spherical
collapse model, described in in section 1.3.2, regions with �(x, t) > �

c

' 1.69,
or similarly with �

0

(x) > �
c

/D(t) ⌘ �
c

(t), collapse, forming virialized objects.
We want to assing a mass to these regions. Let be the smoothed density field be
defined as

�
S

(x;R) ⌘
Z
�
0

(x 0)W(x + x

0;R)dx, (1.74)

where W(x;R) is a filter with radius R, corrisponding to a mass M = �
f

⇢̄R3,
with the parameter �

f

that depends on the filter form. The ansatz of the PS
formalism consists in assuming the probability of �

s

> �
c

(t) to be the same of
the mass elements fraction that at time t are in halos of mass bigger than M. If
�
0

(x) is a Gaussian field, the same is �
s

(x), and the probability of �
s

> �
c

(t) is
given by:

P[> �
c

(t)] =
1p

2⇡�(M)

Z1

�

c

(t)
exp


-

�2
S

2�2(M)

�
d�

s

=
1

2
erfc


�
c

(t)p
2�(M)

�
, (1.75)

where �2(R = (M/�
f

⇢̄)1/3) = �2(M) is defined by the equation (1.35). Ac-
cording to the PS ansazt, the probability (1.75) is equal to F(> M), the mass
fraction of collapsed object with mass larger than M. The Press-Schechter has
a problem; for M ! 0 (�(M) ! 1) one expects that P[> �

c

(t)] ! 1, i.e all
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the matter of the Universe is contained in arbitrary small mass halos. Instead
equation (1.75) P[> �

c

(t)] ! 1/2, gives only half of the total mass is part
of collapsed objects. This is because it’s given null probability at a point with
�
s

(x,M) < �
c

for a given smoothing scale M, to have �
s

(x,M 0) > �
c

for a bigger
smoothing scale M 0 > M. In other words this approach does not consider the
probability for that point to be included in a larger mass halo. A more rigorous
derivation for the mass function, is based on the excursion-set formalism (Bond
et al., 1991) (EPS), that explains the missing factor of two, adopting a spherical
top-hat filter in Fourier space. The mass function that is obtained at least when
F(> M) = 2P[> �

c

(t)] is:
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(1.76)

This is known as the PS mass function Press and Schechter (1974). From
equation (1.76), halos with mass M can form in a significative number only
when �

M

& �
c

(t). Defining the caracteristic mass M⇤(t) as

�(M⇤) = �
c

(t) = �
c

/D(t), (1.77)

only the halos with M . M⇤ will form in a significative number at time t.
Because in the hierarchical model D(t) is a growing function of time, while

�
M

decreases with the mass, the caracteristic mass M⇤ grows with time. So
progressively larger halos form as time goes by.

Qualitatively, the prediction is that the mass distribution is a power law for
small masses, with an exponential cutoff above characteristic mass, M⇤, whose
value increases with time.

The mass function of equation (1.76) is sensitive to the values of the cosmo-
logical parameters that enter in the equation (1.76) for �

M

, that depends on the
power spectrum, on the density parameters and on the linear growing.

In figure 5 we show the cumulative mass function of the halos for different
cosmological parameters as function of the redshift. The different models are
normalized to the mass function at z = 0.

1.3.4 Beyond the PS formalism

An alternative way to express the mass function is given by

f(�
m

, z) =
M

⇢̄

dn(M, z)
d ln�-1

m

, (1.78)

defined as the mass fraction associated to halos for unit range of ln�-1. With
this definition the PS mass function is expressed as

f
PS

(�
m

, z) =
r

2

⇡

�
c

�
M

exp

-

�2
c

2�2

M

�
. (1.79)
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Figure 5: Cumulative mass function n(> M, z) as a function of the redshift with M =
5⇥ 1014h-1M� for three different cosmological model (Rosati, Borgani &
Norman (2002) Rosati et al. (2002)): (solid line) ⌦

m

= 1 e �
8

= 0.5, (long dash
line) ⌦

m

= 0.3, ⌦
⇤

= 0.7 e �
8

= 0.8, (short dash line) ⌦
m

= 0.3, ⌦
⇤

= 0 e
�
8

= 0.8

The Press & Schechter mass function, despite its semplicity, has been used
for more than a decade. Only recently, thanks to N-body simulations, able to
cover a wide dynamical range in halo mass, significative deviations from the
PS expression are appreciated. These deviations are usualy interpretated as
corrections to the PS approach.

One of the first steps in deriving more accurate expression for the mass
function is to consider an ellipsoidal collapse rather than a sperical one, as
assumed in the PS approach. Including their effects for this kind of collapse the
mass function can be generalized to

f(�
m

, z) =
r

2a

⇡
C


1+

⇣�2

M

a�2
c

⌘� �
c

�
M

exp

-

a�2
c

2�2

M

�
(1.80)

(Sheth and Tormen, 1999). Comparing this expression with the results obtained
from N-body simulations, and imposing that

R1
0

f(�
M

)d⌫ = 1, the following
parameters are obtained: a = 0.707, q = 0.3, e C = 0.3222.

Others have found an alternative expression for the mass function, as a fitting
function to the mass function measured from N-body simulations. Warren et al.
(2006) have proposed the following:

f(�
m

, z) = A(�-a + b)exp- c

�

2 ), (1.81)

where A,a,b, c are the fit parameters (see list (8) in the paper of Warren et al.,
2006). The function f(�

m

, z) turns out to be sensitive to the algorithm used in
the simulations to identify halos and to estimate their mass (Evrard et al., 2002).

The PS expression for the mass function understimates the number of massive
halos and overstimate the ones below M⇤.
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Intermediate methods between simulations and analytical approaches, are
represented by perturbative approaches that describe the growth of haloes in
a given numerical realisation of a linear density field, such as the (1truncated
Zel’dovich approximation (Borgani et al., 1994), the peak-patch algorithm
(Bond and Myers, 1996b), (Bond and Myers, 1996a)) and the merging cell
model (Lanzoni et al., 2000). A new algorithm PINOCCHIO, to compute the
formation and evolution of dark matter haloes in a given linear density field is
proposed in 1999, by Monaco and Murante (1999). PINOCCHIO is acronym for
PINpointing Orbit Crossing Collapsed HIerarchical Objects. In common with
the other perturbative approaches, it uses a local description of the dynamics,
in order to identify collapsed haloes. The Lagrangian perturbation theory is
used to displace the haloes to their final positions (Monaco, 1994, 1997a,b).
The innovation of thit algorithm lies in the several orders of magnitude less
computer time and post analysis than the corresponding full blown numerical
simulations with an accurate description of the detailed clustering and merger
history of haloes. In addition, the successful reproduction of the merger history
of halos it provides, demonstrates that it identifies the key processes that govern
halo formation, and that these can be described with a perturbative approach.
In the next chapter we will describe in detail PINOCCHIO.



2
T H E P I N O C C H I O C O D E

Today numerical simulations are the tool for describing and investigating
the non-linear evolution and the hierarchical clustering. N-body simulations in
particular generate the non-linear distribution of dark matter.

Recent works are based on the Lagrangian perturbation theory (LPT), that is
the perturbative solutions of a system of equations for the computation of the
displacement of mass elements from their initial positions.

A powerful algorithm that operate in this line and that we present in this
chapter is PINOCCHIO (PINpointing Orbit-Crossing Collapsed HIerarchical
Objects). PINOCCHIO is able to identify dark matter haloes in a given numerical
realization of the linear density field in a hierarchical universe (Monaco et al.,
2002b). It exploits the Lagrangian perturbation theory, and in particular its
ellipsoidal truncation which can accurately predict the collapse, in the orbit-
crossing sense, of generic mass elements. Some points, undergoing orbit crossing,
are assigned to the network of filaments and sheets that connects haloes; this
network resembles closely that found in N-body simulations. The code generates
a catalogue of dark matter haloes with known mass, position, velocity and
merging history. The predictions of the code are very accurate when compared
with the results of large N-body simulations that cover a range of cosmological
models, box sizes and numerical resolution.

In this chapter, in section § 2.1, we present a brief discussion about N-body
simulations and in section § 2.2 we present PINOCCHIO, its algorithm and its
performances.

2.1 n-body simulations

In a N-body simulation, the mass distribution is usually represented by particles
distributed within a periodic box. The motion of each particle is computed
numerically by taking into account its interactions with other particles. The
number of particles in the most advanced simulations can reach several ten of
billions. An example is the Millennium simulation, a picture of which is shown
in figure 6, with eleven billion of particles.

The higher is the required resolution, the stronger are the accelerations, the
smaller the time interval over which discretizing the orbits, the higher is the
computational cost that includes computing time and memory requirements.

26
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Figure 6: The Millennium Run used more than 10 billion particles to trace the evolution
of the matter distribution in a cubic region of the Universe over 2 billion
light-years on a side. Here is reported a projected density field for a 15Mpc/h
thick slice of the redshift z = 0 output. ( http://www.mpa garching.mpg.de).

This means that a compromise between accuracy and manageable computer
requirements has to be chosen.

Special care must be employed to ensure both accuracy and efficiency, funda-
mental parameters to be chosen are:

• Size of the periodic box;

• Mass resolution: mass of each dark matter particle;

• Force resolution: the smallest scale down to which the gravitational force
is correctly computed.

A number of numerical techniques are used to reproduce the dark matter
distribution.

They differ, for the most part, only in the way the force of each particle is
calculated.

The most common methods for N-body simulations are the direct summation
(PP), the particle-mesh techniques (PM), its variant, the particle- particle-particle
mesh techniques (P3M) and the tree code.

The direct summation is the easiest technique and consists in computing the
force acting on each particle, summing up the force from all other particles. In
fact, it is also called particle- particle (PP) technique. The particles cannot be
treated as point-mass because they will approach infinitesimally close one to the
other. Because of this, it is common to use the so called softening parameters.
This technique is quite accurate but the numerical solution of a N-body system,
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for a fixed number of timesteps, scales as N2. This because the evaluation of the
force on each particle requires to take into account contributions from all other
members of the system.

The particle mesh technique discretizes the force field, calculating it on a
mesh with periodic boundary conditions, using an approach of average field.
In practice after the grid is built, the value of the density field and of the
gravitational potential are calculated on each grid point of it. The corresponding
values on the particles positions are calculated by interpolation. Forces are
calculated computing the gravitational potential on the grid, via the Fourier
transform technique, to solve the Poisson equation (1.20). The advantage of
the PM technique resides in the reduced number of operations that, thanks to
the Fast Fourier Transform, are of the order of ⇠ NlogN rather than N2. The
problem is in this case the resolution, that is limited by the mesh size. A variant
of the PM is given by the particle-particle-particle mesh (P3M): short range
forces are evaluated by the PP and are added to the long range ones, evaluated
by the PM. The accuracy is improved at the expenses of computational cost,
which is anyway still lower than the one of the PP technique.

The tree code follows a completely different approach. It treats particles
with a hierarchical system of partition. To calculate the force acting on the i-th
particle, close particles, with short range forces, are treated in a PP-like method,
while distant groups, with long range forces, are approximated by their lower
multipole momenta, i.e they are treated as a single particles with mass equal to
the total mass of the group, centered in its barycenter. The box of the simulation
is iteratively divided until each cell, with more than one particle, contains at
the end only one particle. This procedure permits to construct a tree structure
where the nodes (leaves of the tree) are represented by the different partitions
of the box. The communication between the nodes are the branches of the tree.
The Tree code is usually faster than the PM or PM3 for a comparable resolution.
However one needs to store the whole structure of the tree, to run it efficiently,
which means to increase the RAM memory requirement.

The arbitrary large dynamic range in the unsoftened dynamics and the ex-
pensive evaluation of the force have led to the development of a wide number
of numerical and analytical-numerical techniques, aimed to obtain a reliable
numerical solution with the minimum amount of computational resources.

In this context Pinocchio code has been thought and realized. The result is
a powerful and innovative instrument for the study and the analysis of the
properties of dark matter haloes, with cheap computational cost.

2.1.1 Initial conditions

The methods described until now calculate the evolution of the system at each
timestep, but they all start from an initial condition that has to be specified. As
presented in chapter 1, nowadays the standard cosmological model assumes that
the Universe was initially homogeneous and isotropic with small over-densities
that slowly are grown, giving rise to the structures we observe today. Let us
consider the contrast density � given by the equation (1.21). Let be V = L3
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the volume of the simulation. it is possible to write the contrast density in the
Fourier series, in the limit V ! 1 according to the equation (1.31) with periodic
boundary conditions:

�
�(0,y, z) = �(L,y, x)
�̇ = �̇(L,y, z)

(2.1)

Let’s consider the definition of the power spectrum given by equation (1.32).
Let’s assume that the growth of the cosmic structures starts from density pertur-
bations with a gaussian distribution, as the CMB and large scale observations
suggest. Then the power spectrum completely defines the fluctuations density
field. Its form depends on cosmological parameters and on the nature of the
dark matter. Once the power spectrum is known at the recombination, it is
possible to generate the initial condition: to this purpose one generate a set of
complex numbers with an equally distributed random phase and an amplitude
with a variance given by the power spectrum desired (see equation (1.35)), i.e.:

�̂
k

=
p

-2P(k)ln(↵)exp(i2⇡�) (2.2)

where ↵ and � are two random numbers with uniform distribution 2 (0, 1).
Now it is necessary to create the potential �(1)(q) in a spatial grid, given

by the Lagrangian coordinate q, through the Fourier transform, to obtain the
perturbation field given by the previous equation:

�(1)(q) =
X �̂

k

k2
exp(iq · k) (2.3)

Using this potential field initial positions and velocities are calculated with
the Zel’dovich approximation according to the equations (1.54) and (1.55)

2.2 pinocchio

PINOCCHIO, acronym for PINpointing Orbit Crossing Collapsed HIerarchical
Objects, is a code developed first by (Monaco et al., 2002b,a; Taffoni, G. and
Monaco, P. and Theuns, T., 2002).

It is able, with very limited computing resources, to generate catalogues of
cosmological dark matter haloes with known mass, position, velocity, merger
history from a realization of Gaussian initial (linear) density perturbation field,
given on a 3D grid, reproducing with very good accuracy the hierarchical
formation of dark matter distribution.

2.2.1 The algorithm

Pinocchio works in two fundamental steps:

1. ESTIMATES OF COLLAPSE TIMES. The instant at which a mass element
undergoes collapse is identified, i.e. the orbit crossing(OC). This is com-
puted numerically by applying the local ellipsoidal collapse approximation
(see 1.3.2.2) to the full Lagrangian perturbation (Bond and Myers, 1996b,c;
Monaco, 1995, 1997a,b).
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2. FRAGMENTING THE COLLAPSED MEDIUM. The collapsed particles
are grouped into disjoint haloes to mimic the hierarchical build up of halos
trough accretion and merging.

The first step determines when a simulation particle enters in a high density
region whereas the second step identifies the haloes and the merger history.
Positions and velocities are calculated by the Lagrangian perturbation theory at
the first order.

This approach can be efficiently applied for generating input for galaxy for-
mation models. Moreover, it can be applied for generating simulated catalogues.

2.2.1.1 Computing the Collapse time

A Gaussian density field ⇢(q) is generated on a cubic grid of N3 particles, in a
way much similar to that used to generate the initial conditions for an N-body
simulation, described in the section 2.1.1.

The density field represents the linear density contrast, i.e. the density contrast
at very early time t

i

, linearly extrapolated to the present time, it is given by:

�
l

=
�(q, t)
D(t

i

)
(2.4)

where q denote Lagrangian (initial) coordinate of the particle and that corre-
sponds to the grid vertex, while D(1)(t) is the linear growing mode of perturba-
tion, normalized at z = 0.

Let �(1)(q) be the corresponding peculiar potential due to the density field.
Following the EPS approach both density and potential fields are smoothed by
convolving them with a Gaussian window of size R, that is in k-space:

Ŵ(kR) = exp

✓
-k2R2

2

◆
(2.5)

Smoothing radii are typically ⇠ 20 logarithmically equi spaced, except for the
smallest smoothing radius, which is set to zero in order to recover the variance
at grid scale.

For each smoothing radius R, the first derivative of the potential r
q

�(1)(q)
i.e. p(1)(q)) and the second derivative, for the calculation of the deformation

tensor
dp(1)

j

(q)

dq
i

, are calculated by the Fast Fourier transform (FFT). They are
used to compute, respectively, the motion of the particle in the Zel’dovich (1970)
approximation and the evolution of the mass element based on ellipsoidal
collapse that we have treated in section 1.3.2, respetively.

The expected collapse time is calculated at each grid point, i.e. the time
at which a particle in the q position undergoes orbit crossing, t

coll

. This is
done using the 3th order LPT truncation (see section 1.3.2.2) with an empirical
correction, made by Monaco (1997b) and Monaco (1997a), for the quasi spherical
case.

The growing mode D(1)(t) is used as time coordinate. To calculate the inverse
of the collapse time of each mass element q and for each smoothing radius R:

F(q,R) ⌘ 1/D(t
coll

(q,R)). (2.6)
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This way the dynamics of the gravitational collapse is almost independent of
the background. The value of the F field at a single point q corresponds, in the
excursion set approach, to the trajectories in the F- R plane (or equivalently
the F- �2(R) plane) used to compute the mass function. If one considers the
spherical collapse we would have F = �

�

c

, having the absorbing barrier at �
c

.
The mass function is a quantity obtained from the absorption rate of the F(R)
trajectories by a barrier put at a level F

c

, given by the inverse of the time (D(1)(t))
of the collapse.

Then the following quantity is recorded:

F
max

(q) ⌘ max
R

[F(q;R)]. (2.7)

that is the highest value of F along the trajectory and it is interpreted as the
inverse of the time (D(1)(t)) at which the particle is expected to go into orbit
crossing.

Together with each point, the smoothing radius R
max

at which F = F
max

is stored, and the corresponding Zel’dovich velocity v
max

computed at the
time D(t) = 1/F

R

max

appropriate for the smoothing radius R
max

, necessary for
building of DM haloes.

The collapsed mass element will not necessarily accrete onto any halo, but may
instead become part of a filament or sheet (collectively referred to as filaments,
since these have undergone OC as well, these structures trace the moderate over
densities that connect collapsed haloes in simulations (Monaco et al., 2002b,a;
Taffoni, G. and Monaco, P. and Theuns, T., 2002).

The next sections describe how the OC collapsed medium is divided into
collapsed haloes and filaments according to the criteria of merging and accretion.

2.2.1.2 Fragmentation

The hierarchical formation of objects is followed through the grouping of col-
lapsed particles into haloes by tracing the merging and accretion process for
each particle individually. First the particles are sorted according to decreasing
collapse redshift z

coll

, and, starting from the highest z
coll

it is decided the fate
of the collapsed particle, working forward in time to the last particle to collapse.

For each particle on the initial grid position q the six nearest particles are
called Lagrangian neighbors. Two are the main processes in the hierarchical
formation of objects: the accretion of a particle onto a halo and the merging of
two haloes. In figure 7 are shown the cases of the fragmentation process.

The following criteria decide the fate of particles. Let R
N

= N1/3 be defined
as the Lagrangian radius of a halo of N particles, where the length are in units
of the grid spacing.

• Seed haloes: the local maxima of the collapsed redshift, z
c

, are seeds for a
new halo: all six neighburs have not yet collapsed, the particle is then a
peak of F

max

and is treated as a new halo with one particle;

• Accretion: if a collapsing particle is not a local density maximum at the
collapse redshift, it is checked whether any of its neighbors has already
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been assigned to a halo. If the point is the neighbour of a single halo, then
the code computs from its Zel’dovich velocity, the position of the halo,
the mass at the collapse redshift, and their mutual distance. If the mass
element has a distance d from the halo center of mass at the collapse time,
such as :

d < f
a

⇥ R
N

+ f
ra

+ �d (2.8)

then the accretion criteria is satisfied and the particle accretes onto that
halo. f

a

, f
ra

and �d are parameters that we discuss later. If the particle
is able to accrete onto two (or more) haloes, we assign it to the one for
which d/R

N

is the smallest. This criterion selects haloes with roughly fixed
overdensity.

• Merging: if some of the neighbors of a collapsing particle belong to dif-
ferent haloes, then these haloes merge if their mutual distance d, again at
the particle collapsed time, is smaller than a fraction of the largest of their
typical radii R

N

, i.e

d < f
m

⇥ max(R
N1

,R
N2

) + f
rm

. (2.9)

Since PINOCCHIO considers only six Lagrangian neighbors, up to six
haloes may merge at a given time, although binary and ternary mergers are
more frequent. Moreover, the previous condition is used to check whether
the particle is to be accreted on one of the groups. f

m

and f
rm

are other
two parameters that we discuss later.

• Filaments: collapsed mass elements which are not local maxima and do not
accrete onto a halo are assigned to a filament group, these particles tend
in fact to occur in the mildly overdense regions that connect the haloes
(visible as filamentary network between haloes in simulations). Note that
filaments have undergone orbit-crossing, although they do not belong to
relaxed haloes. In N-body simulations, some particles accrete into a halo
directly from this filamentary network. PINOCCHIO accretes all filament
neighbours of an accreting particle.

In figure 8 it is reported a summary scheme with the main tree block of the
algorithm.

We have seen in eqs. (2.8), and (2.9) that there are five free parameters.
f
a

is a parameter of order unity, analogous to the linking length parameter
used to identify (friend-of-friend) haloes, an algorithm used in N-body simu-
lation, where the linking length is 0.2 times the mean interparticle distance at
z = 0. It determines the normalization of the mass function.

The f
m

has similar function of f
a

but controls the merging condition and
therefore the overall slope of the mass function.

The f
ra

and f
rm

, are introduced in the accretion condition and in the merger
one respectively, to avoid the production of few small haloes at high redshifts, a
resolution effect seen because of the limited accuracy of the Zel’dovich approxi-
mation, when groups are very small and R

N

is of the order of grid spacing. The
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Figure 7: Cases of fragmentation process: The top panel on the left shows the six La-
grangian neighburs of a given particle, the bottom panel on the left illustrates
how this particle accres onto a neighbouring halo, the top panel on the right
depicts the merging of two haloes and a succesive accretion, if there is no
accretion the particle is marked as belonging to a filament in the bottom panel
on the right. (Heisenberg et al., 2011).
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f
rm

therefore controls the slope at low masses while f
ra

the abundance of low
mass haloes.

The f
s

is a free parameter used to avoid the tendency of objects to accrete
mass at higher redshifts. It controls the abundance of low mass haloes at low
redshifts. It appears in the �d term given by:

�d = f
s

(�(R
N

))1.7R
N

. (2.10)

where R
N

is given in grid units. This quantity is the error in reconstructing
positions that gives the uncertainty on d, i.e. the distance between a collapsing
particle and the center of mass of a group, �(R

N

) is the variance calculated on
the Lagrangian radius of the group. These corrections make all the parameters
sufficiently generous so that the particle falls within d at late time, although the
accuracy of LPT (Zel’dovich approximation) in estimating the velocities depends
on the degree of non-linearity reached and it becomes worst at later time.

These parameters are explained in detail in the papers of Monaco et al. (2002b)
and Monaco et al. (2002a).

The fragmentation code permits to have information of the merger and accre-
tion history at each time. Haloes are in fact always updated when a collapsing
particle touches them.

At each merger the largest halo retains its identification number (ID) that is
the ID of the expired halo. The mass of each halo involved in the merging event
is recorded together with the redshift at which the merger takes place.

Even though accretion is rigorously defined as the entrance of a single particle
into the object, the merger of a halo with another one with less than 10 particles
is always considered as an accretion event.

The merger trees extracted from PINOCCHIO provide a more complete
description of the merging histories of haloes then the extended Press and
Shechter (EPS) model. They not only follow the time evolution of the mass and
number distribution of the progenitors, but also their distribution in space and
their velocities.

The full catalogue of dark matter haloes, at each time, is provided and includes
for each halo, mass, center of mass in Lagrangian space, displacements and
peculiar velocities (Zel’dovich approximation).

2.2.2 The code

The first version of PINOCCHIO was written by Monaco et al. (2002a) in Fortran
77 and it was a serial code. It was created to carry out a run on a simple personal
computer. Its great innovation lies in its low computer requirements. The code
runs very fast compared to simulations. It is able to run a realization of 256

3

particles on a 512 Mbyte machine in slightly more than 6 hours. The first stage
for the collapse time calculation needs about 6 hours while the fragmentation
only few minutes. This means that it is possible to obtain reasonable merger
histories without the need of a supercomputer. Because the RAM is usually
the limiting factor, the PINOCCHIO code has been built to keep a minimum
amount of information in the RAM and swap the rest on the disk.



2.2 pinocchio 35

Figure 8: The main tree blocks of the algorithm are shown. For a given set of parameters
(center) Pinocchio computes the collapse time (top left) and for each collapsing
particle the fragmentation procedure is applied (bottom). Finally the statistical
properties of the fragmented objects are analysed (top right) (Heisenberg
et al., 2011).

The second version of PINOCCHIO was later developed. This was written in
parallel in Fortran 90. An innovation of the code has been the use of the FFTW
package for the computation of the Fast Fourier Transform. The FFTW takes
care of most communications for the parallelization of the F

max

computation.
The fragmentation is so quick that between the serial and parallel version of it
there are only small differences. Even in this version the memory is swapped to
the local disk.

The most recent version, the third one, permits to run PINOCCHIO on a
large number of cores and with limited disc access. In this version the memory
requirement increases by a factor of three, since it is all kept in the RAM. The
collapsing time is calculated as in the previous versions, while some changes
have been made to the fragmentation part of the code. The box is divided in sub-
volumes, and each of them is assigned to a task. The aim is to reduce the number
of communications among the tasks during the process. Moreover to proceed in
this way, each sub-volume needs to extend the calculation to a boundary layer.
This method permits a stable reconstruction of the largest objects with a layer
of 30 Mpc, that requires few of 10s per cent for large boxes but for small boxes
with high resolution the layer requires significant overhead.

As we reported, FFTW allocates memory to tasks in planes, while the frag-
mentation code operates with sub-boxes. The communication between the two
parts of the code, for the redistribution of the F

max

and velocities follows a
scheme for which tasks communicate in pairs.
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The code for the generation of the initial linear density field in the Fourier
space is obtained by linking the PINOCCHIO code with the N GenIC code by
V.Springel ( http://www.mpa garching.mpg.de/gadget/).

The relevant improvement therefore resides in the possibility of faithfully
reproducing a simulation, once one has the knowledge of the cosmology and
the random number seed.

The code considers different cosmologies: open universe, flat universe and
Einstein De Sitter Universe.

Displacements and the final positions of the groups are calculated using the
Zel’dovich approximation, as described in section 1.3.1.1

2.2.3 PINOCCHIO vs N-body simulations

To prove the validiy of PINOCCHIO we report in this section the results obtained
by the comparison of PINOCCHIO data with the ones of N-body simulations
(Monaco et al., 2002a).

We report here two of these simulations with different cosmology, the SCDM
simulation (⌦

m

= 1.0, ⌦
⇤

= 0.0, �
8

= 1, h = 0.5) run with the PKDGRAV
code, with box size of 500 h-1 Mpc and with 3603 particles (Governato et al.,
1999) and a ⇤CDM simulation (⌦

⇤

= 0.7, ⌦
m

= 0.3, �
8

= 0.9, h = 0.65) with
a smaller box of 100 h-1 Mpc and with 2563 particles, evolved with the P3M

HYDRA code (Couchman, 1991).

2.2.3.1 Mass function

We describe here the comparison of PINOCCHIO and FOF (used in the numeri-
cal simulations) mass functions for the SCDM and the ⇤CDM simulations. The
results are shown in figure 9: on the left it is reported the comparison of the
mass function obtained by PINOCCHIO, using three of the five parameters (see
2.2.1.2 and for more details see Monaco et al. (2002b) vs the one obtained by the
N-body simulation for SCDM, while on the right it is reported mass function
obtained by PINOCCHIO vs the one obtained the ⇤CDM simulation, using
the same combination of parameters; the results with the full five parameters
are very similar. For reference, it has been also plotted the PS and Sheth &
Tormen (ST) mass functions. The choice of the five parameters explained in
section 2.2.1.2 produces a PINOCCHIO mass function which falls to within
⇠5 per cent of the simulated one from z = 5 to z = 0, for all mass bins with
more than 30-50 particles per halo and for which the Poisson error bars are
small. The only residual systematic is a modest ⇠10-20 per cent underestimate at
the highest-mass bins and highest redshift. Because PINOCCHIO is calculated
for the same initial conditions as the simulation, Poisson error bars are not the
correct errors to use for this comparison (notice that the Poisson error bars of the
PINOCCHIO mass function are obviously very similar to those of the numerical
one). They are shown both for comparison with PS and ST and to understand
which mass bins are affected by small number statistics.
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Figure 9: On the left: the top panel have simulated mass function for FOF selected haloes
(Full lines with Poissonian error bars), PINOCCHIO mass function (filled
circles), the fit by Sheth and Tormen (short-dashed lines) and PS function
(long-dashed lines), at redshifts z = 0, 0.43, 1.13 and 1.86 (higher redshift
curves are off-set by 0.1 dex both vertically and horizontally for improved
clarity). Vertical lines show limits corresponding to simulation haloes with
10, 50, 100, 500 and 1000 particles (256

3 re-sampling); bottom panel have
difference between simulated mass function and PINOCCHIO (filled dots),
Sheth and Tormen fit (short-dashed line) and PS (long-dashed line) at z = 0
(Monaco et al., 2002b). On the right the mass function for the ⇤CDM model
at different redshift at different redshifts z = 0, 2, 4. continuous lines are the
PINOCCHIO predictions, and dotted and dashed lines are the PS and ST
predictions, respectively (Monaco et al., 2002a)
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Figure 10: Eulerian correlation function for the SCDM and ⇤CDM models at three
redshifts indicated in the panel, and for two mass ranges. Symbols refer
to simulation results, lines to PINOCCHIO predictions. Filled squares and
continuous lines: correlation function for low mass haloes (mass M from
6.3 ⇥ 1011 to 3 ⇥ 1012 M�), open squares and dashed lines: correlation
function for massive haloes (M > 3⇥ 1012 M�) (Monaco et al., 2002a).

2.2.3.2 The 2-point correlation function

We show in figure 10 the correlation function of haloes as a function of mass, in
Eulerian space. The correlation function was computed using a standard pair
counting algorithm. The agreement between PINOCCHIO and the simulations
is very good down to ⇠1-2 comoving Mpc/h. The differences are of the order of
⇠10-20 per cent in amplitude and .10 per cent in terms of scale at which a fixed
amplitude is reached. This means that both the correlation length r

0

, at which
⇠(r

0

) = 1, and the length at which ⇠ = 0 are reproduced with an accuracy of
better than 10 per cent. More important, the trends of increased correlation for
the more massive haloes, or for haloes of a given mass with increasing redshift,
are both well reproduced.

2.2.3.3 Progenitors

PINOCCHIO follows the merging of haloes in real time, and links each progen-
itor to its parent after each merging event. In N-body simulations haloes are
identified at the end of the run, so it is necessary to analyze and cross-correlate
a large number of outputs to follow the merger histories. In other words, the
generation of the merger trees is by far less expensive (in term of CPU time
and disk space) in PINOCCHIO than in a simulation; in fact PINOCCHIO
automatically computes the merging history of haloes and does not need any
further analysis.
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Figure 11: Conditional mass functions in the ⇤CDM case for parent haloes identified
at z = 0. The mass threshold is fixed at M

th

= 7.6⇥ 1010 M� (10 particles),
the increases from left to right and covers the values: z = 0.43 1.13, 1.86. The
mass of the parent halo increases from top to bottom, the adopted values are:
M

0

= 1. ⇥ 1015M� and 5. ⇥ 1015M�. The points represent the simulation
data while the solid lines are the prediction of PINOCCHIO; the dashed lines
are the analytical predictions of the EPS formalism. (Taffoni, G. and Monaco,
P. and Theuns, T., 2002).

We report in figure 11 the comparison of the mass function of the progenitors,
i.e. the number density of progenitors of mass M at redshift z that merge to
form the parent M

0

at redshift z
0

given by PINOCCHIO and by the simulations.
Generally, at least 30 particles are necessary to identify reliable haloes both in
the simulation and in PINOCCHIO, so this is the threshold mass considered for
the statistical analysis.

For the build up of merger trees of the N-body simulations the following two
rules have been used:

• if a parent halo contains less than 90 per cent of the mass of all its progeni-
tors at redshift z, then it is excluded from the analysis (this happens in a
few percent of cases);

• we assign to the progenitor the mass of all its particles that will flow in to
the parent at z

0

.

The PINOCCHIO conditional mass function and that obtained from the
simulations are computed by averaging over a mass interval around logM

0

of
0.01 dex.

The conditional mass function predicted using PINOCCHIO shows a very
good agreement when compared with the simulations. In figure 11 we show
that the PINOCCHIO prediction fits the simulations data with similar accuracy
for all the considered parent mass and redshifts, with a discrepancy between
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the two distribution which in general is less than 25 per cent. This means that
PINOCCHIO reproduces the conditional mass function with better accuracy
that the EPS prediction, that is no able to fit numerical simulations.

2.2.3.4 Object-by-object comparison

Agreement at the point-by-point level requires that each particle is predicted to
reside in the correct halo with the correct mass. The improvement of PINOC-
CHIO in the point-by-point comparison with respect to other methods is not
primarily due to the more accurate dynamical description of collapse, rather it is
due to the much more accurate description of the shape of the collapsing region.

To make this analysis for each object of one catalogue, the objects of the other
catalogue that overlap for at least 30 per cent of the Lagrangian volume have
been considered. Two haloes from different catalogues are cleanly assigned to
each other, when one overlaps wih the other more than with any other halo. The
fraction of haloes cleanly assigned is f

cl

, which the fraction of halos not assigned
is f

split

, the remainder 1- f
cl

- f
split

is the fraction of objects of one catalogue
that do not overlap with any halo in the other catalogue. These fractions quantify
the level to which two catalogues describe the same set of haloes. f

ov

is defined
as the average fraction that haloes overlap when they are cleanly assigned. All
these estimators depend on whether PINOCCHIO is compared with simulations
or vice-versa, but in general that difference is small as long as the agreement is
good.

To prove the agreement of PINOCCHIO with the simulations at the object-by-
object level we show in figure 12 the the comparison of PINOCCHIO with the
SCDM simulation (left panel) and with the ⇤CDM one (right panel).

In both cases the agreement is very good at higher redshift with ⇠80-90 per
cent of objects cleanly assigned when the haloes have at least 50 particles. The
degree of splitting is only .5 per cent, while the average overlap of cleanly-
assigned objects f

ov

ranges from 60 per cent to 70 per cent nearly independent of
mass and encouragingly larger than the 30 per cent lower limit. The agreement
is slightly worse at lower redshift, with f

cl

& 70 per cent for haloes with at
least 100 particles, and f

split

⇠5–10 per cent. Within LPT there is obviously no
advantage in going to higher resolution, as the accuracy of LPT worsens with
the degree of non-linearity and with it all the results. Anyway, the agreement is
still very significant for the last output, with a high fraction of cleanly assigned
objects and a modest degree of splitting. In any case the results always improve
with increasing number of particles.

2.2.3.5 Accuracy of reconstruction

PINOCCHIO is able to accurately recontruct mass, positions and velocities
of haloes. In figure 13 we show the accuracy with which PINOCCHIO is
able to estimate mass, Eulerian position and velocity of the cleanly assigned
objects. In particular, we show for ⇤CDM the scatter plots of the masses, and
of velocity and position along one coordinate axis. For comparison, the scatter
plot of the displacements of FOF haloes from the initial to the final positions are
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Figure 12: On the left comparison on an object-by-object level of haloes identified by
PINOCCHIO and found in the SCDM simulation, using a variety of statistics.
Continuous, dotted, short-dashed and long-dashed lines refer respectively
to redshifts z = 0, 0.43, 1.13 and 1.86. Upper panel:fraction f

cl

of cleanly
assigned halo pairs between the two catalogs, as a function of mass; middle
panel: fraction f

split

of FOF haloes that are split in two PINOCCHIO haloes;
lower panel: average overlap in Lagrangian space, f

ov

, for cleanly paired-up
haloes. Vertical lines show limits corresponding to simulation haloes with 10,
50, 100, 500 and 1000 particles (256

3 re-sampling). On the right comparison
on an object-by-object level of haloes identified by PINOCCHIO and found
in the ⇤CDM simulation. Continuous, dotted, short-dashed and long-dashed
lines refer respectively to redshifts z = 0, 1, 2 and 4. Top panel: fraction f

cl

of
cleanly assigned objects; middle panel: fraction f

split

of non-cleanly assigned
objects; bottom panel: average overlap f

ov

for cleanly assigned objects. The
vertical lines in the top panel indicate haloes with 10, 100, 10

3, 10

4 and 10

5

particles (heavy lines) or 50, 500, 5⇥10

3 and 5⇥10

4 particles (light lines).
(Monaco et al., 2002b,a).
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Figure 13: Difference in mass, position and velocity, logM, x and v respectively, as
estimated by PINOCCHIO and found from the simulation of ⇤CDM, for
cleanly assigned haloes. The scatter around the mean is plotted below each
panel. The lower right panels show for comparison the displacement of haloes
according to the simulation (Monaco et al., 2002a).

shown as well. Masses are recovered with an accuracy of ⇠40 per cent ⇤CDM,
nearly independent of mass. The average value is slightly biased. Positions are
recovered with a 1D accuracy of ⇠1 Mpc, slightly depending on the box size and
much smaller than the typical displacements, while velocities are recovered with
a 1D accuracy of ⇠150 or 100 km/s. In general, the velocities of the fastest moving
haloes are underestimated. This could be fixed by extending the calculation of
velocities to second or third order LPT, that will be part of this work.

2.2.3.6 Performance and scaling

The hard and the soft scaling properties of the third version of the code, have
been tested running the code on the PLX machine at the Centro Interuniversitario
del Nord Est per il CALcolo (CINECA). In the hard test the number of particles
for each processor are fixed and the number of processor is increased while in
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Figure 14: The picture shows the time required for PINOCCHIO for each stage of the
run in function of the number of processors used: the triangle represents the
time required fot the collapse time calculation, the squares for the particles
sorting, the stars for fragmentation and finally the circles represent the total
time required (Monaco workshop Trieste (2012) http://adlibitum.oats.inaf.it).
The data comes from a run made with a 7203 grid of size, 720Mpc/h box
size, on PLX@cineca

the soft test, the number of processor is costant while the number of particles is
proportional to the number of the processors.

We report in figure 14 a hard scaling test, i.e. the time required for each
step of PINOCCHIO as function of the number of processor. The realization is
obtained considering 7203 particles, for a commoving 720Mpc/h box size length
on 1 to 8 nodes, with each node including 12 cores with 48 Gb of RAM. Here
the time needed to write the results on the disk is not considered. The triangle
represents the time required for the collapse time calculation, the squares for the
particles sorting, the stars for the fragmentation and finally the circles represent
the total time required to complete the run. The horizontal line gives the ideal
behavior of the expected scaling, which is constant because the number of grid
points are fixed. The computation of collapsing time and of the fragmentation,
despite the presence of the boundary belt, follow very closed the behaviour of
the ideal case, thanks to the FFTW libraries.

In figure 15 we show the same quantities, but here the number of particles
is increased, at fixed mass resolution, proportionally to the number of cores
used, up to 1440

3 on 8 nodes. The solid line, as before, is the Nlog
2

N ideal total
time required. Even in this case, the computation of collapsing time and of the
fragmentation, although the boundary belt, follow very closed the behaviour of
the ideal case.

To give another exsample of the speed of PINOCCHIO, a realization of 2048

3

particles run on 300 cores of the PLX machine requires only ⇠ 30 minutes: the
collapse time calculation employs 65 per cent of time (40 per cent required for
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Figure 15: The picture shows the time required for PINOCCHIO for each stage of the
same run described in figure 14 so the symbol represent the same quanti-
ties, but here the number of particles is scaled with the number processors
(Monaco workshop Trieste (2012) http://adlibitum.oats.inaf.it).

the FFT), while the redistribution takes 20 per cent and fragmentation 15 per
cent.



3
I M P R O V E M E N T O N T H E
C O D E

The first part of this work is an approach to the numerical calculation. It is
focus on the improvement of the PINOCCHIO code. The aim is to translate each
algorithm that calculates the analytic solution of a specific cosmological quantity,
with the correspondent algorithm that performs the calculation numerically. In
fact some cosmological equations, such as the equation of evolution of the linear
growing mode at first and second order, have no analytical solutions except
for particular cases, instead numerical solutions provide the informations for
the general cases. There are several numerical algorithms studied for different
requests of the problem. It’s a good practice to test the accuracy of numerical
solutions by reproducing the analytical ones. Once the requested accuracy is
achieved, the numerical calculation of the cosmological quantities allows the
code to be more elastic and complete.

We have implemented the algorithm for the numerical solution of the first
order equations of the growing mode and of the cosmic time that PINOCCHIO
calculated using the analytical solutions. Later, we have used the same algo-
rithm to implement the solution of the growing mode at the second order that
previously was not implemented in PINOCCHIO. Then we have performed all
the necessary comparisons between the analytic and the numerical results to
check if the requested accuracy is achieved.

In this way we can evaluate the evolution of perturbations of the dark matter
component with the same accuracy given by the analytical results, and in
addition we can perform it for more general cosmological models even including
the contribution of the dark energy equation of state. Moreover with the second
order of the growth it is possible to improve the accuracy in the evaluation of
the positions and velocities of dark matter halos, calculated by PINOCCHIO
with the Zeldovich approximation (first order LPT).

In section § 3.1 we present the routines that PINOCCHIO uses for the calcu-
lation of the cosmological quantities, included the first order of the growth. In
section § 3.2 we describe the method followed for the numerical calculations and
in section § 3.3 we show the result of the comparison between the numerical.

45
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3.1 cosmological routines of pinocchio

PINOCCHIO contains one file for the calculation of the cosmological quantities,
included the growing mode, cosmo.F90, and a module, pinocchio-common.F90 that
contains the parameters needed to run the code, including the cosmological
parameters, the basic properties of the (highest-resolution) box, the run name
and so on.

More in detail, cosmo.F90 calculates the following cosmological quantities we
are interested in:

- the growth first order as a function of z, D(1), and its inverse function,
D(1)-1;

- the scale factor as a function of time, a(t);

- the paramenter density as a function of the redshift, ⌦
i

(z);

- the hubble parameter as a function of redshift, H(z);

- the cosmic time as a function of redshift, t(z);

- Peebles’ f(⌦) function, (f(⌦) = dlog(D(1))/dloga).

We will first focus our attention on D(1), D(2) and t(z). We have already
presented in the first chapter the equations that describe the time evolution of
the growth at the first order (equation (1.53)), at the second order (equation
(1.62)) and the evolution of the cosmic time (equation (1.3)). We write them
as a function of the scale factor, introducing the following change of variables.
Considering H = ȧ

a

= 1

a

da

dt

, it follows:
8
>>>><

>>>>:

d

dt

= aH d

da

= ȧ d

da

d

2

dt

2

= d

dt

�
ȧ d

da

�

= ä d

da

+ ȧ2

d

2

da

2

(3.1)

therefore we have:
8
>><

>>:

D̈(1) + ( 3
a

+ 1

E(a)
dE(a)
da

)Ḋ(1) - 3⌦

m

2E(a)2a5

D(1) = 0

D̈(2) + ( 3
a

+ 1

E(a)
dE(a)
da

)Ḋ(2) - 3⌦

m

2E(a)2a5

D(2) = - 3⌦

m

2E(a)2a5

(D(1))2

ṫ = 1/(E(a)H
0

a)

(3.2)

We write as well the quantities we calculated in order to the above equations,
i.e. equation (1.11) for the evaluation of E2(z) and the integral of the equation
of state of for the dark energy expressed in equation (1.12), respectively:

8
<

:
H2 = E2(a)H2

0

= ⌦
r0

⇣
a

0

a

⌘
4

+⌦
m0

⇣
a

0

a

⌘
3

+⌦
k0

⇣
a

0

a

⌘
2

+⌦
DE

⇣
a

0

a

⌘
3

exp
⇣
-3

R
a

1

dP

d⇢

da0
a0

⌘

dP

d⇢

= w+w
1

(1- a)

(3.3)
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where we consider ⌦
r0

= 0 because it is negligible in our case.
The previous version of cosmo.F90 calculated the first order of the growth and

of the cosmic time with the following equations, that are the exact solutions for
particular cosmological models. From (1.53) and (1.15):

• Einstein De Sitter model (⌦
m0

= 1, ⌦
⇤0

= 0):

D(1)(a) = a(t) = D(1)(z) = 1/(1+ z), (3.4)

t(z) = 2/3
t(z

0

)

(1+ z)3/2
(3.5)

• Flat universe (⌦
m0

< 1, ⌦
⇤0

6= 0):

D(1)(z) = h

Z1

h

1

x2(x2 - 1)1/3
dx (3.6)

where h = coth(3
2

t(z)
p
⌦

⇤0

);

t(z) =
2

3

t(z
0

)p
⌦

⇤0

sinh-1

0

@

q
⌦

⇤0

⌦

m0

(1+ z)3/2

1

A (3.7)

• Open Universe (⌦
m0

< 1, ⌦
⇤0

= 0):

D(1)(z) =
5

2(⌦-1

0

- 1)

✓
1+

�
1+ 3(⌧2 - 1)

�✓
1+ ⌧/2log
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(3.8)

where ⌧ is
r

(1+z)

(⌦-1

0

-1)
+ 1,

t(z) =
1

2t(z
0

)
⌦

m0

(1-⌦
m0

)-3/2(cosh-1(
z⌦

m0

- z⌦
m0
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z⌦
m0
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m0

)

+2

p
(1-⌦

m0

)(z⌦
m0

+ 1)

z⌦
m0

/(1+ z)
.

(3.9)

For each cosmological model treated above H2(z) (or H2(a)) and the dark
energy equation of state have the following expressions:

•
�

H2 = E2(a)H2

0

=
�
a

0

a

�
3

dP

d⇢

= w
0

+w
1

(1- a) = -1 .
(3.10)

•
8
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:
H2 = E2(a)H2
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0
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⌘
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(3.11)
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•
8
<

:
H2 = E2(a)H2

0

= ⌦
m0

⇣
a

0

a

⌘
3

dP

d⇢

= w+w
1

(1- a) = -1;
(3.12)

The growth is normalized to 1, i.e at the value it assumes at z = 0, a
0

is taken
equal to unit.

We have studied the analytical solution for the growth at the second order for
the only cosmological model that admits it, i.e the EDS model. Considering that
in this cosmology D(1)(a) = a(t) = t2/3 (see equation (1.15)), E(a)2 = 1/a3 =
1/t2, it is easy to demonstrate that the solution of the equation (1.62) is:

D(2)(a) = -3/7a2 . (3.13)

We consider also the approximation explained in section 1.3.1.2 provided by
Bouchet et al.(1995-1996) ( Bouchet (1996)) for a ⇤CDM universe:

D(2)(t) ' -3/7(D(1)(t))2⌦1/143

m

. (3.14)

.

3.2 numerical calculation

In order to find the numerical solutions for our quantities, we have to solve
a problem involving ordinary differential equations (ODEs) and numerical
integration of functions.

3.2.1 Differential equations

We have differential equations of the second order for both the growth, and the
first order equation of the cosmic time.

Problems involving ordinary differential equations (ODEs) can always be
reduced to the study of sets of first-order differential equations, with a change
of variable. Usually one defines the new variables to be one the derivative of
the original variables. The generic problem in ordinary differential equations
is thus reduced to a set of N coupled first-order differential equations with the
functions having the general form:

dy
i

(x)

dx
= f

i

(x,y
1

,y
2

, . . . ,y
n

) (3.15)

where the functions f
i

on the right-hand side are known.
A problem involving ODEs is not completely specified by its equations but

also by the nature of the problem’s boundary conditions, i.e, algebraic conditions
on the values of the functions y

i

. Usually, the nature of the boundary conditions
determines which numerical methods will be feasible. In our case (the initial
value problem) all the y

i

are given at some starting value x
s

, and it is desired
to find the y

i

’s at some final point x
f

, or at some discrete list of points (for
example, at tabulated intervals).
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There are different types of practical numerical methods for solving initial
value problems for ODEs, all of them follow the Euler’s method: such meth-
ods are based on the same idea, i.e. add small increments to the functions
corresponding to derivatives, multiplied by step sizes.

3.2.2 Integrals of functions

The integrals of functions we have to solve, for the estimate of the E(z) values for
different cosmologies and for the equation of dark energy, are definite integrals.

The basic problem considered, consists into compute an approximate solution
of a definite integral:

Z
b

a

f(x)dx. (3.16)

If f(x) is a smooth well-behaved function, integrated over a small number of
dimensions and the limits of integration are bounded, we can use methods for
approximating the integral with arbitrary precision, called quadrature methods.
The valuation of the integral I =

R
b

a

f(x)dx is equivalent to solve, for the values
I = y(b), the differential equation:

dy

dx
= f(x) (3.17)

with y(a) = 0 as boundary condition.
A large class of quadrature rules can be derived by constructing interpolating

functions which are easy to integrate. Typically these interpolating functions are
polynomials.

3.2.3 Numerical tools: Runge-Kutta and Qromb

As for the numerical analysis, we have chosen the Runge–Kutta method to solve
our ordinary differential equations and the Romberg’s method to compute the
definite integrals of functions S. et al. (1992).

3.2.3.1 Runge-Kutta

The Runge Kutta method is known to be very accurate and well-behaved for a
wide range of problems. It is a reasonably simple and a robust method when
combined with an intelligent adaptive step-size routine. It propagates a solution
over an interval by combining the information from several steps (each involving
one evaluation of the right-hand f’s), and then using the information obtained
to match a Taylor series expansion up to some higher order.

We start considering the Eulerian formula:

y
n+1

= y
n

+ hf(x
n

,y
n

) (3.18)

that advances a solution from x
n

to x
n+1

= x
n

+h. The formula is asymmetrical.
It advances the solution through an interval h, but it uses derivative information
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only at the beginning of that interval. This leads to a large truncation error per
step. Runge-Kutta constructs a more symmetric integration method by making
an Euler-like trial step to the midpoint of the interval, and then using the values
of both x and y at the midpoint to make the real step across the interval. To be
more exact,

8
>><

>>:

k
1

= hf(x
n

,y
n

)

k
2

= hf(x
n

+ h/2,y
n

+ k
1

/2)

y
n+1

= y
n

+ k
2

+O(h3)

(3.19)

As indicated in the error term, this symmetrization cancels out the first-order
error, making the method accurated at second-order. In fact, the above method
is generally known as a second-order Runge-Kutta method. Of course, there is
no need to stop at a second-order method. By using two trial steps per interval,
it is possible to cancel out both the first and second-order error terms, and,
thereby, construct a third-order Runge-Kutta method. Likewise, three trial steps
per interval yield a fourth-order method, and so on. The general expression for
the total error, ✏, associated with integrating our ODE over an x-interval of order
unity using an nth-order Runge-Kutta method is approximately:

✏ ⇠
⌘

h
+ hn. (3.20)

where ⌘ is the error due to the intial step of integration. Here, the first term
corresponds to round-off error, whereas the second term represents truncation
error. The minimum practical step-length, h

0

, and the minimum error, ✏
0

, take
the values:

�
h
0

/ ⌘1/(n+1)

✏
0

/ ⌘n/(n+1)
(3.21)

respectively. h
0

increases and ✏
0

decreases as n gets larger. However, the relative
change in these quantities becomes progressively less dramatic as n increases.
It is possible to reasonably choose these parameters for the accuracy of the
integration required.

Routine for carrying out one classical Runge Kutta’s step on a set on N
differential equation has as inputs the values of the indipendent variables, as
outputs the values of the right hand side of equations (3.19) by a step h. For the
calculations it requires to supply function derivatives and values of derivatives
at starting point.

3.2.3.2 Qromb

The Romberg method, (QROMB in Numerical Recipes), applys Richardson
extrapolation, a sequence acceleration method, used to improve the rate of
convergence of a sequence, repeatedly on the trapezium rule or the rectangle
rule (midpoint rule).



3.2 numerical calculation 51

The midpoint rule or rectangle rule is the simplest method of quadrature
that assumes the interpolating function as a constant function (a polynomial of
degree zero) which passes through the point ((a+ b)/2, f((a+ b)/2)). :

Z
b

a

f(x)dx ⇡ (b- a)f

✓
a+ b

2

◆
. (3.22)

The trapezoidal rule instead works with the interpolating function that is an
affine function (a polynomial of degree 1) which passes through the points
(a, f(a))and(b, f(b)).

Z
b

a

f(x)dx ⇡ (b- a)
f(a) + f(b)

2
. (3.23)

Romberg’s method evaluates the integrand at equally-spaced points. The
integrand must have continuous derivatives, though fairly good results may be
obtained if only a few derivatives exist. The Romberg method is adequate when
the integral must be evaluated many times and the integrand is an analytical
function, since the function may be evaluated at arbitrary argument values, and
the assumptions behind Romberg integration hold.

The routine for carrying out values of the integral of the function has as input
the function together with the extremes of integration. A parameter ✏ sets the
accuracy required.

3.2.4 Implementation

To find numerically the solutions of the equations (3.2) we need to express them
in a suitable form for the application of the Runge-Kutta algorithm, that accepts
linear differential equation at the first order. The first equation of the system
(3.2) has therefore the form:

D̈(1) = a
1

Ḋ(1) + a
2

D(1) (3.24)

where we have called with a
1

and a
2

the coefficents respectively of Ḋ(1) and
D̈(1):

8
<

:
a
1

= -
⇣

3

a

+ 1

E(a)
dE(a)
da

⌘

a
2

= 3⌦

m

2E(a)2a5

(3.25)

Let also consider the following change of variables:
�

y
1

= Ḋ(1)

y
2

= D(1)
(3.26)

it’s possible to write a system of two first order differential equations:
�

ẏ
1

= D̈(1) = a
1

y
1

+ a
2

y
2

ẏ
2

= y[1]
(3.27)
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The equation of evolution of cosmic time in the system (3.2) is already a
linear differential equation of first order, we express it in this way:

�
y
3

= tH
0

= (2/3)a3

ẏ
3

= (1/E(a))x
(3.28)

We have followed the same modus operandi for the growth at the second
order, becuase equations (1.53) and (1.62)) differ only for the right side term,
making the following substitutions:

�
y
4

= Ḋ(2)

y
5

= D(2)
(3.29)

we obtain
�

ẏ
4

= D̈(2) = a
1

y
4

+ a
2

y
5

+ a
2

(y
2

)2

ẏ
5

= y
4

(3.30)

where a
1

and a
2

are the same coefficents of (3.25).
Runge Kutta routine (RK) requires the intial value of the function and of

its derivatives, we have considered the ones for an Eds model. This choise
is not tying because, as we described in section 1.1.1, the Universe is well
approximated by the EDS model when a(t) is small.

We decided to adopt the successive initial values:
8
>>>><

>>>>:

a = 10-6

D(1)(a) = a

D(2) = -3/7a2

t(a)H
0

= 2/3a3

(3.31)

In the RK routine, we have given a much smaller number for the initial value
of the scale factor a, that’s because in this way, RK “has the time to adjust” the
behaviour of the function it has to calculate.

We have implemented these informations in a new program numerical-grow.F90,
using the same program language of PINOCCHIO, i.e. fortran 90. numerical-
grow.F90 comunicates with cosmo.F90, for the parameters of the cosmology and
for the range of time considered. Both extend from z = 0 and z = 20 even if the
binning in redshift it’s different:cosmo.F90 has 200 logaritmic spaced binning
while numerical-grow.F90 has variable binning in redshift given by the adaptive
step control of Runge Kutta.

3.3 comparison of numerical integrations with analytical so-
lutions

Our aim is to reach an accuracy of 10-4 between the analytical solutions and
the numerical ones, in the models where it’s possible to do this comparison.
Once the numerical solutions are tested to be valid in these particular cases, we
extend the validity of our calculations for all general cases.
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We have done a preliminary test varying the two free parameters of the Runge
Kutta routine ✏ (error associated at the Runge Kutta method) and h (initial step
for the integration), to find the best combination of them minimizing as much
as possible the discrepacy between the analytical and the numerical result, for
open, closed and flat Universe.

We have choosen the growth at the first order to conduct this evaluation. The
accuracy requested was reached for different values of ✏ and h. The results carry
us to the conclusion that it was enough to consider ✏ and h equal to 10-6 as a
good compromise between a good accuracy and computational time, push to
lower values would have been therefore uselessly.

We have tested a large number of cosmological models for D(1), D(2) and
t(a). For each of these models we have considered the contribution of the dark
energy constant, i.e we have choosen w = -1 and w

1

= 0:

• EDS Universe:

- (⌦
m0

= 1, ⌦
⇤0

= 0)

• Flat Universe:

- (⌦
m0

= 0.1, ⌦
⇤0

= 0.9)

- (⌦
m0

= 0.2, ⌦
⇤0

= 0.8)

- (⌦
m0

= 0.3, ⌦
⇤0

= 0.7)

- (⌦
m0

= 0.4, ⌦
⇤0

= 0.6)

- (⌦
m0

= 0.6, ⌦
⇤0

= 0.4)

- (⌦
m0

= 0.2, ⌦
⇤0

= 0.8)

• Open Universe:

- (⌦
m0

= 0.1, ⌦
⇤0

= 0)

- (⌦
m0

= 0.2, ⌦
⇤0

= 0)

- (⌦
m0

= 0.3, ⌦
⇤0

= 0);

For each of them we have analyzed the logarithmic fit of the numerical
quantities with the analytical ones and the residuals, both as function of the
scale factor.

In figure 16, 17, 18 we show six different flat models. On the top panels it’s
reported the logarithmic behaviour of the growth in function of the scale factor,
while in the bottom panel we show the relative error between the the analytic
and numerical results (D(1)

num

-D
(1)
an

)/D(1)
an

. The behaviour of the relative error
for all the six cases is of the order of 10-4 and from a = 0.5 to a = 1 it decreases,
this is because both the numerical and the analytical result are normalized to
a = 1. Morover with the increasing of the value of ⌦

m0

(and subsequently of
the decreasing of ⌦

⇤0

) there is a progressive improvement of the accuracy, that
because we get closer to the ESD model.

The required accuracy is reached also for the numerical cosmic time. For the
EDS model the difference between the numerical values of the cosmic time versus
the analytical one is null. We show in figure 19 the open models. The numerical
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(a)

(b)

Figure 16: The figure shows the fit between the numerical and the analytical growth at
the first order, for different cosmological flat models, respectively in a)⌦

m0

=
0.1, ⌦

⇤0

= 0.9 and in b)⌦
m0

= 0.2, ⌦
⇤0

= 0.8. For each cases we present on
the top of the graph the logaritmic behaviour of the growth in function of the
scale factor, while in the bottom panel we show the relative error between
the the analytic and numerical results.
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(a)

(b)

Figure 17: Same as figure 16 but with cosmological parameters in a)⌦
m0

= 0.3, ⌦
⇤0

=
0.7 and in b)⌦

m0

= 0.4, ⌦
⇤0

= 0.6
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(a)

(b)

Figure 18: Same as figure 16 but with cosmological parameters in a)⌦
m0

= 0.6, ⌦
⇤0

=
0.4 and in b)⌦

m0

= 0.8, ⌦
⇤0

= 0.2
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cosmic time reproduces perfectly the analytical one in all the cases considered
with an accuracy, this time, of the order of 10-6. For range of 0.1 . a . 1 we
reach an accuracy of 10-8 and nearly 10-9 for the open model with ⌦

m0

= 0.8.
Even for the cosmic time the integrations seems to be sensitive to the ⌦

⇤0

parameter. The accuracy increases once we get closer to the EDS model.
For the growth at the second order, we have proceeded considering first of all

the EDS model, because it’s the only case that admits exact analytical solution.
It is illustrated in figure 20. The analytic and numerical points are perfectly
superimposed, their relative error is costant and of the order of 10-7 for all the
values.

Then we have considered different flat models, shown in figures 21 and 22.
We want to analyze this time the discrepacy between the numerical results and
the approximation given by (3.14). The residuals differ by about 10-7 in both
the models shown, until z ⇠ 0.2 (top panel), until z ⇠ 0.3 (bottom panel), to grow
after exceeding slightly the 10-4 value around z ⇠ 1. figure 21)

Open models are considered to check that our numerical solutions are more
accurate than the analytical approximation of Bouchet. The discrepacy is of the
order of 10-2.

It is possible to conclude that the results pointed out until now confirm that
the accuracy we verified is the one we aspected for all the quantities and the
cosmological models considered.

We summarize our result in this last graph 24 where we reported the numer-
ical growing mode at first and second order for all the different cosmological
models we considered.

Once we have verified that the routines Runge-Kutta and Qromb have correctly
the proprierties for our requests, we have linked the cosmo.F90 to numerical-
growth.F90 so as Runge-Kutta evaluates its adaptive step control of the ODEs, in
a range given by each bin of cosmo.F90. For each redshift there is therefore now
the correspondance between analytical and numerical points.

Morover thanks to the implementation with Qromb of the general form of
E(z), that includes the equation of state of dark energy, it has been possible to
translate the analytical calculation, in particular cases, of the other quantities we
have listed in section 3.1, of cosmo.F90 in the correspondent numerical one.
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(a)

(b)

(c)

Figure 19: The figure shows the behaviour of the numerical and analytical cosmic
time, for different cosmological open models, respectively in a)⌦

m0

= 0.24,
⌦

⇤0

= 0, b)⌦
m0

= 0.5, ⌦
⇤0

= 0, in c)⌦
m0

= 0.8, ⌦
⇤0

= 0. For each case
we present on the top of the graph the logarithmic trend of the growth in
function of the scale factor, while in the bottom panel we show the relative
error between the the analytic and numerical results.
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Figure 20: The figure shows the behaviour of the numerical and analytical growth at the
second order, for the EDS model: ⌦

m0

= 1, ⌦
⇤0

= 0. On the top of the graph
it’s reported the logaritmic trend of the growth (2nd order) in function of the
scale factor, while in the bottom panel we show the relative error between
the the analytic and numerical results.



3.3 comparison of numerical integrations with analytical solutions 60

(a)

(b)

Figure 21: The figure shows the behaviour of the numerical and analytical growth
at the second order, for different cosmological flat models, respectively in
a)⌦

m0

= 0.1, ⌦
⇤0

= 0.9 and b)⌦
m0

= 0.3, ⌦
⇤0

= 0.7. For each case we
present on the top of the graph the logaritmic trend of the growth (2nd order)
in function of the scale factor, while in the bottom panel we show the relative
error between the the analytic and numerical results.
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(a)

(b)

Figure 22: The same of figure 21 but with cosmological parameters in a)⌦
m0

= 0.4,
⌦

⇤0

= 0.6, and in b)⌦
m0

= 0.8, ⌦
⇤0

= 0.2
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(a)

(b)

(c)

Figure 23: The figure shows the behaviour of the numerical and analytical growth at
the second order, for different cosmological open models, respectively in
a)⌦

m0

= 0.24, ⌦
⇤0

= 0, b)⌦
m0

= 0.5, ⌦
⇤0

= 0, in c)⌦
m0

= 0.8, ⌦
⇤0

= 0.
For each case we present on the top of the graph the logaritmic trend of the
growth (2nd order) in function of the scale factor, while in the bottom panel
we show the relative error between the the analytic and numerical results.
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Figure 24: Numerical growing mode at first (on the top) and second order (on the
bottom) for different cosmological models.



4
S I M U L AT E D
PA S T- L I G H T- C O N E
C ATA L O G U E S W I T H
P I N O C C H I O

The second part of this work describe the realization of simulated past-light-
cone catalogues of dark matter halos with PINOCCHIO.

Modern galaxy surveys such as the Sloan Digital Sky Survey (a tridimentional
map of which is reported in figure 25) and the 2-degree Field Galaxy Redshift
Survey have revolutionised our view of the galaxy distribution and have played
a key role in shaping the constraints on our cosmological model.

Many ongoing and future obsevational campaigns as EUCLID, BOSS (Baryon
Oscillation Spectroscopic Survey), VIPERS (VIMOS Public Extragalactic Redshift
Survey), DES (Dark Energy Survey) will survey large parts of the sky to a depth
level sufficient to reach z ⇠ 1 to probe the origin of the accelerating universe and
help uncover the nature of dark energy by measures of high precision.

The uncertainities in the estimate of physical parameters from observable
quantities will be but dominated by sistematics connected to sample variance
and to the bias with which galaxies trace mass.

An accurate assessments of these systematics requires the use of past-light-
cone-catalogues. Past-light-cone allow us to cast the predictions of theoretical
models of dark matter and structures formation in a form that can be directly
compared with observables. Moreover because they are free of a variety of
effects, such as non-uniform coverage of the sky and a selection function that
varies strongly with radial distance from the observer, the comparison of their
synthetic data results with the observational ones, can help to adjust and tune
the performance of a real survey to reduce any systematic effects.

For these reasons they find different fields of applications in the astrophysical
contest. We have focused on halos with mass larger than ⇠ 1014 M�. Many
works have in fact already proven the ability of clusters number counts to
constrain cosmological parameters. We have therefore realized a pipeline for
estimating the sample variance of our number counts, identified by the past-light
cone catalogues of PINOCCHIO.

64
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Figure 25: Proiection on the plane of 3° of the tridimentional map producted by
2dFGRS. It contains 63000 galaxies and it shows the structure on large
scale of the galaxies distribution (http://msowww.anu.edu.au/2dFGRS/
http://msowww.anu.edu.au/2dFGRS/).

In section § 4.1 we present a brief description of the past-light-cone, in sec-
tion§ 4.2 we present the procedure we used to build it within PINOCCHIO and
in section § 4.3 we describe the analysis done with it.

4.1 light-cone catalogues

A first step to understand the clustering of galaxies is to consider the clustering
in terms of dark matter halos. The standard picture of structure formation, that
we described in the first chapter, predicts that the luminous objects form in the
gravitational potential of dark matter halos. Therefore, a detailed description of
halo clustering is the most basic step toward understanding the clustering of
these objects (Hamana et al., 2001).

A powerful tool to reach this aim are light-cone simulated catalogues of dark
matter halos. Light-cone simulated catalogues of dark matter are catalogues in
which the halos are located at the position at which the light emitted from them
has time to reach the observer. They are able to mimic real surveys because they
give the expected redshift distributions of the cosmic structures.

The catalogues that we present and we have considered are past-light-cone
catalogues of dark matter halos, in which dark matter halos are placed according
to the epoch at which they first cross the observer’s past lightcone.

Eventually the halo model that produces the dark matter halo population and
distribution can be combined with model that gives the relation between the
halos and luminous objects creating light cone catalogue of galaxies or of cluster
of galaxies. This gives rise to a lot of different applications for the study of all
the properties of these objects and of the processes involved in the hierarchical
structure formation. Cole et al. (1998) constructed mock redshift catalogues for
a wide range of cosmologies, focusing on the study of the statistical properties
that are used to quantified large scale structures as correlation function ⇠(r) on
scale of 1- 10Mpch-1 and power spectrum P(k) to facilitate this tasks for the
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Figure 26: Light cone rapresentation in 3D: two spatial coordinates and one
time coordinate. The upper cone is the future light cone, the bot-
tom cone is the past one (http://themaclellans.com/timetravel.html
http://themaclellans.com/timetravel.html).

SSDS surveys and the 2dF one. Jouvel et al. (2009) developed a "COSMOS Mock
software" to help design future Dark Energy missions in terms of the number
of galaxies available for the weak-lensing analysis as a function of the PSF size
and depth of the survey. Manera et al. (2012) created mock catalogues to be
used to compute covariance matrices of large scale clustering measurements,
and to test the method of analysis. Merson et al. (2012) considered light-cone
catalogues for the study of the effectiveness of the BzK color selection which
is a tecnique designed to isolate galaxies in the redshift interval 1.4 6 z 6 2.5.
Wang et al. (2013) used a realistic mock SDSS DR7, obtained by populating dark
matter halos in the Millenium simulation with galaxies, to test their Hamiltonian
Markov Chain Montecarlo(HMC) method for the reconstruction of the initial
density field of the local Universe.

4.1.1 Light-cone

According to Einstein’s relativity, a light-cone is a representation of the path of
light through spacetime, emanating from a single event E and traveling in all
directions.

Strictly speaking, we consider here a locally flat spacetime, the use of the
Minkowski space to describe physical systems over finite distances, applies only
in the Newtonian limit of systems without significant gravitation. In the case
of significant gravitation, spacetime becomes curved and one must abandon
special relativity in favor of the full theory of general relativity.

In figure 26 we show the 3-dimentional rapresentation of the light-cone.
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In this representation the speed of light is set 1 and a light ray follows a
path at 45 degrees with with respect to the axes. The vertical axis represent the
time line, while the horizonal one the space one. This means that each observer
drawing a spacetime diagram in which he is at rest must have the worldlines of
light at the same angle of 45 degrees from his worldline (his time axis), and 45

degrees from his plane of simultaneity (his space axis).
The light from an event spreads out in a circle after the event E occurs. When

this growing circle is plotted with the vertical axis of the graph, representing
time, the result is a cone, known as the future light cone. It represents the
future history of a light emitted at that event. The past-light-cone represents
all directions from which light can be received at that event, it behaves like the
future light cone in reverse, a circle that contracts in radius at the speed of light
until it converges to a point at the exact position and time of the event E. In
practice the light would form an expanding or contracting sphere, rather than a
circle in 3D, and the light cone would actually be a four-dimensional shape.

In flat spacetime, the future light cone of an event is the boundary of its causal
future and its past-light-cone is the boundary of its causal past.

In a Friedmann–Lemaître–Robertson–Walker (FLRW) metric, that we recall, is
the metric for an homogenus (costant space curvature) and isotropic Universe
(see 1.1.1) for an observer located at redshift z = 0, the proper radial distance
between the observer and a light event (ds2 = 0) at redshift z is:

r
c

(z) = a(t)

Z
z

0

c dz0

H(z)
= a(t)

c

H
0

Z
z

0

d0z/E(z), (4.1)

where H(z) is H
0

E(z) and E(z) is given by equation (1.11) expressed as a function
of the redshift z. The proper radial distance characterizes all the events on the
past-light-cone for an observer at z = 0, i.e. it is the proper distance from which,
we can receive light signals. The equation (4.1) is valid for the concordance
model of Universe. If we consider a Universe with different curvature we have:
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for a positive curvature of the Universe,
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(4.3)

for negative curvature, where in both equation the term ⌦
k2

=
p

|⌦
k

|.

4.2 construction of the past-light-cone

The simulated catalogues we have constructed are past-light-cone-catalogues.
In this section we provide a description of the procedure we have followed, for
constructing past-light-cone simulated catalogues with PINOCCHIO.

PINOCCHIO, as we have described in chapter 2, is able, with very limited
computing resources, to generate catalogues of cosmological dark matter halos
with known mass, position, velocity, merger history on a 3D grid.
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The 3D grid represents a sample of the volume of the entire Universe, the
past-light-cone represents the part of this sample, that is visible for an observer
located at the vertex of the Universe. Therefore we have selected the halos that
are on the observer’s past-light-cone.

At the operative level, we have operated in the third version of PINOCCHIO
(see section 2.2.2), in the following steps:

• choose and realize the cosmological volume to investigate;

• generate a population dark matter distribution;

• apply the condition of belonging to the past-light-cone to the dark matter
halos;

4.2.1 Generation of the cosmological volume

Current and future surveys are designed to probe ever larger cosmological
volumes. As a result there is a growing demand for simulations with boxes of
sufficient size to match the volumes of these surveys. Unfortunately, current
computing power means that there’s to make a compromise between the volume
of the simulation box and the resolution at which the simulation is carried out.

It’s possible therefore to construct a sufficiently large cosmological volume
replicating smaller box simulation.

For very shallow surveys (e.g. with a median redshift z . 0.05), the lookback
time is sufficiently small that typical structures properties will not have under-
gone significant evolution across the redshift interval covered by the survey.
Instead for very deep surveys which cover a significant lookback time, the struc-
tures proprerties have a substantial evolution and so the growth of large-scale
structure.

The simulation box side-length, L
box

, corresponds to the co-moving distance
out to the corrisponding z. Therefore, in order to generate a cosmological
volume that is of sufficient size to fully contain any survey that extends to a
certain redshift z

m

ax and so to a certain co-moving radial distance r
max

(see
equation (4.1) with r

c

(z) = r
max

(z
max

)) , it is necessary to tile replications of
the simulation box, as we have said before.

Let be n
rep

the number of replications per axis, that need to be stacked around
a box, to reach the maximum co-moving radial distance r

max

we have:

n
rep

=

�
r
max

L
box

⇡
+ 1, (4.4)

with (2n
rep

+ 1)3 repetitions, that creates a superbox. To give an idea, if the
observer is located at the center of the box with L

box

= 3Gpc/h, for a maximum
redshift z

max

= 2, we need almost 5 repetions of the box size, reaching a
maximum co-moving radial distance of r

max

= 7.5Gpc/h. We have constructed
a full sky past-light-cone in order to have the possibility of cosidering each
desired geometry of the survey.
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Our original box have a side-lengh of the box of 3Gpc/h for a grid size of 1200
particles. We have considered 53 repetitions. The past-light-cone is generated to
have the observer in a random position within the superbox.

4.2.2 Generation of the dark matter halos within the lightcone

The population of dark matter halos is reproduced according to the algorithm
of the PINOCCHIO code, described in section 2.2.1.

The light cone selection of halos consists in identifying those halos whose
light has time to reach the observer at z = 0. These objects are those that are on
the past light cone surface (see section 4.1.1).

Taking into account what we explained in section 4.1.1, a halo will be “visible”
to the observer when the following condition is satisfied:

||
~

x

halo

(z)-
~

x

plc

(z)||- r
c

(z) = 0, (4.5)

where
~

x

halo

(z) is the comoving coordinate of the location of the halos, z is the
redshift at which the halo crosses the past-light-cone,

~

x

plc

(z) is the comoving
coordinate of the position of the observer (

~

x

plc

(z) takes into account of the
replications of the box) and r

c

is the distance that light could have traveled from
the redshift z up to the observer, i.e. the comoving radial distance that is visible
to the observer at the present day.

We made some modifications in the part of the code that works on the
fragmentation of the collapsed medium. Each time a particle collapsed, we
checked the the neighbor halos. Each halo is updated from the the last evaluated
redshift, z

last

. If the halo at z
last

is inside the past-light-cone, but at the instant
z
check

we check the condition, it is outside, we can calculate the instant the
halo crosses the past light cone, z

c

ross. If both at z
last

and z
check

the halo is
out of the past-light-cone, we update z

last

. Then We redo the check with the
coordinates of the position the halo assumes in the repeated boxes. We perform
the light-cone selection in the interval of time in which the masses of the neighbor
halos remain constant. In fact positions and velocities are calculated via the
Zel’dovich approximation. As a matter of fact, halo masses change depending
on the accretion and the merging they are involved in. If the mass changes, the
position and the velocity of the halo also varies because they are calculated from
the barycenter of the groups of particles that form the halo. For this reason
we verified the condition at different times of the halo formation process, as
computed by the PINOCCHIO code.

From what we have discussed above, it’s clear that we need to estimate in a
given istant z

check

the proper distance to verify the condition (4.5). Then we
want to estimate the istant at which the halo crosses the past-light-cone, z

cross

.
We start integrating in PINOCCHIO code, in the new version of cosmo.F90,

the equation for the proper distance for the cosmological parameters of the
simulation and taking into account the dark energy contribution, described by
the dark energy equation of state.

The calculation of the integrals above is performed again with qromb (see
section 3.2.3.2).
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The z
cross

is a solution of a root-finding one-dimensional problem. The
redshift is the independent variable.

There are different types of practical numerical methods for solving this kind
of problem. All are based on the Intermediate Value Theorem. In essence, this
theorem says that if f is a continous function on [a,b] and the sign of f(a) is
different from the sign of f(b), then there must be some point, c, in the interval
such that f(c) = 0, and is thus a root of the function. Numerical root-finding
methods use iteration, producing a sequence of numbers that hopefully converge
towards a limit (the so-called "fixed point") which is a root. The first values of
this series are initial guesses. The method computes subsequent values based on
the old ones and the function f. Questions include ability to separate close roots,
robustness in achieving reliable answers despite inevitable numerical errors, and
rate of convergence.

We decide to choice the Brent’s method. It is a complicated but popular
root-finding algorithm combining the bisection method, the secant method and
inverse quadratic interpolation. It has the reliability of bisection but it can be as
quick as some of the less reliable methods.

4.3 pipeline for number counts of virialized objects

We present in this section a pipeline for estimating the sample variance in the
number counts of virialized objects, identified by the past-light cone catalogues
of PINOCCHIO over a range of redshifts. We address considerations mainly
to cluster surveys. In fact we set a thereshold mass of M

th

= 1.61 · 1014 solar
mass (we consider halo with more than 100 particles), below which halos are
not taken into account in our catalogues.

Among different probes of large scale structures, many works have already
proven the ability of clusters number counts in constrainig cosmological pa-
rameters Borgani and Guzzo (2001). The abundance of clusters above a certain
mass in a given area of the sky as a function of redshift is very sensitive to the
amplitude and growth rate of perturbations as well as the comoving volume per
unit redshift and solid angle. Recently, the use of very large volume cosmolog-
ical simulations has led to significant improvements in our knowledge of the
theoretical cluster mass function (Sheth and Tormen, 1999; Jenkins et al., 2001;
Evrard et al., 2002; Zheng et al., 2002; Warren et al., 2006). In particular, Jenkins
et al. (2001) found that the mass function at cluster scales can be described by
a universal analytic fit for all cosmologies and redshifts to an accuracy of 5-10

per cent in amplitude. Evrard et al. (2002) found that it is dominated by the
uncertainties in conversion in mass definitions and sample variance.

The sample variance is in fact generally comparable to or greater than shot
noise and thus cannot be neglected in deriving precision cosmological constraints
(Hu and Kravtsov, 2003).
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4.3.1 Sample Variance

The number density of simulated cluster population of the past-light-cone is
affected by uncertainty due to sample variance.

When we consider the simulated superbox, we consider just a sample of the
entire volume of the Universe.

Our aim is to evaluate the uncertainity, called sample variance, associated to
the single realization for the number counts from the simulated past-light-cone
catalogues. Because the generation is a stocastic process, we have evaluated the
espected values and the variance of the number counts, creating different ten
realizations of the same volume of the Universe.

We proceed in this way. Each set is produced on a box of 3 Gpc/h lenght
size, of N

par

= 12003 particles. We have considered n
rep

= 5. We have changed
for each realization the random seeds that generates the density field on the
superbox, but we fix the following cosmological parameters: matter density
⌦

m0

= 0.26, dark energy density ⌦
⇤

= 0.74, baryon density ⌦
b0

= 0.044,
�
8

= 0.8, spectral index n = 0.96, w
0

= -1 and w
1

= 0 for the equation of
state and the Hubble parameter h = 0.7. We have realized in this way 10 past-
light-cone catalogues from which we have obtained the number counts, i.e. the
number of dark matter halos in a redshift bin. We have worked on a range of
redshift of 0 6 z 6 2, divided by 20 logarithmic spaced bins.

Let’s call the number of halos of the i-th bin in redshift and of the j-th
realization, divided by the amplitude of the redshift bin (dN/dz)

i,j. This quantity
is linked to the mass function by:

(dN/dz)
i,j = �⌦

Z
z

i+1

z

i

dV

dzd⌦

Z1

M

th

n(M, z)dM (4.6)

where �⌦ in the fraction of the solid angle considered, dV

dzd⌦

is the comov-
ing volume for unit of redshift and solid angle, M

th

is the thereshold mass
and n(M, z) is the mass function. The cosmology therefore enters both on the
definition of the mass function both in the volume considered.

In figure 27 on the top we show the behaviour of the number counts of each
realization, (dn/dz)

i,j, as function of the average redshift of the halos of each bin

(z
aver,i =

P
N

i

k=1

z

k,i
N

i

) where N
i

are the counted halos in the i-th bin in redshift).
They are compared with the predictions of number counts given by using the
analytic fit of Warren et al. (2006) for the mass function (dotted-dashed red
line). The cyan lines are number counts of the ten different realisations. They
all confirm the peak at redshift z = 0.5 predicted by the analytical curve, given
in red. The number of halos in the redshift bin centered in 0.5 reach the value
of ⇠ 5 · 105. They separate themself from it from a minum of ⇠ 6 per cent in the
range of 0.8 . z . 2 to a maximum of ⇠ 25 per cent around z = 2. The larger
difference at z = 2, is a noted characteristic of PINOCCHIO that understimates
at high redshift the mass function of Warren et al. (2006). We are not worried
about about this discrepance because there is not consensus between simulations
that are still not able to find a universal analytical fit of the mass function at
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high redshift. The difference of the realisations, in the mass function tail is the
consequence of the variance of the sample.

In figure 27, where we have also reported together with the behaviour of the
(dN/dz)

i,j, the sample variance (blue lines) and the Poisson noise (red bars) in
function of the redshift bin. Given a probability distribution p((dN/dz)

i,j) for
the number counts with mean value h(dN/dz)i

i

and variance h(dN/dz)i
i

, we
define the sample variance of the counts (dN/dz)

i,j as:

�
sv

=

vuut
*✓

dN

dz

◆
2

+

i

-

⌧✓
dN

dz

◆�
2

i

(4.7)

where
⌦�

dN

dz

�↵
i

is the mean value for each bin, of the (dN/dz)
i,j, over the

N
re

= 10 realizations:
⌧✓

dN

dz

◆�

i

=
N

reX

j=1

✓
dN

dz

◆

i,j
/N

re

(4.8)

The sample variance is the uncertainty in eccess to the Poissonian noise, this last
one is calculated taking into account a single realization of reference (random
seed 23489):

�
Pois,i =

 p
dN

dz

!

i,ref

=

⌧
dN

dz

�

i

/
p
< N

i,ref > (4.9)

The (dN/dz)
i,j are included, for all the redshift range considered, in the

curves traced by h(dN/dz)
i

i± �
sv

This effect is more visible and quantifiable in the study of the nomalized
profiles of the number counts The (dN/dz)

i,j of each realisation, for each bin,
are normalized to the mean value of that bin

⌦
dN

dz

↵
i

:
✓
dN

dz

◆

norm,i
=

✓
dN

dz

◆

i,j
/

⌧✓
dN

dz

◆�

i

(4.10)

The probability distribution now is p((dN/dz)
norm,i) for number counts with

mean h(dN/dz)i
norm,i and variance

⌦
(dN/dz)2

↵
norm,i. We define the relative

error of the counts (dN/dz)
norm,i, i.e the relative error due to the sample

variance, as:

✏
sv

=

vuut
*✓

dN

dz

◆
2

+

norm,i

-

⌧✓
dN

dz

◆�
2

norm,i
(4.11)

calculated for each z bin.
We have calculated again the Poisson noise of the normalized quantities taking

into account the number counts of one realization of reference (random seed
23489). The Poisson relative error, for each bin in redshift, is given by:

✏
Pois,i =

 p
dN

dz

!

i

/

✓
dz

dN

◆

i

= 1/
p

N
i

(4.12)
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The results are reported on the bottom of figure 27 where we plot, with cyan
lines, the

�
dN

dz

�
norm,i of each realisation in function of the bin in redshift.

The normalized profiles of number counts are distributed around the unit,
the smallest error is around z = 0.5. The contribution of the sample variance
uncertainity is weakly larger than the Poisson noise, for all the redshift range.
Between 0.3 . z . 1.1 their uncertainities are both of the order of 3 per cent. For
z bigger than z = 1.1 their uncertainities both grow reaching nearly the 20 per
cent at z = 2.

We show moreover that uncertainties due to sample variance are comparable
to or greater than the Poisson noise. Therefore, the variance should not be
neglected in analyses aiming at deriving precision cosmological constraints.

4.3.1.1 Survey window

PINOCCHIO has now the potentialities to mimic data for future surveys as
Euclid. This wide survey will cover 15000 deg2 of the extragalactic sky. With the
intention of emulating the volume that the Euclid’s survey will cover, we select
all the halos of our past-light-cone within a solid angle with aperture of ⇠ 1.29
rad, pointing along one random direction of the sky. Our aim is to evaluate the
uncertainity associated to the single realization for the number counts of this
geometrical configuration. We have considered 5 different random directions,
specified by the coordinates (✓

dir

,�
dir

) for each of the 10 realizations, we did
before.

The criteria of selection of the halos we were interested in, uses the spherical
trigonometry laws. We have considered all the halos that satisfy the following:

↵ 6 arccos(cos(�
dir

-�
halo

)sin(⇡/2- ✓
halo

)sin(⇡/2- ✓
dir

)+

+ cos(⇡/2- ✓
halo

)cos(⇡/2- ✓
dir

))
(4.13)

We have proceeded evaluating the Poisson noise and the sample variance over
the 50 realisations. In figure 28 we report the behaviour of the (dN/dz)

i

(on
the top) and the the normalized profiles of (dN

dz

)
norm,i (on the bottom), both in

cyan lines, the error Poisson noise with red bars and sample variance with blue
lines as function of the bin in redshift.

The (dN/dz)
i

have a peak around z = 0.5, reaching the value of about 2 · 105,
that is smaller than the one reached around the same redshift by the (dN/dz)

i

of the ten realisation. This is due to the fact that we are considering a smaller
volume. On the tail the sample variance presents the same proprierties respect
the one illustrated on the bottom of figure 27, but it is larger in the range
0.3 . z . 1.1 as . Its contribution is weakly larger than the Poisson noise, and
comparable to Poisson noise in the range of 0.8 . z . 2. With with respect
to previous case at low redshift, and mainly to z = 0, the sample variance is
significant, it is around 15 per cent. This is precisely due to the fact that we are
looking at a smaller part and then a smaller volume. The different distribution
of the large scale structures causes the increasing of the sample variance.

Because number counts are sensitive to cosmological parameters (mainly to
⌦

m0

and �
8

), we want to apply the same geometrical criteria of selection for the
halos but considering different cosmological models.
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(a)

(b)

Figure 27: On the top we have reported the behaviour of the (dN/dz)
i,j, sample variance

(blue lines) and Poisson noise (red bars), as function of the redshift bin. On
the bottom we have shown the normalized profiles of (dN

dz

)
norm,i for the

different realisations (cyan lines), error Poisson bars (red bars) and variance
uncertainity (blue lines) as function of the bin in redshift.



4.3 pipeline for number counts of virialized objects 75

(a)

(b)

Figure 28: Behaviour of the (dN/dz)
i

(on the top), normalized profiles of (dn
dz

)
norm,i

for different 50 realisation (on the bottom) as a function of redshift bin. The
sample variance is in in blu lines and the Poisson noise in red bars.



4.3 pipeline for number counts of virialized objects 76

Taking the lambda cold dark model (⌦
m0

= 0.26, ⌦
⇤0

= 0.74, �
8

= 0.8,
random seed 23489) as model of reference we have studied other cosmological
models, for which we have fixed ⌦

b

= 0.044, h = 0.7, while we have choosen
⌦

m0

and �
8

values refering to the relation given by Vikhlinin et al. (2009):

�
8

= 0.813
✓
⌦

m0

0.25

◆
0.47

(4.14)

We have studied the following models:

- ⌦
m0

= 0.26, ⌦
⇤0

= 0.0, �
8

= 0.8 (0.26- 0.0- 0.8);

- ⌦
m0

= 0.26, ⌦
⇤0

= 0.6, �
8

= 0.8 (0.26- 0.6- 0.8);

- ⌦
m0

= 0.26, ⌦
⇤0

= 0.9, �
8

= 0.8 (0.26- 0.9- 0.8);

- ⌦
m0

= 0.2, ⌦
⇤0

= 0.74, �
8

= 0.9 (0.2- 0.74- 0.9);

- ⌦
m0

= 0.3, ⌦
⇤0

= 0.74, �
8

= 0.74 (0.3- 0.74- 0.74);

- ⌦
m0

= 0.3, ⌦
⇤0

= 0.7, �
8

= 0.74(0.3- 0.7- 0.74);

- ⌦
m0

= 0.2, ⌦
⇤0

= 0.8, �
8

= 0.9 (0.2- 0.8- 0.9);

- ⌦
m0

= 0.5, ⌦
⇤0

= 0.5, �
8

= 0.58 (0.5- 0.5- 0.58);

We have consider for each model only one realization with the random seed of
reference (23489) for the generation of the density distribution in the superbox.
For the valuation of the (dN/dz)

i

we have choosen one single direction, the same
for each of them, the (dN

dz

)
norm,i are normalized to the mean value calculated

over the 50 realizations of the cosmological standard models we have considered
before. Poisson noise and the sample variance are evaluated over the same 50

realisations with the same analysis described by (4.9), (4.7) equations for the
(dN/dz)

i

and by (4.12), (4.11) equations for (dN
dz

)
norm,i.

In figure 29 we show on the top the (dN/dz)
i

, on the bottom the normalized
profiles of each flat model as a function of the redshift bin. The dotted blue
lines represent the standard cold dark matter model, dotted-dotted-dotted-
dashed lines represent the 0.2- 0.8- 0.9 model, dotted-dashed lines represent
the 0.3- 0.7- 0.74 model and dashed lines represent the 0.5- 0.5- 0.58 model.
With cyan lines we have reported the sample variance and with green lines the
3�.

Looking at the top of the panel, we see how the peaks of (dN/dz)
i

are shifted
toward lower redshift at the increasing of ⌦

m0

.
Looking at the bottom panel we note how all the curves spread out signif-

icantly from the 3� at about redshift 0.2- 0.3. This means that this statistics
permits to distinguish the slight variation of cosmological parameters when
considering the same geometry of the Universe.

Similar considerations can be reached for the closed and open models. In
figure 30 we show the results for closed models. On the top we have reported
the behaviour of the (dN/dz)

i

, and on the bottom the normalized profiles
of (dn

dz

)
norm,i as a function of redshift bin. Dotted blue lines represent the
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(a)

(b)

Figure 29: Behaviour of the (dN/dz)
i

(on the top), normalized profiles of (dn
dz

)
norm,i

for different flat models (on the bottom) as a function of redshift bin. Dotted
blue lines represent the standard cold dark matter model, with cosmological
parameters ⌦

m0

= 26, ⌦
⇤0

= 0.74, �
8

= 0.8, dotted-dotted-dotted-dashed
lines represent the ⌦

m0

= 0.2, ⌦
⇤0

= 0.8, �
8

= 0.9 model, dotted-dashed
lines represent the ⌦

m0

= 0.3, ⌦
⇤0

= 0.7, �
8

= 0.74 model and dashed lines
represent the ⌦

m0

= 0.5, ⌦
⇤0

= 0.5, �
8

= 0.58 model. With cyan lines we
have reported the sample variance and with green lines the 3�.
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reference cold dark matter model, dashed lines represent the 0.26- 0.9- 0.8
model, dotted-dashed lines represent the 0.3- 0.74- 0.74 model. With cyan
lines we have reported the sample variance and with green lines the 3�.

Looking at the top of the panel, even this time, we see how the peaks of
(dN/dz)

i

are shifted toward lower redshift at the increasing of ⌦
m0

. This effect
is more evident for the model with ⌦

m0

= 0.26 whose behavior distingueshes
from the one of standard model, only at z = 0.9. The same result is confirmed
looking at the normalized profiles, model with 0.3- 0.74- 0.74 separates iteself
from the 3� at z ⇠ 0.3 while the model 0.26- 0.9- 0.8 at z ⇠ 0.8.

For open models, reported in figure 31, we are able to distinguish variation
of parameters at very low redshift for the 0.26- 0.0- 0.8 model, that move away
from the 3� at redshift ⇠ 0.1 or for the 0.2- 0.74- 0.8 .

We have verified until now how number counts from PINOCCHIO past-light-
cone catalogues respond to the variation of cosmological parameters.

To better investigate the sensitiviness of the number counts to cosmological
parameters we have decided to groups models fixing one parameter at time and
varying the others.

We have started fixing ⌦
m0

. Looking at the top panel of figure 32 we note
that at the increasing of the ⌦

⇤0

parameter, the (dN/dz)
i

decrease for redshift
greater than z ⇠ 0.8, and increase for redshift smaller than z ⇠ 0.8. The bottom
figure of the same panel show more clearly the behaviour of the models. z ⇠ 0.8
is the redshift after which all the different models are definitely out of the 3�.

Model for which we fix ⌦
⇤0

parameters, shown in figure 33 are sensitive
for variation of the order of 1 per cent on the ⌦

m0

parameter. Looking at the
bottom of the panel we note that models with ⌦

m0

= 0.2; 0.3 have a significant
difference in the (dN

dz

)
norm,i, of ⇠ 20 per cent at redshift ⇠ 0.4. At the same

redshift, models with fix ⌦
m0

, has the same discrepancy but for a greater
variation of the parameter ⌦

⇤0

= 0.0, ⌦
⇤0

= 0.9. That could mean that number
counts are more sensitive to a variation of ⌦

m0

, rather than a variation of
the ⌦

⇤0

parameter. That is in part what Vikhlinin et al. (2009) assumes. It is
confirmed by the resuls shown in the next graphs in figure 34, where we have
varied only the value of �

8

, considering, in addition to the stardard model, the
following:

- ⌦
m0

= 0.26, ⌦
⇤0

= 0.74, �
8

= 0.7;

- ⌦
m0

= 0.26, ⌦
⇤0

= 0.74, �
8

= 0.9;

Despite the other models in which number counts are within the sample
variance uncertainity at redshift closed to 0, differentiating later with with
respect to the reference model, here number counts are shifted with respect the
concordance model as we see at the top and more clearly at the bottom of the
figure 34. In particular the model with greater value of �

8

has, at z ⇠ 0, has
normalized profile far from unit of about 40 per cent. The situation is specular
at z ⇠ 0, for the normalized profile with lower value of �

8

. This is reasonable
because increasing or decreasing �

8

means to give more or less power to the
spectrum of fluctuation to a given scale.
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(a)

(b)

Figure 30: Behaviour of the (dN/dz)
i

(on the top), normalized profiles of (dn
dz

)
norm,i for

different closed models (on the bottom) as a function of redshift bin. Dotted
blue lines represent the standard cold dark matter model, with cosmological
parameters ⌦

m0

= 26, ⌦
⇤0

= 0.74, �
8

= 0.8, dashed lines represent the
⌦

m0

= 0.26, ⌦
⇤0

= 0.9, �
8

= 0.8 model, dotted-dashed lines represent the
⌦

m0

= 0.3, ⌦
⇤0

= 0.74, �
8

= 0.74 model. With cyan lines we have reported
the sample variance and with green lines the 3�.
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(a)

(b)

Figure 31: Behaviour of the (dN/dz)
i

(on the top), normalized profiles of (dn
dz

)
norm,i

for different open models (on the bottom) as a function of redshift bin. Dotted
blue lines represent the standard cold dark matter model, with cosmological
parameters ⌦

m0

= 26, ⌦
⇤0

= 0.74, �
8

= 0.8, dashed lines represent the
⌦

m0

= 0.26, ⌦
⇤0

= 0.0, �
8

= 0.8 model, dotted-dotted-dotted-dashed lines
represent the ⌦

m0

= 0.2, ⌦
⇤0

= 0.74, �
8

= 0.8 model, dotted-dashed lines
represent the ⌦

m0

= 0.26, ⌦
⇤0

= 0.6, �
8

= 0.8 model. With cyan lines we
have reported the sample variance and with green lines the 3�.
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(a)

(b)

Figure 32: Behaviour of the (dN/dz)
i

(on the top), normalized profiles of (dn
dz

)
norm,i

for different models (on the bottom), with fix ⌦
m0

, as a function of redshift
bin. Dotted blue lines represent the standard cold dark matter model, with
cosmological parameters ⌦

m0

= 26, ⌦
⇤0

= 0.74, �
8

= 0.8, short dashed lines
represent the ⌦

m0

= 0.26, ⌦
⇤0

= 0.0, �
8

= 0.8 model, long dashed lines
represent the ⌦

m0

= 0.26, ⌦
⇤0

= 0.9, �
8

= 0.8 model, dotted-dashed lines
represent the ⌦

m0

= 0.26, ⌦
⇤0

= 0.6, �
8

= 0.8 model. With cyan lines we
have reported the sample variance and with green lines the 3�
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(a)

(b)

Figure 33: Behaviour of the (dN/dz)
i

(on the top), normalized profiles of (dn
dz

)
norm,i

for different models (on the bottom) with different value of �
8

, as a function
of redshift bin. Dotted blue lines represent the standard cold dark matter
model, with cosmological parameters ⌦

m0

= 26, ⌦
⇤0

= 0.74, �
8

= 0.8,
dashed lines represent the ⌦

m0

= 0.26, ⌦
⇤0

= 0.74, �
8

= 0.7 model, dotted-
dotted-dotted-dashed lines represent the ⌦

m0

= 0.26, ⌦
⇤0

= 0.74, �
8

= 0.9
model. With cyan lines we have reported the sample variance and with green
lines the 3�
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(a)

(b)

Figure 34: Behaviour of the (dN/dz)
i

(on the top), normalized profiles of (dn
dz

)
norm,i

for different values of �
8

(on the bottom) as a function of redshift bin. Dotted
blue lines represent the standard cold dark matter model, with cosmological
parameters ⌦

m0

= 26, ⌦
⇤0

= 0.74, �
8

= 0.8, short dashed lines represent
the ⌦

m0

= 0.26, ⌦
⇤0

= 0.74, �
8

= 0.7 model, long dashed lines represent
the ⌦

m0

= 0.26, ⌦
Lambda0

= 0.74, �
8

= 0.9 model. With cyan lines we have
reported the sample variance and with green lines the 3�.
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The last analysis we have done, consists in appreciating the variation of
number counts, changing the contribution of the dark energy for a model with
⌦

m0

= 26, ⌦
DE

= 0.74, �
8

= 0.8. Considering the equation of state (1.12) we
have evaluated two cases:

- w
0

= -1, w
1

= 0.1

- w
0

= -0.9, w
1

= 0.1

Number counts obtained by the first model are within the uncertainity of the
3� and for low redshift (until z ⇠ 1) within the uncertainity of sample variance
as it’s possible to observe on the bottom of panel shown in figure 35. The
normalized profile follows the same curve of the standard concordance model
unless of 0.5 per cent. The sensitiviness to the parameters is more evident in the
second model considered, whose normalised profile separetes iteself from 3� at
z ⇠ 1 to grow more rapidly.

This allows to forecast which cosmological models are distinguishable from
the standard one, and eventually beyond which redshift, using the number
counts technique.
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(a)

(b)

Figure 35: Behaviour of the (dN/dz)
i

(on the top), normalized profiles of (dn
dz

)
norm,i

for different open models (on the bottom) as a function of redshift bin. Dotted
blue lines represent the standard cold dark matter model, with cosmological
parameters ⌦

m0

= 26, ⌦
⇤0

= 0.74, �
8

= 0.8, dashed lines represent the
model with w

0

= -1, w
1

= 0.1, dotted-dashed lines represent the model
with w

0

= -0.9, w
1

= 0.1. With cyan lines we have reported the sample
variance and with green lines the 3�.



5
C O N C L U S I O N S

The aim of this Thesis is the development of the PINOCCHIO code following
two main directions of development. The first direction aims at fixing particular
limitations of the code to contribute to an improved generality and versatility of
the code. The development in the second direction is the creation of past-light-
cone catalogues of dark matter halos. These catalogues allow to estimate the
uncertainties of the observable quantities, mimicking the configuration of the
real catalogues, that will be produced by future surveys like Euclid. In particular
we want to understand to what extent the sample variance and poissonian noise
affect the number counts of halos, which is aimed to determine the cosmological
parameters. To generate these catalogues we used PINOCCHIO code, which
has the advantage of generating, with small computational resources, large cata-
logues of dark matter halos. PINOCCHIO is an approximated approach based
on the Lagrangian Perturbation Theory for the computation of the displacement
of mass elements from their initial position, and is able to accurately reproduce
the density field of matter on large scale.

The original version of PINOCCHIO used analytical solutions for the com-
putation of cosmological quantities, that did not allow to apply the code to
a generic cosmology. To overtake this limitation we implemented numerical
solutions to cosmological quantities, namely the first order linear growth rate
and the proper distance as a function of the scale factor.

We checked the accuracy of these numerical solutions to quantify their re-
liability by comparing them to analytical solutions in the case in which they
are avaible. We built these solutions by requiring a minimum relative error of
10-4 between the numerical and the analytical solutions. The first order growth
rate test results in an accuracy of 10-4 - 10-8 depending on the considered
cosmological model. The same test has been performed on the cosmic time
solution, resulting in an accuracy of 10-6 - 10-8.

We introduced, in the cosmological routines of PINOCCHIO, the numerical
solution of the second order LPT growth rate in order to improve the accuracy
with which PINOCCHIO is able to reproduce the distribution of dark matter
halos. We tested the accuracy in the only case (EdS model) where the analytical
solution is admitted. The accuracy results to be ⇠ 10-7.

Given the good accuracy obtained with these numerical implementations,
we consider them to be reliable for any cosmology. These modifications have
improved the versatility of PINOCCHIO, making it an ideal tool for building
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past light cones catalogues in any cosmological model. In these catalogues dark
matter halos are stored in the catalogue according to the epoch at which they
first cross the observer’s past light cone. In order to generate a cosmological
volume that is of sufficient size to fully contain any survey that extends to z = 2

and we tiled 5 replications of a simulation box of 3 Gpc/h, for a grid size of 1200
particle, reaching the comoving radial distance of 7.5 Gpc/h, for an observer
placed in the center of the box. The past-light-cone is generated to have the
observer in a random position within the superbox. We have constructed a full
sky past-light-cone in order to have the possibility of cosidering catalogues for
each desired geometry of the survey.

Different cosmological applications are possible with these kinds of cata-
logues. In this Thesis we focused on the estimate of the two main sources of
uncertainties in the dark matter halo number counts on a single realization of a
volume of the Universe, namely the sample variance and the Poissonian noise.
We have first generated 10 realizations of the reference cosmological model
varying the random seed for building the initial density field, and computed
the sample variance and the poissonian error of the number counts. With the
intention of emulating the volume of the Universe that Euclid will cover, we
also computed the number counts within a solid angle of fixed aperture of
⇠ 1.29rad, pointing along one random direction of the sky. We considered 5

different random directions for each of the 10 realizations. This results in a total
sample of 50 realizations, for which we computed the sample variance and the
poissonian error. In both cases the sample variance appeared to be greater that
the poissonian error. This is important to assign a reliable uncertainty to the
number count statistics and therefore to the cosmological information one can
extract from it. In particular the sample variance defines the range of number
counts within which a cosmological model is compatible with the standard one.

This allows to forecast which cosmological models are distinguishable from
the standard one, and eventually beyond which redshift, using the number
counts technique. Many different cosmological models have been compared to
the standard one, both open, flat and closed.

This put in evidence one of the main advantages of PINOCCHIO. The speed
of computation and low memory request allow to explore wide regions of the
cosmological parameter space, as well as considering very large spatial volumes.
Such a versatility is not within N-body simulations reach; these, on the other
hand, are more precise in reproducing the details of the physical processes.

The work carried out so far is based on the analysis of the statistics of dark
matter halos. In order to reliably compare with observations, some recipies
for populating such halos with galaxies must be considered. Semi-analytical
models appear to be a good tool for this purpuse, but they would require such
a high mass resolution that they would not take advantage of the peculiarities
of PINOCCHIO. Around 60003 particles would be required to use a semi-
analytical model on the PINOCCHIO outputs, making the code highly resource
consuming. Nevertheless other methods for populating dark matter halos that
require less computing resources exist. E.g. the halo occupation distribution
(HOD) would require around 25003 particles, making it feasible to be applied to
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the PINOCCHIO outputs. We are planning to consider it as a development of
the code.

Another direction of development deals with the specific reproduction of
the Euclid observational configuration, as far as the geometry of the observed
volume is concerned. Also, a more detailed halo mass selection function would
allow to estimate the sample variance more accurately and this, in turn, would
allow to distinguish the different cosmological models in an even more reliable
way. In fact with this accurate selection function, a high number of cosmological
parameters can be explored and reliable confidence regions in the parameter
space can be estimated.

Once we have these more refined information, it will be possible to perform
studies on the matter power spectrum as well as the correlation function, still
preserving the advantages of using the light cones that mimick the observational
configuration.
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We shall not cease from exploration,
and the end of all our exploring will be to arrive where we started and know the place

for the first time.
T. S. Eliot

Only those who will risk going too far can possibly find out how far one can go.
T. S. Eliot

Credete a chi cerca la verità, non a chi la trova.
Andrè Gide

La scienza non ha promesso la felicità, ma la verità.
La questione è sapere se con la verità si farà mai la felicità.
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