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Introduction

In the last two decades the ever increasing quality of images from Cosmic Mi-
crowave Background (CMB) surveys (e.g. COBE, WMAP, Planck), provided us a
clear picture of the ~ 400,000 years old Universe. These images reveal a homo-
geneous and isotropic Universe with small temperature fluctuations of the order
of AT/T = 107>, which correspond to density perturbations present at the time
when the Universe became transparent to photons (recombination era). According
to our current understanding the isotropy observed in the CMB sky is the result of
an early period of exponential expansion (inflation) driven by the vacuum energy
of one or more quantum fields, occurred right after the Big Bang. As a conse-
quence of the exponential expansion any possible spatial curvature of the Universe
is stretched, so that a generic prediction of the inflation scenario is that today’s
Universe should look flat on observable scales. The same mechanism is thought to
be responsible for the production of the initial density perturbations through the
amplification of quantum fluctuations present in the inflaton field. These density
fluctuations, evolved under the action of gravity, produced the temperature fluc-
tuations observed in the CMB and, eventually, the cosmic structures we observe
nowadays in the Universe.

By the early 80’s, observations of the low redshift Large Scale Structure (LSS)
and strengthening upper limits on temperature anisotropies in the CMB made clear
that purely baryonic models cannot account for structure formation: there is not
enough time for the perturbations observed in the photon-baryon plasma at the
recombination epoch to grow to form the structures observed in the nearby Uni-
verse. This favoured a scenario in which the matter component is dominated by
non-baryonic, highly-massive particles, referred to as cold dark matter (CDM); such
particles decouple from the radiation field with small thermal velocities long before
recombination, so that their density perturbations can start to grow at early times
and down to adequately small scales, preparing the potential wells where baryons,



after decoupling from photons, will quickly fall to form structures at a sufficiently
high rate to reproduce the observed Universe.

In the early 90’s, measurements of the large scale galaxy clustering (Maddox
et al., 1990; Efstathiou et al., 1990), cluster abundance (e.g. White et al., 1993a),
and cluster baryon fraction (White et al., 1993b), provided evidences against the
”standard” CDM model, in which the dark matter component provides the critical
density to close the Universe. Among the several alternatives proposed to overcome
these observational issues, the so called ACDM model, in which ~ 30% of the
critical density is accounted for CDM and the remaining ~ 70% for a cosmological
constant, seemed to match all the observed properties of the CMB and LSS.

In 1998 two teams independently (Riess et al., 1998; Perlmutter et al., 1999) used
the luminosity-distance relation of Type Ia supernovae (SN Ia) to show that the ex-
pansion of the Universe is accelerating at the present time. The simplest theoretical
explanation for these results was the introduction of an additional energy compo-
nent with properties very similar to those of Einstein’s cosmological constant A.
Subsequent observations of the SN Ia luminosity-distance relation, along with in-
dependent evidences from the study of the LSS and CMB anisotropies, confirmed
that the Universe is undergoing a phase of accelerated expansion, whose charac-
teristics are compatible with those predicted for a ACDM cosmology.

The wealth and accuracy of current cosmological data from measurements of
the CMB, LSS and related probes allowed to determine with sub-percent precision
the parameters of the ACDM model, which has been adopted as the concordance
cosmological model. According to this, the Universe is flat and made of radiation,
baryons, CDM, and a constant dark energy component with negative pressure, i.e.
cosmological constant A.

Despite this encouraging result there is still a lot to be understood: the na-
ture of the two dominant components of the Universe, cold dark matter and dark
energy, is still unknown; whereas, several modifications of the Einstein’s General
Relativity still represent viable alternative explanations to the effects thought to be
induced by one or both of these dark components. Moreover, tensions between
the latest CMB results and constraints from low redshift probes, such as galaxy
clusters and cosmic shear, suggest either the need for new physics, or systematics
in the measurements, or a combination thereof. The lack of a comprehensive the-
oretical framework and the current instrumental limitations make the combination
of datasets from different cosmological probes mandatory to tackle these issues.
This is especially true for the measurement of those parameters which affect the
late-time evolution of the Universe, and thus are poorly constrained by CMB data
alone, such as the dark energy equation of state or the total neutrino mass.



This Thesis focuses on the study of the only component of dark matter which
is currently known, i.e. neutrinos. Although in the Standard Model of particle
physics (SM) neutrinos are described as elementary massless particles, oscillation
experiments using solar and atmospheric neutrinos have provided compelling ev-
idence for their non-vanishing mass. Moreover, several anomalous results from
accelerator, gallium and reactor neutrino experiments suggest the existence of one
or two extra light sterile neutrino species, not predicted by the SM. Unfortunately,
neutrino oscillation experiments are only sensitive to mass squared differences be-
tween neutrino mass eigenstates — i.e. they cannot be used to determine their
absolute mass scale — while current high-energy physics experiments provide only
loose constraints on the total neutrino mass. On the other hand, cosmology pro-
vides powerful means to constrain the neutrino properties. Produced in the early
Universe by frequent weak interactions, cosmic neutrinos, when still relativistic,
contribute to the radiation energy content affecting the background evolution; at
lower redshift, when they become non relativistic, neutrinos suppress the matter
fluctuations at small scales due to their high thermal velocity. These effects leave a
characteristic imprint on several cosmological observables that have been used to
put constraints on the total neutrino mass. Massive neutrinos have also been advo-
cated as a possible means to relieve the tension between Planck measurements of
the CMB temperature anisotropies and measurements of the low redshift growth
of structure from various probes of the LSS.

Among the different probes of the LSS, the population of galaxy clusters is
particularly suited to study the late-time evolution of cosmic structures. Arising
from the high density peaks of the initial matter distribution, galaxy clusters are
the most massive bound objects in the Universe, whose population bears the im-
prints of the statistical distribution of the initial perturbations and their subsequent
growth. In particular, the number density of galaxy clusters is sensitive to the
amplitude of the density perturbations, whereas its evolution is directly related to
their growth rate. Additionally, the spatial distribution of clusters provides com-
plementary information on the shape and amplitude of the matter power spectrum
of density fluctuations and the evolution of the clustering properties is sensitive
to their growth as well. Despite this potential, the actual constraining power of
galaxy cluster catalogues depends on our capability to recover cluster masses from
proxies and to have reliable theoretical predictions for their spatial number density
(the halo mass function, HMF) and bias. The accuracy with which the cluster mass
is estimated is related to the proxy used to infer the mass — e.g. richness, optical
or X-ray luminosity, lensing or X-ray temperature — the availability of follow-up
data to calibrate the mass-proxy relation, and the theoretical assumptions made



about the morphology and dynamical state of the clusters used to calibrate this
relation. As for the HMF and bias, by the end of 90’s N-body simulations became
the standard tool for their calibration. However, despite the accuracy of the numer-
ical results has improved considerably over the past decade, systematic errors e.g.
related to baryonic feedback processes or massive neutrino effects, still need to be
understood in detail. Nevertheless, current clusters datasets — based on relatively
small sample of ~ 100 objects detected at redshift below ~ 1 — provide competitive
cosmological constraints to that inferred from other probes such as cosmic shear or
Baryonic Acoustic Oscillations (BAO).

Furthermore, in few years the number of clusters available for cosmology is ex-
pected to increase by orders of magnitude with the advent of the next generation of
X-ray (e.g. eROSITA'), Sunyaev-Zeldovich (SZ) (e.g. CCAT?, SPT-3G) and optical
(e.g. LSST?, Euclid*) surveys. Such large amount of data will significantly improve
cosmological constraints from cluster data, provided that robust mass proxies and
accurate theoretical predictions for the cluster abundance will be available. In this
respect, it is crucial to quantify the constraining power of such surveys and inves-
tigate possible limiting factors in their cosmological exploitation.

This Thesis is devoted to the derivation of cosmological constraints by using
different probes of the large scale structure, with focus on massive neutrinos con-
straints from galaxy clusters surveys. In particular, we deal with three different
issues among those mentioned above: i) we explore the cosmological informa-
tion carried by the cluster catalogue that will be provided by the photometric red-
shift survey of ESA’s Euclid mission, focusing on neutrino constraints from cluster
counts and clustering of clusters; i7) we discuss the effects that massive neutrinos
have on the statistic of the halo population providing a recipe to recover a well-
calibrated HMF to be used in cosmology with non-zero neutrino mass along with
its effects on parameter inference; iii) we perform a joint analysis of various low
redshift probes with CMB data to assess to what extent massive neutrinos provide
a means to alleviate the recently highlighted tension between Planck CMB mea-
surements and constraints from observations of the LSS.

The structure of this Thesis is organised as follows:

1h’[tp: //www.mpe.mpg.de/eROSITA

2ht’cp: / /www.ccatobservatory.org/index.cfm
Shttp:/ /www.lsst.org/lsst/

*http:/ /www.euclid-ec.org/



To facilitate the understanding of the analysis carried out in this Thesis we
provide in Chapter 1 a concise review on cosmic structure formation. We start out-
lining the general framework of the standard ACDM model and the linear pertur-
bation theory. We move then to the statistics of the matter density field, introducing
the statistical tools used in the analyses presented in this Thesis — the matter power
spectrum, HMF and halo bias — and lingering on their dependence on cosmolog-
ical parameters. The last part of this Chapter is devoted to the neutrino physics;
after having illustrated the origin and characteristics of the cosmic neutrino back-
ground, we explain the effects that massive neutrinos induce on the evolution of
cosmic structures and how these are reflected on the statistic of the matter den-
sity fluctuations (i.e. the matter power spectrum). The Chapter concludes with a
summary of the most recent constraints on active and sterile neutrino properties
inferred from cosmological data.

Chapter 2 presents an overview of the cosmological probes that have been
considered to derive the cosmological constraints presented in this Thesis: CMB,
galaxy clusters, BAO, cosmic shear and Ly-a forest. For each of these we illustrate
their properties, observational techniques and cosmological relevance, also briefly
reviewing some recent results. Particular emphasis is given to galaxy clusters sur-
veys, being the probe mostly used for the results of this Thesis. The methodology
used to build cluster samples from optical/near-IR, X-ray and microwave data is
reviewed, along with the respective techniques and proxies used to estimate the
cluster mass.

The original work of my Ph.D. project constitutes the topic of the last three
Chapters of the Thesis.

In Chapter 3 we present a forecast analysis on the capability of the Euclid pho-
tometric cluster survey in constraining the neutrino properties. Firstly, we illus-
trate the procedure used to build the mock data and the likelihood functions em-
ployed for the parameter inference. The forecast errors are derived by means of
the Monte Carlo Markov Chain technique exploiting the cosmological information
carried by the cluster number counts and the cluster power spectrum in combina-
tion with Planck-like CMB data. The analysis is performed for various extension
of the ACDM : we start considering massive neutrino and a non-standard effective
number of neutrino species. The analysis is then extended to wCDM and curved
models in order to explore possible degeneracies between parameters. We also take
into account the impact on neutrino constraints due to an uncertain knowledge of



the relation between the observable on which cluster selection is based and cluster
mass, assuming different levels of prior knowledge on the parameters which define
this relation. The results of this analysis have been published in Costanzi Alunno
Cerbolini et al. (2013), JCAP:06(2013)020.

In Chapter 4 we present a study of the accuracy of the HMF in reproducing the
halo abundance in the presence of massive neutrinos. By means of a set of N-body
simulations we show that an improved fit to the simulations results on the HMF
is obtained once the suppression of the total dark matter density fluctuations on
scales smaller than the neutrino free-streaming length is neglected, confirming the
results of Ichiki and Takada (2012). As a quantitative application of our findings we
consider a Planck-like SZ-clusters survey and we compare the number of clusters
expected to be detected within such survey computed using the standard or the im-
proved calibration of the HMF. We thus analyse how the difference in the predicted
number of clusters affects the determination of cosmological parameters from clus-
ters data, using as case study a sample of 188 SZ-selected clusters with measured
redshift observed by the Planck satellite. The constraints obtained assuming one
or three degenerate massive neutrino species for the two HMF prescriptions are
presented and the biases introduced by an inaccurate HMF calibration quantified.
The results presented in this Chapter have been published in Costanzi et al. (2013),
JCAP:1312(2013)012.

Motivated by the recent claims of neutrino mass detection from the combina-
tion of CMB and LSS data we discuss in Chapter 5 the reliability of neutrino mass
constraints, either active or sterile, from the joint analysis of different low red-
shift Universe probes with measurements of CMB anisotropies. For this analysis
we consider WMAP 9-year or Planck CMB data in combination with recent BAO
and cosmic shear measurements, Ly-a forest constraints and galaxy cluster mass
function. As for the cluster data analysis we rely on the results of Chapter 4 for
the calibration of the HMF in cosmology with massive neutrino; moreover, we ex-
plore the impact of the uncertainty in the mass bias and re-calibration of the HMF
due to baryonic feedback processes on cosmological parameters. In order to avoid
misleading results due to model dependence of the constraints we perform a full
likelihood analysis for all the datasets employed. The results are firstly presented
for single data combinations of one of the two CMB datasets with one low red-
shift probe, to assess if the extension to massive neutrinos, either active or sterile,
provides agreement between datasets. We start then to combine CMB data with
different probes of the LSS simultaneously, to determine which datasets combina-



tion, if any, provides evidence for non-zero neutrino mass, and recover constraints
on their total mass. The results presented in this Chapter have been published in
Costanzi et al. (2014), JCAP:10(2014)081.

Chapter 6 summarizes the results presented in this Thesis, emphasizing the
critical points which are worth to be further investigated and discusses possible
future directions of investigation.






Cosmic structure formation

According to the standard picture of cosmic structure formation the astronomical
objects that we observe nowadays in our Universe are the results of the evolution
of small primordial perturbations in the density field present at the end of the in-
flationary epoch. Depending on the scale considered different physical processes
dominate the evolution of these objects. On sufficient large scale (2 10Mpc) the
evolution of the cosmic structures is dominated by gravitational dynamics, which
makes the description of their formation relatively simple. On smaller scales, in-
stead, different astrophysical processes related to galaxy formation and evolution —
e.g. gas cooling, star formation and feedback from supernovae (SN) or active galac-
tic nuclei feedback — become relevant, affecting the observational properties of the
structures. In this chapter I will review the general framework of the standard cos-
mological model (1.1) and briefly describe the linear perturbations theory (§ 1.2)
which allows to describe the evolution of density perturbations as long as their
density contrast relative to the background remain much smaller than unity. Fur-
thermore, the statistical tool used for cosmological parameter inference exploited
in this Thesis will be presented in § 1.3. Finally, I will review the physics of massive
neutrinos and their effects on cosmic structure formation § 1.5. For a comprehen-
sive treatment of these topics the reader can refer to classical textbooks as Peebles
(1993), Peacock (1999) and Mo et al. (2010).
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1.1 Evolution of the uniform background

Modern cosmology is based, among the others, upon the cosmological principle —
the hypothesis that the Universe is spatially homogeneous and isotropic on scales
larger than ~ 100 Mpc — and Einstein’ s theory of general relativity, according to
which the structure of space-time is determined by the mass distribution in the
Universe. From the cosmological principle it follows that the space-time metric is
described by the Robertson-Walker one:

dr?

2_ 242 2
ds® = c°dt® — a“(t) T 12

+ 12(dd? + sin® 9d¢?) (1.1)

where 7, ¢ and ¢ are the comoving spatial coordinates and ¢ the proper time. The
parameter K is related to the spatial curvature and can take the values: K = 0 for
a spatially flat geometry, K = 1 for a positive curvature and K = —1 for a negative
curvature. Finally, the cosmic scale factor a(t) describes the expansion history of
the Universe. This is related to redshift through the relation: a = ay/ (1+z).

The time evolution of the scale factor can be determined exploiting the Ein-
stein” s field equations which describe the relation between the 4-dimensional
space-time metric and its matter-energy content through:

1 8nG

In this equation, the indices « and  run from 0 to 3, Gyp is the Einstein tensor, g, is
the metric tensor, and R and R, are the Ricci’ s scalar and tensor, respectively. The
constant A, originally introduced by Einstein to achieve a stationary Universe, is the
cosmological constant. Finally, the term T, is the energy-momentum tensor, which
describes the physical properties of the different matter-energy components of the
Universe. By including in Eq. (1.2) the Robertson-Walker metric, and considering
Typ for a perfect fluid, one obtains the Friedmann equation:

2

1\ 2 3 4
(g) = H*(t) = ? [Pm,o(%o> +Pr,0<L;—O) +PA,O] - IZ—CZ (1.3)
where the subscript ‘0 "stands for quantities evaluated at the present time ty, and
the dot denotes time derivatives. The Hubble parameter H(t), defined as the ratio
of the expansion velocity and the scale factor, represents the rate of change of the
proper distance between two fundamental observers at time t. Quantities that de-
pend on the value of H are usually expressed in terms of 1 = Hy/100 km s~ 'Mpc~?
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to parametrize the uncertainty on its measurement. The quantities p; g represent the
present matter-energy densities of the various components of the Universe: m for
the non-relativistic matter component (DM and baryons), r for the relativistic com-
ponent (radiation and relativistic matter) and A for the dark energy component
(cosmological constant). Note that in this equation the cosmological constant A
of Eq. (1.2) is expressed as an energy density defined as: pp = Ac?/87G. To get
dimensionless quantities these energy densities are often recasted in units of the
critical density por = 3H?/87G as:

0, =F withi = r,m, A,

such that, for a flat Universe (K = 0), from Eq. (1.3) one gets )y =), (); = 1.

Since the different components of the total energy density scale differently with
time (see Eq. (1.3)) it is possible to define three cosmic epochs depending on which
component dominates the dynamics of the Universe. The radiation dominated era
lasts until the so-called equivalence redshift:

1+ zeq &~ 2.4 x 10Oy oh? = 3250, (1.4)

after which the evolution of the Universe is driven by the matter component. The
second transition from a matter dominated Universe to a dark energy one occurs

at: 13
(OIN
1 = (== 1.
+zA (Qm) , (1.5)

which for Q5 ~ 0.7 and Oy ~ 0.3 gives zp =~ 0.33. Depending on the precise val-
ues of the energy density parameters the transition epochs occur at different red-
shifts and the Universe expands at different rates; this in turn influence the struc-
ture formation history and consequently the statistical properties of the observable
used to infer cosmological parameters as will be shown in the next sessions.

1.2 Linear perturbation theory

In the previous section I introduced the equations that describe the evolution of
a uniform background and its components. However, to explain the formation
and evolution of the cosmic structure we need some deviation from a perfectly
homogeneous Universe. These inhomogeneities in the density field arise during
the inflationary era from quantum fluctuations of the inflaton field. In this section I
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intriduce basic concepts of the linear perturbation theory which allows to follow the
evolution of these density perturbations as long as their overdensities with respect
to the background are small. Furthermore, I will report some specific solutions for
the evolution of the density fluctuations on sub-horizon scales, in the framework
of the ACDM model, that will be useful for the treatment of this Thesis.

1.2.1 Newtonian approximation

For small density fluctuations with sizes much smaller than the Hubble radius! -
so that causality can be assumed to be instantaneous — it is sufficient to consider
the Newtonian perturbation theory in the linear regime. If we model the Universe
as a non-relativistic multi-component fluid, the time evolution of each component
under the action of the gravitational potential ¢ is given by the continuity equation
(which describes mass conservation), the Euler equations (the equations of motion)
and the Poisson equation (which describes the gravitational field):

% + %V [(1+6)v] =0 (continuity), (1.6)

ov a 1 Vo vp
o T T a Vst gy Bl 47
V20 = 471Gpa2(5 (Poisson), & =¢ + aix*/2, (1.8)

where P is the fluid pressure, V = V is the Laplacian operator and x = r/a(t), v =
ax the comoving coordinates and peculiar velocities, respectively. The equations are
expressed as functions of the dimensionless density contrast 6 defined as:

5(x 1) = £ —pt), (1.9)
p(t)

with p being the density field of the fluid and p the average density of the Uni-
verse computed over a sufficient large volume. The above description, based on
the assumption that the matter content of the Universe is a non-relativistic fluid,
can be extended to the ACDM case i.e. a Universe which include also a smooth
background of relativistic particle (photons and neutrinos) and dark energy (the
cosmological constant). Indeed, one can easily prove that Egs. (1.6)—(1.8) hold if
the density contrast J is defined with respect to the mean non-relativistic matter

IThe Hubble radius is the proper distance that correspond to speed of light c: Ry = ¢/H(z).
This radius represents the region within which it is possible to exchange information.
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density rather than the total one. The net effect of adding a smooth component is
only to change the expansion rate of the background, that is to change the form of
the scale factor a(t).

To study the evolution of the different modes k independently it is useful to
solve the above system of equations in the Fourier space. For isentropic pertur-
bations in a barotropic fluid, P = P(p), after linearising Egs. (1.6) and (1.7) the
solution of the system (in Fourier space) reads:

d?6  _adéy _ K22

with ¢; = (9P/dp)'/? the adiabatic sound speed in the fluid. This equation has
the form of damped harmonic oscillator. The second term on the left-hand side
is the Hubble drag term, which tends to suppress the growth of perturbations
due to the expansion of the Universe. The first term on the right-hand side is the
gravitational term and drives the growth of the density contrast via gravitational
instability, while the latter is the pressure term which acts against the gravitational
collapse. The competition between these two terms determines the evolution of the
perturbation. Defining the characteristic proper length (Jeans length) as:

_ o 1/2
_2ma 7 _ (4nGpa®
)\] = _k] = Cs G—p, k] = ( Cg ) ’ (1'11)

and neglecting Hubble expansions, one gets that for A > A; (k < kj) the pressure
can no longer support the gravity and the growing mode solution of Eq. (1.10) is
that of a non-propagating wave with an amplitude that increases with time, i.e. a
gravitational (or Jeans) instability as it will be shown explicitly in § 1.2.2.

1.2.2 Specific solutions
Pressureless fluid

The generic solution of Eq. (1.10) can be cast in the form:
6(k,t) =01 (k t;) Dy (t) +6-(k, t;)D—(t), (1.12)

where D and D_ are the growing and decaying modes, respectively. For a non-
relativistic pressureless fluid (e.g. CDM), or when k < k;, the pressure term
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Figure 1.1: Evolution of the linear growth factor (normalized at z = 0) as a function
of redshift for different combination of the parameters (), and Q. The left
panel assumes ()5 o = 0 while the right panel assumes Qp g =1 — (), 9. From top
to bottom the curves correspond to (0, o = 0.1, 0.2, 0.3, 0.5 and 1. Figure from Mo
et al. (2010).

47tGpa®/c? can be set to zero, and the expression for the growing mode takes
the form:
5 © 14z _,
Di(z) = EQm,OE(Z) j mdz , (1.13)

with (see Eq. (1.3)):

E(z) = 5= = [Qa0+ Qo1 +2)° + Omo(14+2)° + Qpo(1+2)Y2, - (L14)

where the curvature parameter is defined as: () g = —Kc?/ (Hoao)2 =1—-0p. In
Figure 1.1 is shown the evolution with redshift of the growth factor D = D for dif-
ferent cosmological models. The growth of perturbations is faster in an Einstein-de
Sitter model (), = 1) and becomes slower as (), decreases. The different be-
haviour is due to an enhancement of the Hubble drag (i.e. larger expansion rate)
in open universes ({)yp < 1) or universes with a dark energy component (25 # 0).
From this example it is clear that any probe capable of sampling the growth of
structures at various redshifts is a valuable tool to constrain cosmological parame-
ters.
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Acoustic waves

Let us now consider isentropic perturbations in a fluid consisting of baryons and
CDM in the matter dominated era (0 = Qcgm + Qp, >~ 1). According to the
standard ACDM model the CDM is the dominant component in mass in the Uni-
verse: Pcdm > Pp and pp =~ Ppcdm- The equation for the evolution of the density
perturbations in baryons, d;,, can be thus approximated to:
2 . 2.2 01 a3

% + 2%% + "ags 5y = 4716%5@@, (1.15)
where the CDM perturbations, .4, evolves as in Eq. (1.13). A solution of this
equation valid for k < kj, and assuming a polytropic fluid with P « %3, for
which c2a = constant is:

3a2H?
2¢2

5(:1 (k/t)
op(k, t) = =,
1+k2/k]

At large scales, where the pressure can be neglected (k < kj), the baryonic per-
turbations closely follow those of CDM. On small scales (k > kj), however, the
pressure cannot be neglected and the baryonic component starts to oscillate (acous-
tic waves) with a frequency w =~ kcs that slowly damps due to the expansion of
the Universe. Acoustic waves play a role during the pre-recombination era, when
baryons and photons are tightly coupled and can be considered as a single fluid
with sound speed:

with k} = (1.16)

¢ 3 pv(2) 2 1
6= ——, A=-L ~ 270, gh?——. 1.17
’ 3(1+ %) 4p,(z) P 142 (117

In this case the acoustic waves are driven by the photon pressure, and for a given
mode the properties of the waves depend on the density ratio between baryon and
photons through the sound speed c;. The acoustic waves in the photon-baryon
plasma give rise to the so-called acoustic peaks in the power spectrum of the CMB
temperature anisotropy; the relative amplitudes and positions of the various peaks
thus provide us strong cosmological information (see §2.1). Moreover, the acoustic
waves also perturbed the baryons, which couple gravitationally to the CDM. There-
fore, the characteristic length scale travelled by the sound waves from inflation to
the baryon-photon decoupling — the so-called acoustic horizon - is imprinted in
the clustering of matter on large scale. The acoustic horizon shows up as a series
of peaks — the baryonic acoustic oscillations (BAO) — in matter power spectrum
(see §1.3.1), whose positions can be used as a standard ruler to estimate cosmolog-
ical parameters (see §2.3).
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Silk damping

The coupling between baryons and photons in the pre-recombination era is not per-
fect, in the sense that the photon mean-free path between two Thomson scattering
is not zero. Therefore, photons tend to diffuse from high-density to low-densities
regions, dragging with them the tightly coupled baryonic fluid. This mechanism,
known as Silk damping (Silk, 1967), causes the exponential suppression of pertur-
bations in the baryon-photon plasma during the pre-recombination era. The scale
on which the Silk damping is relevant depends on the mean distance that a photon
can diffuse in a Hubble time, which exploiting the random walk approximation is:

Asik =~ (Rp/orne)'/?, (1.18)

where Ry is the Hubble radius, o1 the Thomson cross section and 7, the electron
density.

Meszaros effect

In the presence of a smooth relativistic component along with the baryonic and
CDM ones the scale factor is given by:

() =55 (3) ()] a9

Neglecting the baryon component the growing mode solution of Eq. (1.10) for the
CDM density contrast is:

Do(z) &1+ gg with = Pm _ (1+%a) (1.20)

Pr (1+z)

Therefore, in the epoch dominated by the relativistic component (z >> zeq), within
Ry, the Hubble drag causes a stagnation of the perturbation growth in the non-
relativistic component (D ~ constant), known as Mészaros effect (Meszaros, 1974).
Actually, since matter perturbations enter the horizon (at { = enter) With non-zero
“velocities” (6 # 0) , & is not frozen quite at the horizon-entry value, but continues
to grow until this initial “velocity” is redshifted away, which gives a total boost
factor of roughly In(lenter). After the matter-radiation equivalence, the growing
mode solution of Eq. (1.10) approaches asymptotically that of an Einstein-de Sitter
universe (O, = 1) with D4 o« a.
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1.3 Statistical properties of the density field

In order to be able to relate theory to observations we need to characterize the
statistical properties of the cosmological perturbations. To this end, in the following
section I will introduce the matter power spectrum and the halo mass function —
two statistical tools that will be extensively used throughout this Thesis — lingering
on their dependence on cosmological parameters.

1.3.1 The linear matter power spectrum

If the initial density field is a Gaussian random field, as predicted for a large class
of standard inflation models, all its statistical information is encoded in its mean
and variance. It follows from the definition of the density contrast, Eq. (1.9), that its
spatial average at a given redshift is null, (6(x,z)) = 0. Instead, taking the Fourier
transform of 6(x,z), and calculating its variance, one gets:

2(2) = (6*(k, 2)d(k, 7)) = % /O " Pk, 2)Kdk, (121)

where P(k,z) is the power spectrum of the density fluctuations as a function of
redshift. Note that in Eq. (1.21) the assumption of an isotropic Universe allows us
to express the power spectrum as only function of the modulus of the wavenum-
ber k = |k|. Another useful quality to study the statistics of collapsed objects,
which arise from initial perturbations of size R, is the variance of the density field
smoothed on a sphere of comoving radius R, defined as:

o2(R,z) = 21? /0 " P(k,2) W2 (K)K2dk, (1.22)

where the convolution kernel Wg (k) is the Fourier transform of a spherical top-hat
filter of radius R.

In the linear regime different modes of the perturbation field evolve indepen-
dently of each other, hence if the initial field were Gaussian, so is the linearly
evolved one. Moreover, for each mode é(k, z), its evolution can be described as a
linear function of the initial condition. From these considerations, it follows, that
the power spectrum at different redshifts can be factorized as:

P(k,z) = T?(k)D?(z) Pn(k), (1.23)
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where T(k) is the linear transfer function, D(z) the growing mode of Eq. (1.13)?
and Pj (k) the primordial power spectrum, usually parametrized with a power
law: Pp(k) = Agk™. While given an inflationary model it is possible to make
theoretical predictions for the spectral index n; (typically ns ~ 1), the current
theory has no predictive power regarding the amplitude A;, which has to be deter-
mined from observations of the CMB or the LSS. For historical reasons, a common
parametrization of the power spectrum normalization involves the variance of the
matter density field smoothed over a sphere with a comoving radius of 84 Mpc :
0s = 0(R = 8h~Mpc,0) (see Eq. (1.22)). The choice of R = 81~ 'Mpc derives from
the results of early galaxy surveys (e.g. Davis and Peebles, 1983) which found the
variance of the galaxy number counts to be about unity inside spheres of that ra-
dius. A top-hat sphere of such radius contains a mass M ~ 5 x 10140, Mo, typical
of a moderately rich galaxy cluster. Therefore, as we shall see later, the abundance
of galaxy clusters provides a direct measurement of o3.

The linear transfer function T (k) introduced in Eq. (1.23) relates the amplitudes
of sub-horizon Fourier modes in the post-recombination era to the initial condi-
tions. In other words, it bears the (scale-dependent) imprints of the evolutionary
effects described in Section 1.2.2 According to the ACDM model, the dominant
matter component of the Universe is the CDM. Such particles decouple from the
primaeval plasma when they are already non-relativistic, thus their free-streaming
length? is too small (< 1Mpc) to be of any cosmological relevance. The first charac-
teristic wavenumber imprinted in the transfer function is that corresponding to the
horizon size at the matter-radiation equality, keq: during the radiation-dominated
era, density perturbation inside the horizon are suppressed due to the Mészaros
effect, and the structures growth can only proceed on scale larger than the equiv-
alence one (k < keq), beyond the causal influence of the radiation pressure. From
the definition of keq it follows that:

27Taeq

Hence, increasing the matter content (), increases Zeq which in turn reduces
the horizon size at equivalence shifting the knee of the matter power spectrum

keq = x Qo oh?. (1.24)

2Strictly speaking the factorization T(k,z) = T(k)D(z) is only possible in restricted models,
such as a matter or A dominated Universe assuming J,, = d.qp- More in general — e.g. in model
with massive neutrinos; § 1.5.3 — the evolution of sub-horizon perturbations depends also on the
wavenumber k and the transfer function T'(k, z) cannot be split in a scale- and time-dependent factor.

3The free-streaming length is the scale below which collisionless particles cannot cluster due to
their high thermal velocity; see § 1.5.3.
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to higher k.

On smaller scales, in the pre-recombination era, the shape of the transfer func-
tion is affected by the acoustic oscillations of the baryon-photon fluid and Silk
damping. The former introduce oscillatory features in the transfer function (BAO),
on k larger than that of the sound horizon at decoupling, which is about ks =
27I(Qb,0h2/ 0.02) /150 Mpcfl. Thus increasing the baryon content (), 5 (but keep-
ing Omo constant) shifts the first peak to larger k and increases the amplitude of
the wiggles due to the larger baryon fraction. The wavenumber at which the Silk
damping is effective is related to the mean distance covered by a photon in an
Hubble time , and it can be approximated by the fitting formula:

Ksitk = 1.6(Qp 0h?) 52 (Qy oh?) 073 [1 + (10.4Qn oh?) "% Mpc~? (1.25)

The effects of the various evolutionary processes on the transfer function and
matter power spectrum along with their dependence on cosmological parameters
are shown in Figure 1.2 in the upper and lower panel, respectively.

1.3.2 The halo mass function

The halo mass function (HMF), n(M,z), gives the comoving number density of
virialized halos with masses in the range [M, M + dM], found at redshift z. To de-
rive this function we need to go beyond the linear regime since collapsed objects,
such galaxies and clusters of galaxies, have densities orders of magnitude higher
than the average density of the Universe (6 > 1). In general, non-linear gravita-
tional dynamics cannot be solved analytically, and computer simulations have to
be used to follow the evolution in detail. However, as we will see shortly, if simple
assumptions about the symmetry of the system are made it is possible to find an
analytical solution, which nevertheless provides valuable insights to understand
the formation process of virialized DM halos.

The top-hat spherical collapse

Let us consider a spherical perturbation of radius R at time t; during the matter-
dominated era (QQm =~ 1), with constant density p, inside it, such that 6(¢;) > 0
and J(t;) < 1. The perturbation is taken to be expanding with the background
Universe, in such a way that the peculiar velocity at the edge is zero. According to
the Birkhoft’s theorem, given the symmetry of the system, the over-dense region
can be treated as a stand-alone Universe which evolve under the local density
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Figure 1.2: Upper panel: Transfer function for a model with only CDM (Q.qmo =
Om,o = 0.28, (), = 0) and a model with a large amount of baryons ((0p, o = 0.28,
Also shown in the plot with vertical lines are the characteristic
wavenumbers (keq, ksiik and ks) described in the text for the model with (), = 0.1.
Lower panel: Dependencies of the matter power spectrum on cosmological param-
eters (), and )y, within a flat ACDM model. On both panels, all the unspecified
cosmological parameters are set to the reference ACDM values provided by WMAP
9-years (Hinshaw et al., 2013). All the curves are computed using the publicly avail-
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able Boltzmann code CAMB (Lewis et al., 2000).
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parameter p,. The condition for the perturbation to detach from the Hubble flow,
and eventually collapse, is to have an initial density parameter 0, (t;) = Q(¢;)(1 +
d(t;)) larger than unity (closed Universe). In this case, the region will expand up to
a maximum radius Ry, at turn-around time t,, before starting to collapse and reach
thermal equilibrium supported by the velocity dispersion of DM particles. The
time at which this occurs, the virialization time ty, is set by the virial equilibrium
condition E = K+ U = —K, with E, K and U being the total, the kinetic and
the potential energy, respectively. Assuming a dissipationless collapse the energy
conservation gives the relation Ryiy = Rm/2 for the radius at virial equilibrium,
which allows us to compute the overdensity of the perturbation at t (see e.g.
Borgani, 2006, for details):

Pp ( tvir )
AVir -
P (tvir)

~ 178. (1.26)

This result explains why an overdensity of about 200 with respect to the back-
ground density is taken as typical value for a DM halo which has reached virial
equilibrium.

On the other hand, linearly extrapolating the density contrast at ., according
to Eq. (1.13) yields:

bc = 04 (tvir) = 64 (t;) D4 (tvir) = 1.69. (1.27)

Clearly the linear theory extrapolation significantly underestimates the overdensity
at virialization, however it provides the threshold value for the density contrast
within a region of the density field for it to end up in a virialized object. As will
be shown in the next section, the value of J. characterizes the HMF as it gives
the overdensity that a perturbation in the initial density field must have to end up
in a virialized structure. The above derivation can be generalized to models with
Om # 1, for which, for a reasonable range of (), values, the quantity J. remains
almost unvaried.

The Press & Schechter approach

Now I will derive an analytical expression for the HMF following the approach
originally devised by Press and Schechter (1974). Consider the overdensity field
linearly extrapolated to the present time ty: dp(x) = 6(x,to) = d(x,t)/D(t), where
d(x, t) is the overdensity field at an arbitrary t < fp and D(t) is the linear growth
rate normalized to unity at present time. According to the spherical collapse model
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described earlier, regions of the density field with dy(x) larger than d.(¢) = 6./ D(t),
or equivalently with d(x,t) > &, ~ 1.69, will have collapsed to form virialized
objects. In order to assign a mass to the collapsed regions let us consider the
density field smoothed on mass scale M:

5s(x; M) = /(50(x')W(x—|—x';R)dx, (1.28)

where the relation between smoothing radius R and mass M depends on the shape
of the window function W (X, R) (e.g. for a spherical top-hat filter, M = 47t/3pR5).
The ansatz of the Press & Schechter (PS) formalism states that the fraction of mass
elements that at time ¢ will form halos with mass larger than M, F(> M), is equal to
the probability that ds(x; M) > d.(f). In other words, the fraction of matter ending
up in collapsed objects with mass above M, by time ¢, is equal to the fraction
of the initial density field smoothed on the mass—scale M, ds(x; M), lying at an
overdensity exceeding the critical threshold é.(t). Assuming dp(x) to be a Gaussian
random field, the probability for the linearly-evolved smoothed filed ds(x; M) to
exceed the threshold J.(t) reads:

Pos(M oc(t)| =F(>M) = ! ) 5%
35(M) > ()] = F(> M) = o [ exp |5
= lerfc [—(5C(t) ]

2 20 (M)

o
(1.29)

with o(M)? = (03(x; M)) = 0%(R = (M/p)*/3) (see Eq. (1.22)), and erfc the
complementary error function. In principle, taking the limit of M — 0 — that is,
considering objects of arbitrary small mass — one would expect to recover the whole
mass content of the Universe. However, computing this limit one gets & [dg(M —
0) > &.(t)] — 1/2, which means that only half of the mass of the Universe is
contained in collapsed objects of any mass. This result shows a fundamental limit
of the PS approach. Basically this is due to fact that, in this derivation, one gives
a null probability for a point with ds(x; M) < é.(t) to overcome J, for some larger
filtering scale M’ > M. However, underdense regions can be enclosed within
larger overdense regions, giving them a finite probability to end up in collapsed
objects of larger mass. Bond et al. (1991) provided a more rigorous derivation of the
HME, which correctly accounts for the missing factor 2, at least for the particular
choice of a sharp-k filter. Including ad hoc in the PS ansatz the “fudge factor” 2,
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F(> M) =22[6s(M) > 6.(t)], the HMF reads:

_POIF>M) P OP[5s(M) > 5c(t)] |dom
MM = on M= 2 Iop am | M
1.30
_J2 e | ()| |dinou| (1.30)
“VaM oy © 202, | |dinmM | "

where the fraction of volume in objects with mass in the range [M : M + dM],
[0F (> M)/0M]dM, has been divided by the volume occupied by each halo, V1 =
M/p, in order to get the number density of such objects.

From Eq. (1.30) one can get insight on the non-linear structure formation in a
hierarchical model. Indeed, from the exponential term in Eq. (1.30) it follows that
only halos with M < M*(t), with M*(t) defined such that op;+ = 6.(t) = 6./ D(t),
can have formed in significant number at time f. Hence, given that D(t) increases
with time and oy, decreases with mass, as time goes by M*(t) increases, and more
and more massive halos can start to form. Taking Eq. (1.30) in the limit of mas-
sive objects (i.e. rich galaxy clusters) the exponential term dominates the shape
of the HMF. This explain the exponential sensitivity of HMF to the cosmological
parameters mentioned throughout this Chapter (0, Qa, 03, Ho, ns) which enter
through o)s and its dependence on the power spectrum (Eq. (1.22)), through the
linear growth factor D(t) (Eq. (1.13)), and, to a lesser extent, through .. In par-
ticular, the power spectrum normalization g and the matter density (), — due to
their influence on the amplitude of the power spectrum at cluster scale and linear
grow factor — are the two parameters which mainly affect the amplitude and the
shape of the HMEF. This is displayed in Figure 1.3, which shows the sensitivity of
the cumulative HMF, n(M > 5 x 10*Mg,, z), to the two parameters. A larger value
of og increases the amplitude of the mass fluctuations at a given scale causing the
structures to start to form at earlier time (compare orange, black and red curves).
While, increasing (), reduces the time during which (), < 1 and the perturba-
tions cannot grow, boosting the overall mass function to higher values (compare
cyan, black and blue curves).

Numerical calibration of the HMF

After the pioneering work of PS, many authors attempted to improve and refine
their analysis. In particular in the last decades, thanks to the ever increasing com-
putational power available, N-body simulations became the standard tool to study
the structure formation in non-linear regime, and thus the HMF. The functional
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Figure 1.3: Cumulative HMF mass function for halos with M > 5 x 10M,, be-
tween redshift 0 and 2, for different combination of the parameters g and O
within a ACDM model . Figure from Sartoris (2012).

form usually adopted to describe the HMF calibrated against N-body simulation
is:
dInoy,'
n(M,z) = %f(aM,z)d—MM. (1.31)

Using this definition, it follows from Eq. (1.30) that the PS expression is recovered
by setting:
2 5(t) bc(t)?
z) === _e 1.32
frs(om z) = — oy P [ 202, (1.32)

A crucial aspect in the calibration of the HMF is related to the algorithm used
to identify the halos, the two most widely used being the “Friend of Friend” (FoF)*
and the “Spherical Overdensity” (SO)° one. In the latter case the mass of the halo

4The FoF algorithm considers two particles in the simulation to be members of the same group
(i.e., “friends”), if they are separated by a distance that is less than a given linking length. Friends
of friends are considered to be members of a single group — the condition that gives the algorithm
its name.

5The SO algorithm defines the boundary of a halo as a sphere of radius enclosing a given density
contrast A with respect to a reference background density. To be defined an SO halo also requires a
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is given by:
4
My, = gnRic/mAC JmPesm(2), (1.33)

the mass contained in a sphere of radius Ry, encompassing an average density
equal to A/, times the critical (subscript c) or mean (subscript m) density at a
given redshift.

Incorporating the effect of non-spherical collapse, Sheth and Tormen (1999) gen-
eralized the PS expression to:

2.0.707 0203 & 16>
= 3222 (1+ (M < T 1.34
flowz) === —03222 |1+ () ]aMe"P 20%4] (134)

where the best-fitting values (0.707, 0.3) have been obtained using the results of
N-body simulations, in which the halos were identified using a SO algorithm, and
their masses computed within a radius encompassing a mean overdensity equal to
the virial one, Ay;;. Jenkins et al. (2001), looking for an universal form of the HMF
— universal in the sense that the same functional form and parameters hold for
different cosmologies and redshifts — proposed a different expression for f (o, z):

flom,z) = 0.315exp(—|Inoy! +0.61138), (1.35)

obtained as the best-fit to the results of a set of simulations covering a wide dynam-
ical range. Subsequent works analysed the accuracy of Eq. (1.35) (e.g. Evrard et al,,
2002; White, 2002; Springel et al., 2005; Warren et al., 2006) in reproducing numer-
ical results, also discussing its universality for generic cosmologies, and stressing
the role of different algorithms used to identify the halos and to compute their
mass. More recently, many authors turned their attention on the evolution of the
HMEF with redshift (e.g Reed et al., 2003, 2007; Lukic et al., 2007; Cohn and White,
2008) or on the effects of baryonic feedback processes (e.g. Rudd et al., 2008; Stanek
et al., 2009). In particular, Tinker et al. (2008) studying the limits of universality of
the HMF provided the following formula:

flo)=A {(%) Ty 1] e=c/o (1.36)

where the values of fitting parameters (A, 4, b, c) depend on the density threshold
used to define the mass, A, (see Table 2 in Tinker et al., 2008)). Also, to keep

definition of the halo centre. The common choices for the centre in theoretical analyses are the peak
of density, the minimum of the potential, the position of the most bound particle, or, more rarely,
the centre of mass.
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a statistical precision of 5% up to redshift 2.5, the authors introduced a redshift
dependence into the fitting parameters of Eq. (1.36). Figure 1.4 shown the accuracy
of the Tinker fitting function (1.36) in reproducing the simulations results between
redshift z =0and z = 2.5

Still today, the large number of ongoing (Planck, SPT, DES) and upcoming
(eROSITA, LSST, Euclid) cluster surveys prompts the research in this field. In
particular, in the last few years, many works have been presented on the de-
pendencies of the HMF on cosmological parameters beyond the ACDM ones —
e.g. massive neutrino (Brandbyge et al.,, 2010b; Marulli et al., 2011; Ichiki and
Takada, 2012; Villaescusa-Navarro et al., 2013), dark energy equation of state, non-
Gaussianity (Grossi et al., 2007; Dalal et al., 2008) — and on the effects of baryonic
feedback processes on the halo mass distribution, and thus, on the HMF itself (e.g.
Cusworth et al., 2014; Velliscig et al., 2014; Vogelsberger et al., 2014; Martizzi et al.,
2014; Cui et al., 2014). Forecast analyses for next future cluster surveys indicate
that an accuracy of < 5% in the HMF calibration will be needed to fully exploit the
cosmological information carried by such surveys.

1.4 Halo-mass bias

Dark matter halos, arising from the high-density peaks of the initial matter distri-
bution, are expected to be biased tracer of the underlying matter fluctuations. This
means that the fluctuations in number density of DM halos in a given volume of
the Universe, 6, = n(M)/ii(M) — 1, and that of the underlying matter density in
the same volume, J;(M), are different. The relationship between ¢;, and J,, is called
the halo-mass bias, and can be defined as:

~ Pin(k)’ -3

i.e. as the ratio of the halo power spectrum to the linear matter power spectrum.

A first attempt to model analytically the halo-mass bias has been made by Mo
and White (1996). Using the spherical collapse model (PS formalism) and the pick-
background split approximation (Bond et al., 1991) the authors derived the equa-
tion:

2 —1
dc
with v = é./0p. Recalling the characteristic mass M* defined above, one can see
that halos whit M > M* are biased (6, > ds;(M)), while halos with M < M* are

(1.38)

b(v) =1+
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Figure 1.4: Residuals of the z = 0 Tinker mass function for A = 200 with respect
to the HMF measured from simulations at z = 0, z = 0.5, z = 1.25 and z = 2.5.
The solid lines have been obtained using Eq.(1.36) and considering the redshift
evolution of the fitting parameters. Error bars are shown only for the first and last
points of each simulation. The shaded regions bracket the mass range 1031~ M, —
1011~ 1 M., Figure from Tinker et al. (2008).

anti-biased (9, < d5(M)), relative to the mass density field. Moreover, since M*
increases with time the halo-mass bias increases with redshift at fixed mass (see
Figure 1.5).

However, this equation in not able to reproduce the relation found in simula-
tions, in particular in the low-mass end (e.g. Jing, 1998; Sheth and Tormen, 1999);
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as in the PS formalism the Mo and White (1996) derivation assumes an unrealistic
spherical collapse model. More rigorous (and physically-motivated) derivations of
the halo-mass bias have been proposed, for instance, assuming an ellipsoidal col-
lapse model (Sheth et al., 2001)), or fitting the relation against N-body simulations,
as the one suggested by Tinker et al. (2010):

a

v+ ¢

b(v)=1-A + BuP + C1°, (1.39)

where the value of the six parameters (A, a4, B, b, C, c¢) depends on the value of
the overdensity A, chosen to measure the mass. In the left panel of Figure 1.5 are
shown the bias functions proposed by Mo and White (1996), Sheth et al. (2001)
and Tinker et al. (2010) as a function of v, in comparison with the results of N-body
simulations (coloured points), along with their residual with respect to the fitting
function of Tinker (lower panel). In the right panel of Figure 1.5 the Tinker et al.
(2010) halo-mass bias is shown as a function of mass for different redshifts. In
the mass range typical of clusters, ~ 1013 — 1011 M, the overdensity of halos is
always larger than that of the underlying matter (b > 1).

1.5 Massive neutrinos

In the previous sections, the evolution of the Universe and the structure formation
history in the framework of the ACDM model have been described. However,
nowadays there exist compelling evidences from neutrino oscillation experiments
that neutrinos are massive particles. Depending on their masses cosmic neutrinos
make up a different fraction of the dark matter of the Universe, affecting both the
background evolution and growth of structure. In this section I will briefly review
the neutrino physics and the effects that massive neutrinos have on the cosmic
evolution and their impact on the cosmological observables described so far.

1.5.1 Neutrinos thermal history

A standard prediction of the hot big bang model is the existence of a relic sea of
neutrinos, with a number density slightly below that of CMB photons. Produced
in the early Universe by frequent weak interactions, neutrinos were kept in ther-
mal equilibrium — with a Fermi-Dirac momentum spectrum — with the primaeval
plasma until the rate of interactions falls below the expansion rate of the Universe at
Tgec =~ 2 —4MeV. After decoupling, the neutrino momenta and temperature scale
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Figure 1.5: Left panel: Comparison between the halo-mass bias relations proposed
by Mo and White (1996), Sheth et al. (2001) and Tinker et al. (2010) as a function of
v. Each point type indicates the results of a different simulation, and their colour,
from left to right, go in order of increasing redshift from z = 0 to z = 2.5. In
the bottom panel are shown the residual of the bias functions of Mo and White
(1996) and Sheth et al. (2001), along with N-body simulations results, with respect
to the fitting formula of Tinker et al. (2010). Figure from Tinker et al. (2010). Right
panel: Halo-mass bias of Tinker et al. (2010), for A,, = 200, as a function of the
mass. Different curves correspond to different redshifts; from bottom to top: z =
0,0.2,0.6,1.0,1.4,1.8.

identically with the expansion of the Universe, preserving their Fermi-Dirac spec-
trum. Due to the smallness of neutrino masses, < 1eV (see later), they were ultra-
relativistic at Ty, and became non-relativistic only after recombination. Shortly
after neutrino decoupling the plasma temperature drops below the electron mass
favouring the e annihilation into photons. The energy exchanged during these
processes heats the photon gas but not the neutrinos which are assumed to be
already completely decoupled. This settles the ratio of the photon to neutrino
temperature after e* pairs disappearance to T,,/T, = (11/4)!/3 ~ 1.40102. Once
the neutrino temperature and spectrum are known, it is possible to compute the
present day neutrino number density:

_ 3 _60(3) 3
ny = 11717— 1122 T, (1.40)
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which leads to n, = 113cm ™! for neutrinos and antineutrinos of each flavour. As
for the neutrino energy density, in the relativistic and non-relativistic limit, it reads:

4
7% (4\3 4
pv(mv < T]/) = ﬁ (ﬁ) T,)/
Pv(mv > Tv) = myny, (1.41)

respectively. When relativistic, neutrinos contribute to the radiation energy den-
sity, while, after the non-relativistic transition, they contribute to the matter energy
density. In the latter stage the energy density is a function of the masses of the
neutrino species for which m, ; > T,. Their contribution to the radiation energy
content is usually parametrized in terms of the effective number of neutrinos, Ne¢,
through the relation:

Pr = Py +pv =

7 [ 4\*3
1+ (ﬁ) Neff] Py s (1.42)

where the present value of the photon energy density, p,, is known from the mea-
surement of the CMB temperature. The standard value for the effective number
of neutrino is Ny = 3.046, where three is the number of neutrinos sensitive to
the weak interaction (ij‘Cﬁ"e = 2.9840 4+ 0.082; The ALEPH Collaboration et al.,
2005), and 0.046 accounts for a non-instantaneous decoupling process and flavour
oscillation effects (Mangano et al., 2005). Any departure of Ng¢ from this value
could indicate the presence of new physics beyond the standard model; adding
an extra (thermalized) light fermion would contribute ANgg = Negr —3.046 = 1
(see later § 1.5.5), but more generally a non-integer AN value could arise from
different physics, such as lepton asymmetries (Hannestad et al., 2012), partial ther-
malisation of new fermions (Melchiorri et al., 2009), particle decay (Palomares-Ruiz
et al., 2005), non-thermal production of dark matter (Hooper et al., 2012), gravity
waves (Smith et al., 2006) or early dark energy (Calabrese et al., 2011).

Observationally, a first allowed range for N is given by the comparison of the
primordial abundances of light elements — in particular *He — predicted by the big
bang nucleosynthesis (BBN) and experimental data. Basically, Neg fix the expansion
rate at BBN through its contribution to the radiation energy content. This in turn
affects the freezing temperature of the neutron-to-proton ratio, thus changing the
“He abundance. Recent measurements of primordial abundances constrain the
extra radiation to ANgg < 1 at 20 (Izotov et al., 2013; Cooke et al., 2014).
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In addition, as will be shown later, independent constraints on N at later
epochs can be extracted from CMB observables, and to a lower extend, from obser-
vations of the LSS.

1.5.2 Neutrinos as dark matter

Provided that neutrinos are massive particles, they will contribute to the matter
content of the Universe. Their present energy density in units of the critical value
is:
Ov Y my

(= oc  94.57h%eV’ (1.43)
where ) m, includes the masses of all neutrino species which are non-relativistic
today. Oscillation experiments provide us measures of the mass-squared differ-
ence between massive species. Recent experiments, using solar and atmospheric
neutrinos, quantified these difference as: Am3, = 7.5 x 107° eV? and |AmZ,| =
2.3 x 1073eV? (e.g. Fogli et al., 2012; Forero et al., 2012). This means that at least
two neutrino species are non-relativistic today, since both (m?,)!/2 and |Am3,|!/?
are larger than present neutrino temperature, T, o = 1.95K ~ 1.7 x 10~%eV. Un-
fortunately these experiments are insensitive to the absolute neutrino mass scale,
and, depending on the sign of |Am3,], two mass spectra are possible: the normal
mass hierarchy (m; < mp < mj3) for Am%3 > 0, and the inverted mass hierarchy
(m3,my, my) for Am3, < 0. There exist two kind of laboratory experiments which
are able to detect the absolute scale of neutrino masses. One type of experiment
exploits the neutrinoless double beta decay, (Z, A) — (Z 42, A) + 2e¢~, a rare nu-
clear process where the lepton number conservation is violated, and that can occur
if neutrinos are Majorana particles. The other kind of experiment searches for
the kinematic signature of massive neutrino in ordinary beta decay, n — p + e + 7.
Combining the current limits from tritium beta decay experiments (e.g. m, < 2.3eV
at 95%C.L. Kraus et al., 2005), and the minimal neutrino mass allowed by oscilla-
tion experiments, the sum of the masses of the three active species is constrained
in the range:

0.056 (0.095) eV <) _m; S 66€V,
1

or, in terms of the energy density parameter:
0.0013 (0.0022) eV < ), $0.13 with h~0.7

where the value of the lower limits is for a normal (inverted) hierarchy. As we will
see shortly, cosmological data allow us to put stronger constraints on ) m, thanks
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to the mass-dependent imprints that neutrinos leave on cosmological observables.

1.5.3 Effects of massive neutrino on cosmology
Neutrino free-streaming

After decoupling, because of their large random velocities and collisionless nature,
neutrinos can diffuse, leading to damping of density fluctuations on small scales.
The proper length below which the damping effect becomes important, called free-
streaming length, depends on the typical distance travelled by neutrinos in a time
t after decoupling. In analogy with the definition of Jeans length (see §1.2.1 and
Eq. (1.11)), we can define the neutrino free-streaming length (wavenumber) as:

a v 5(t)a? 1z
Afs“):Z”ka(Z):z” §§<(tt>)' kfs(t)z(%) o 04

exploiting that their characteristic velocity, on average, is given by the thermal
velocity vy,. When neutrinos are relativistic, they travel at the speed of light and
their free-streaming length is equal to the Hubble radius. After the non-relativistic
transition, their thermal velocity scale as:

(p)  315T, 3.15T,0 /ag 1eV »
=~ = ~ (=) ~ 1 k . 1.4
o = 1 - . (a) 158(1 + z) ) kms (1.45)

Including this relation in Eq. (1.44), the evolution of the neutrino free-streaming
wavenumber in the matter or A dominated era reads:

VN0 + Ompo(1+2)3 < ny
1+ z2)?2 1eV

kpo(t) = 0.82 ) hMpc . (1.46)
Therefore, after the non-relativistic transition in the matter dominated era, for
which ayp « t?/3, the comoving free-streaming length decreases like Afs/a o
vm/(aH) o« (a?H)™' o t71/3. This implies that, for neutrinos becoming non-
relativistic in the matter-dominated era, the comoving free-streaming wavenumber

pass trough a minimum, ky,, at the time of the non-relativistic transition ({(p) =

3.15T, = m,):
my

leV

Figure 1.6 shows the evolution of the comoving ks and horizon scale as a function
of the scale factor for a model with }_m, = 1.2eV. Modes inside the shaded area

e =~ 0.01802Y/2 ( ) HMpc . (1.47)
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Figure 1.6: Evolution of the of the comoving ks (fop curve) and horizon scale
(bottom curve) as a function of the scale factor for a model with }_ m, = 1.2¢€V.
Adapted from Shoji and Komatsu (2010).

can grow, being inside the horizon and on scale larger than the free-streaming
length. Note that passed the point of minimum, ky,, the thermal velocity decreases
with the scale factor, and the number of modes that can grow increases. On scale
much larger than the free-streaming length (k < k) the neutrino velocity can
be considered as vanishing, and after the non-relativistic transition the neutrinos
perturbation grow like those of CDM, as described in §1.2. In particular, modes
with k < knr never experience the free-streaming damping, and evolve like in a
pure ACDM model.

Signature of massive neutrinos on the matter power spectrum

We discuss now the difference between the power spectra computed in a cosmology
with massless and three degenerate massive neutrinos, at fixed values of the other
cosmological parameters.

We have seen that on large scales (k < kyr), the neutrino free-streaming can be
always ignored, and the neutrino perturbations J, evolve like that of CDM, which
in the matter-dominated era grow as d.qm, & a. Thus, if we vary (), keeping fixed
Om, the large-scale power spectrum remains unchanged.

Instead, for k > knr and k > keq, the matter power spectrum in the presence
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of massive neutrinos varies for different reasons. Firstly, since ~ 1€V neutri-
nos become non-relativistic after recombination, the matter-radiation equivalence
occurs at different times. Defining the neutrino energy fraction f, = Q,/Qmn,
it turns out that the equivalence in presence of massive neutrino is delayed by
ajecg = a{’(fo/ (1 — f,)°. Thus, the time during which matter perturbation can grow
is shorter if (), # 0 (see §1.2).

Secondly, the neutrino perturbations do not contribute to the gravitational clus-
tering below the free-streaming scale, so that, the neutrino component can be omit-
ted from the Poisson equation (Eq. (1.8)). On the other side, they do contribute
with their energy density to the expansion rate through the Friedmann equation
(Eq. (1.3)). The net effect is a slowdown on such scales of the growth rate of
CDM and baryon perturbations at late times. It can be proved that for f, < 1,
on scale k > kg, in the matter dominated era, the CDM perturbations grow like

Scqm o al73fv/5 (see e.g. Lesgourgues and Pastor, 2006, for details). This last ef-
fect, rather than the damping of J,, has the largest impact on the suppression of
the matter power spectrum. At redshift z ~ 0, the step like suppression of the
power spectrum starts at k > kp,, and saturates at k ~ 11Mpc ™! to the value
P(k)fv/P(k)/*=0 = 1 — 8f, in the linear approximation (FHu et al., 1998) and reaches
P(k)fr/P(k)/»=0 ~ 1 — 10f, taking into account non-linear effects (e.g. Brandbyge
et al.,, 2010a; Viel et al., 2010). Therefore, a feature introduced by massive neutrinos
is the scale dependence of the growth factor D = D(z,k). For a pure ACDM
model, the shape of the matter power spectrum is fixed after the recombination era
(D4 = D(z), Eq. (1.13)). In the presence of massive neutrinos, instead, the evolu-
tion of perturbations depends on the scale, making the shape of the matter power
spectrum redshift dependent.

Figure 1.7 shows in the left panel the step-like suppression induced on the mat-
ter power spectrum by different values of ) m,, while in the right panel the scale
dependence of the growth factor for two models with (3, = 0.02 and ), = 0.01,
respectively.

So far, we discussed the effects of the variation of ) m, — or equivalently (),
— on the matter power spectrum. In principle, the position, knr, and the size of
the step-like suppression induced by each massive species in P(k,z), have a small
dependence on individual neutrino masses. However, the difference induced by a
different mass-splitting scheme is so tiny that even for the most ambitious future
surveys their detection is expected to be problematic (Lesgourgues et al., 2004;

®As will be explained later in §2.1, this effect is especially relevant to constrain neutrino proper-
ties with the CMB power spectrum.
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Figure 1.7: Left Panel: Ratio of the linear matter power spectrum at z = 0 for a
cosmology with three degenerate massive neutrinos to that with massless neutrinos
for different values of ) m,. Right Panel: Scale dependence of the linear growth
factor. The curves have been obtained after normalizing D(k, z) to D(k < 0.001,z =
0). Solid (Dashed) curves correspond to a model with ), = 0.02 (), = 0.01). The
different colours are for: z = 1 (green), z = 1.5 (blue) and z = 2 (red). In both panels
the curves have been computed using the Boltzmann code CAMB (Lewis et al., 2000).

Pritchard and Pierpaoli, 2008; Jimenez et al., 2010).

Similar effects of suppression, due to massive neutrinos are expected for the
HME, which we recall depends upon the power spectrum through o (Egs. (1.31)
and (1.22)). Simply computing the HMF with one of the relation proposed in §1.3.2,
the number of halos predicted is lower for larger neutrino mass, and the suppres-
sion is more pronounced in the exponential tail. The effect is due to the loss of
power in the matter fluctuations which shifts the characteristic mass M* at a given
redshift to lower values (see §1.3.2). However, a naive application of these equations
is not sufficient to recover an accurate HMF in cosmologies with non-vanishing
neutrino masses. We will see later in Chapter 4 which prescription has to be used
for the HMF to be in percent agreement with N-body simulations with }_m, # 0.

1.5.4 Current constraints on ) _m,,

Thanks to the effects that massive neutrinos have on the background evolution and
structure formation, their signature can be detected in many observables of the
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LSS, as well as of the CMB. As for the latter, for masses smaller than ~ 0.6 eV neu-
trinos are still relativistic at recombination, and the effect of }_m, # 0 can appear
only at the level of background evolution and secondary anisotropies. The two
main physical effects that allow to bound ) m, from CMB data are the early-ISW
effect, which induces a dip in the CMB spectrum around 50 < ¢ < 200, and the
lensing effect, which smooths the temperature power spectrum at ¢ > 1000. The
best measurement of CMB temperature anisotropies comes from the first release
of the Planck satellite (Planck Collaboration, 2013d) which gives } m, < 0.66 eV
(95%CL) in combination with data from the high-resolution (¢ > 2500) CMB exper-
iments ACT (Das et al., 2014) and SPT (Reichardt et al., 2012) (hereafter HighL), and
from WMAP E-type polarization (Bennett et al., 2013) (hereafter WP), for a ACDM
+)_m, model. The capability of CMB data to constrain ) m, is hampered by the
degeneracy with ()5 (or the derived Hj). Late-time geometric measurements, such
as BAO scale or direct Hy measurements, could help in reducing this degener-
acy. Combining Planck+WP+HighL data with the latest BAO measurements from
BOSS DR11 (Beutler et al., 2013), Giusarma et al. (2014) obtained the upper limit
Y. my, < 0.25 eV. Including also Hp measurements from HST (Riess et al., 2011) the
error further decreases to )_m, < 0.22 eV. However, it is worth to mention that the
tension between Planck CMB and HST results, H}'*"** = 67.3 & 2.54km s Mpc !
and HgIST = 73.8 +£4.8km s_lMpcfl, could lead to biased results. Finally, LSS
datasets, probing the amplitude and evolution of matter fluctuations at low red-
shift, should provide even stronger constraints on ) m, in combination with Planck.
However, this is not the case since many probes of the low-redshift Universe seem
to prefer a non-zero neutrino mass at odds with Planck data. In particular, the low
og value derived form galaxy shear power spectrum (Heymans et al., 2013) , galaxy-
galaxy lensing (Mandelbaum et al., 2013), redshift space distortion (RSD) (Beutler
et al., 2013) and clusters abundance (Vikhlinin et al., 2009b; Rozo et al., 2010; Allen
et al., 2011; Planck Collaboration, 2013a), could be interpreted as the effect of neu-
trinos with a total mass of } m, ~ 0.3 —0.4eV. For instance, Beutler et al. (2014)
combining Planck temperature and lensing power spectra with BAO scale and RSD
measurements, shear power spectrum and galaxy-galaxy lensing, found a > 2¢
preference for massive neutrinos, namely: ) m, = 0.24 £0.20 eV (95%). Otherwise,
the tension between CMB and LSS data can be driven by some systematics not
properly taken into account in the analyses. I will come back to this point in Chap-
ter 5, where a detailed analysis of the CMB data in combination with low-redshift
probes measurements is presented.
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1.5.5 Light sterile neutrinos

Light sterile neutrinos are not motivated by arguments of fundamental physics,
but rather by a few anomalies in short baseline neutrino oscillation data, as in
LSND (Aguilar-Arevalo and et al., 2001), MiniBooNE (Aguilar-Arevalo et al., 2010),
reactor (Mention et al., 2011) and Gallium (Abdurashitov et al., 2006; Giunti et al.,
2012) experiments. These anomalies can be explained with a neutrino having a
mass squared difference of Am? > 1eV2. However, results from solar and atmo-
spheric neutrino oscillations experiments (Ami2 13 S 103 eV?) require a fourth

neutrino to admit Am? > 1eV?, while LEP results on the invisible decay width of
the Z boson (N3°tve —= 2.9840 + 0.082: The ALEPH Collaboration et al., 2005) imply
that the fourth neutrino, if it exists indeed, is a sterile neutrino. Yet, the afore-
mentioned experiments have to deal with a number of evidences which clearly
disfavour the extra sterile neutrino interpretation, the stronger coming from ac-
celerator experiments like CDHSW (Dydak et al., 1984) or MINOS (Adamson and
et al., 2011).

From the theoretical point of view the existence of sterile neutrinos arise natu-
rally as a consequence of active neutrinos having non-zero masses. Once neutrino
mass generation via the seesaw mechanism is put into the wider context of grand
unification and leptogenesis, (light) sterile neutrinos in the mass range of eV and
keV appear slightly less natural, but still a large class of models allows for their
existence (see Abazajian et al., 2012, for a review).

From the cosmological side sterile neutrinos can be generated in the early Uni-
verse through various mechanisms, including resonant or non-resonant oscillations
with the flavour neutrinos produced in the thermal bath. To account for their ef-
fects on cosmology two parameters are usually considered: the effective number
of extra relativistic degree of freedom ANg = Negr — 3.046, and the effective sterile
neutrino mass, m<f. The former account for the sterile neutrino contribution to the
radiation energy density (Eq. (1.42)) when they are in the relativistic regime, and
its value depends on the number of sterile flavours and the level of thermalisa-
tion. The primary thermalisation process is the collisional production from active
neutrinos that oscillate into sterile neutrinos. This process is favoured by large
mixing angle(s) and large mass squared difference(s). For one extra sterile species,
the values of the mass squared difference (ms ~ 1eV) and mixing angles invoked
to resolve reactor, Gallium (sin?2® > 0.1) and accelerator (sin?2® ~ 5 x 1079)
anomalies suggest a full thermalisation of the sterile neutrinos in the early Uni-
verse (Langacker, 1989), and thus a contribution of ANg¢ = 1 to the dark radiation.

The relation between the parameter mS and the physical mass ms depends on the
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production mechanism which generate the sterile neutrinos in the early Universe.
For a thermally-distributed sterile neutrino the relation reads:

me® = (T/T,)%ms = (ANgg)> *ms (1.48)

where T and T, represent the current temperature of the sterile and active neu-
trinos, respectively. Alternatively, if the sterile neutrino is distributed proportion-
ally to the active species due to oscillations the physical mass can be expressed as
me* = (ANgg)ms, which corresponds to the Dodelson and Widrow (1994) scenario.
In both cases for a fully thermalised sterile neutrino, ANg = 1, one gets m& = ms.

After decoupling, and when still relativistic, sterile neutrinos contribute to the
radiation energy density modifying the equality redshift zeq (Eq. (1.4)) according

to:

0, 1+ 0.227Nggs ’

(see Eq. (1.42)). When non-relativistic, and for masses ms < 1€V, sterile neutri-
nos acts similarly to the active ones suppressing the matter fluctuations on scale
smaller than their free streaming length (Eq. (1.46)). Assuming one massive sterile
neutrino, in addition to the two massless and one massive active neutrino with
m, = 0.06 eV, the Planck Collaboration (2013d) combining Planck+WP+HighL and
BAO data found no evidence for the extra massive species: mSf < 0.42eV and
ANegr < 0.80 (95% C.L.). Otherwise, including also datasets which are in tension
with Planck CMB results such as Hy measurements (which push for extra radi-
ation) and cluster data (which prefers non-zero neutrino mass) various authors
(e.g. Wyman et al., 2013; Battye and Moss, 2013; Hamann and Hasenkamp, 2013)
found evidence for a sterile neutrino with mff ~ 0.4 — 0.5V and dark radiation
ANggs ~ 0.4 — 0.7. Other constraints on sterile neutrino properties from CMB data
in combination with LSS constraints — also accounting for systematics in the cluster
analysis — will be presented in Chapter 5.

1+ 2zeq =

(1.49)



39

Cosmological probes

In the first Chapter the theory that describes the evolution of the background Uni-
verse and matter fluctuations has been presented. To exploit this theoretical frame-
work to constrain cosmological model we need suitable cosmological probes to
sample the underlying dark matter distribution and measure the Universe expan-
sion over the cosmic time.

Thanks to the advancement in instrumentation technology and theory of cosmic
structure formation, the last decades have witnessed the appearance of plenty of
new cosmological probes (e.g. BAO scale and cosmic shear measurements) and
refinement of old ones (e.g. CMB temperature and polarization anisotropies and
cluster number counts). Still, the full exploitation of these cosmological data is
hampered by our limited understanding of different astrophysical processes which
take place at small scales modifying the observational properties of the structures
under consideration.

Here I will present an overview of the cosmological probes used in the analysis
presented in this Thesis, explaining their properties, observational techniques, and
providing some recent results. Particular emphasis will be given to galaxy cluster
surveys which is the probe mostly used for the results of this Thesis.

2.1 Cosmic Microwave Background

The Cosmic Microwave Background is widely recognized as one of the most pow-
erful probes of cosmology and early Universe physics. Predicted by Gamow (1946),



40

the CMB is the relic radiation we receive from the surface of last scattering between
photons and baryons at zq ~ 1100. The spectrum of the CMB is perfectly consis-
tent with a blackbody spectrum with a temperature T = 2.725 K, resulting from the
thermalisation of the photon-baryon plasma in the pre-recombination era, and the
subsequent cooling of free-streaming CMB photons with the Universe expansion.
Its anisotropies, observed as small temperature fluctuations across the CMB sky,
carry the imprint of the density and metric perturbations present at the photon de-
coupling. After its first detection by Penzias and Wilson (1965) — which allowed to
establish the modern paradigm of the hot big bang cosmology — the cosmological
relevance of the CMB was rapidly realized and a series of experiments aimed to
measure its anisotropies were started by the mid-70s. However, only twenty eight
years after its discovery the COBE satellite has been able to detect the fluctuations
of the order 107 in its temperature field. If from one side the small amplitude of
the fluctuations has hampered their detection for several years, on the other side it
allows to use the accurate theoretical predictions of the linear perturbation theory
to tightly constrain cosmological parameters. The COBE results established the ex-
istence of a nearly scale-invariant spectrum of primordial fluctuations on angular
scales larger than 7°, consistent with the predictions of inflationary cosmology, and
has prompted new generations of sub-orbital (Boomerang, Maxima), ground based
(DASI, CBI, ACT, SPT) and satellite (WMAP, Planck) experiments to map the CMB
sky. Thanks to the huge amount and accuracy of CMB measurements available
today, CMB data alone are able to provide constraints at percent level for all the six
ACDM parameters. In what follows I will present the quantities observed in CMB
surveys and the most recent constraints provided by the latter.

2.1.1 Observational quantities

Temperature anisotropies

The basic observable of the CMB is its intensity as a function of frequency and
direction on the sky fi, usually expressed in terms of temperature fluctuations
©(f) = AT/T. If the cosmic density field is Gaussian, as predicted by many stan-
dard inflation scenarios and confirmed by observations, the multipole moments of
the temperature fluctuation field

a = [ daY}, (8)0() 2.1)

are fully characterized by their power spectrum, C; = {|as,|?). The maximum
precision reachable for each measured Cy is set, for an idealised full-sky survey, by
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Figure 2.1: Contributions to the CMB temperature power spectrum of various phys-
ical processes and their dependence on (), ), (5. Features in open models
(Qx = 1—Qm — QO > 0) are shifted to larger ¢ compared to flat ACDM (A) or
EdS (), = 1) models, represented here as a shift of the origin of the x-axis ¢ = 2.
Contributions from different physical processes are shown with different line styles
(see legend). The arrows indicate the direction of change of the various contribu-
tion led by the increase of the model parameter written aside. For example, an
increase of /% increases the heights if the first and third acoustic peaks, shifts
the peaks to larger ¢ and increases the overall contribution of the acoustic velocity
peaks. Figure from Mo et al. (2010) (see Hu, 1995, for the original version of the
Figure).

the cosmic variance and is equal to ACy = /2/(2¢ 4+ 1)Cy.



42

As shown in Figure 2.1, several physical processes contribute to shape the CMB
temperature spectrum; the main of these are described as follows:

Sachs-Wolfe effect and integrated Sachs-Wolfe effect. Since CMB photons
comes to us from the last scattering surface at z ~ 1100, the angle subtended by the
Hubble radius at decoupling, ¢; ~ 1° (or £; ~ 200), sets a characteristic angle over
which the temperature fluctuations are entirely due to super-horizon metric per-
turbations. In particular, the observed temperature anisotropies at angular scales
¢ > 9, depend on: 7) the intrinsic fluctuations of the photon density at decoupling,
ii) the potential difference between the observer and the last scattering surface —
gravitational redshift — and iii) the Doppler shift due to the velocity of the photon-
baryon fluid at decoupling (double-dashed grey line in Figure 2.1; see later) and
the relative motion of the observer to the CMB. The latter, caused by the solar
system motion relative to the nearly isotropic blackbody field, produces a strong
dipole signal, usually removed for the purposes of CMB anisotropies study. The
temperature anisotropies resulting from the combination of the intrinsic temper-
ature perturbations and gravitational redshifts are usually referred to as effective
temperature perturbations (solid gray line in Figure 2.1). On large scales (¢ < 200),
for a scale-invariant primordial power spectrum (P, o k; see Eq. (1.23)), the con-
tribution to /(¢ 4+ 1)Cy from the effective temperature perturbations is constant —
Sachs-Wolfe effect (Sachs and Wolfe, 1967) — as shown in Figure 2.1 with the label
(SW). Time variations of the potential — i.e. time-dependent metric perturbations —
lead to an upturn of the spectrum at the lowest multipoles (¢ < 10). This effect, aris-
ing from the contribution of all the time-varying potential wells crossed by CMB
photons in their path toward us, is known as Integrated Sachs-Wolfe effect (ISW).
There are two possible way to generate such an ISW effect in the linear regime.
At decoupling, when the contribution of the radiation to the total energy density
is non-negligible, the density perturbations grow more slowly than the scale fac-
tor, which causes the potential to decay until the Universe is completely matter
dominated. Being produced close to decoupling, these temperature fluctuations
are referred to as the early ISW effect. Since potential evolution is relevant only for
modes within the horizon the early ISW effect peaks roughly at the horizon scale at
decoupling (¢ ~ 100, see Figure 2.1). In open () > 0) or flat ACDM universes, the
linear gravitational potential starts to decays with time as the curvature and/or the
cosmological constant become dynamically relevant. For a flat ACDM model this
occurs at zy ~ 0.3 (see Eq. (1.5)). Because this kind of potential decay starts only
at late time, its effect on the CMB is known as late ISW effect, and it is expected to
peak roughly at the present horizon scale, i.e. ¢ < 10 (see Figure 2.1).
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Acoustic peaks. On sub-horizon scales ¢ < ¢, the rich structure observed in
the anisotropy spectrum is mainly a consequence of the acoustic oscillations of
the tightly-coupled baryon-photon fluid in the pre-recombination era. Perturba-
tions in the gravitational potential, dominated by the CDM component, drive the
oscillations in the plasma, with photon pressure providing most of the restoring
force and baryon giving some additional inertia (see §1.2.1). The frequency of the
oscillations depends on the sound speed in the fluid, c¢s (Eq. (1.17)). After recom-
bination, photons can travel freely toward us, and the phases of the oscillations is
imprinted in the CMB spectrum as a series of harmonic peaks (solid grey line in
Figure 2.1 at £ 2 100). The first peak corresponds to the mode that is caught in its
tirst compression by recombination. The second peak corresponds to the mode that
went through a full cycle of compression and rarefaction by recombination. The
even peaks are generally of smaller amplitude because the rebound has to fight
against baryon inertia. Also the Doppler effect due to the acoustic waves velocity
contributes to the effective temperature fluctuations, but with a phase shift of 77/2
which partially fills the troughs of the acoustic pattern (double-dashed grey line in
Figure 2.1). The position of the acoustic peaks in Cys are determined by the phys-
ical size of the sound horizon at decoupling , Is ~ 100(Qmh?)~/2(1 + %) ~1/?Mpc
(see Eq. (1.17) for the definition of %), and the angular diameter distance of the last
scattering surface , Da(zq) = 7(zq)/(1 4+ zq). Thus, the position of the peaks de-
pends on the geometry of the space and on the value of (). Furthermore, the value
of (), controls also the relative amplitude between even and odd peaks — through
the contribution of the baryon inertia — and the depth of the valleys — through the
contribution of the acoustic velocity. In addition, the heights of the acoustic peaks
can be affected by the strength of the initial perturbations (As and #ns) , and by Oy,
through to the time evolution of the gravitational potential induced by the self-
gravity of the acoustic perturbations.

Diffusion damping. We have seen in §1.2.1 that the imperfect coupling between
baryons and photons during decoupling causes a damping of the perturbations
at scales smaller than the damping (or Silk (1967)) scale, which corresponds to
¢ 2 2000. Moreover, since the recombination process is not instantaneous, the last
scattering surface has a finite thickness. This leads to a smearing of the anisotropies
at the highest /s, corresponding to scales smaller than the width (Az ~ 80) of the
recombination process, ¢ 2 1000. Finally, re-scattering of CMB photons with free
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electrons produced at reionization! suppresses exponentially the amplitude of the
acoustic peaks, on scales smaller than the horizon size at reionization. The diffu-
sion cut off is shown in Figure 2.1 with a grey dotted line, along with the effect led
by an increase of the ionization fraction at reionization x,, the latter affecting the
photon diffusion length.

Secondary anisotropies: CMB lensing and Sunyaev-Zel’dovich effect. At an-
gular scales smaller than few arc-minutes CMB temperature fluctuations are no
longer dominated by primary effects at the surface of last scattering, but rather by
the so-called secondary anisotropies which arise from the interaction of the CMB
photons with the matter along the line of sight. The secondary anisotropies can be
divided in two major families depending on the physical process which generate
them. The first family arises from the interaction of the photons with gravitational
potential wells, and it includes gravitational lensing and the late ISW effect. As
for former, the gravitational deflection of CMB photons by intertwining non-linear
structures causes a smoothing of the acoustic peaks up to 10% level at £ > 2000, and
generate small-scale power that dominates the primary anisotropies for ¢ > 4000,
where the diffusion damping is highly effective. Moreover, CMB lensing intro-
duces non-Gaussianity in the four-point correlation function with a very specific
and predictable shape, from which it is possible to reconstruct the power spectrum

of the lensing potential CZXP (see §2.4). The second family incorporates the effects
of scattering of CMB photons with free electrons, such as reionization effects (e.g.
Aghanim et al., 2008) and the Sunyaev and Zeldovich (1972) (S5Z) etfect. The SZ ef-
fect is related to the spectral distortion induced by the inverse Compton scattering
between CMB photons and free electrons of a hot ionized gas (such as the intra-
cluster medium, ICM). Specifically, cold photons in the Rayleight-Jeans tail of the
blackbody body spectrum (radio wavelengths) are up-scattered by hot electrons to
the Wein tail (submillimiter wavelengths), giving to the SZ contribution a distinct
frequency signature which can be used to isolate it from other secondaries. Once
isolated, the SZ signal can be used to constraints the amplitude of the matter fluc-
tuations through its power spectrum (Komatsu and Seljak, 2002) or, as described
in §2.2.3, to effectively detect and characterize clusters of galaxies. Along with the
“thermal” SZ effect described above there exist also a “kinetic” SZ effect induced

!With the evolution of the cosmic structures, after a sufficient number of ionizing sources have
formed, the ionized fraction of the gas in the Universe rapidly increases until hydrogen becomes
highly ionized. This period, occurred roughly between 20 < z < 6, is known as epoch of reioniza-
tion.
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Figure 2.2: Left panel: Typical patterns of the E- and B-mode polarization, which
display the opposite transformation properties under parity. Righ panel: The four
observable CMB spectra: CZTT, CETE, CfE and CfB. The dashed segments in the
C}E spectrum (blue line) represent negative values. The solid red line labelled “BB”
represents the contribution to the CEB from tensor perturbations (r = 0.1) while
the dashed red line labelled “BB/lensing” represents the contribution expected from
gravitational lensing. Figure from Kaplan (2003).

by the bulk motion of the cluster gas, which causes a smaller spectral distortion
and it is usually treated in CMB analysis as foreground noise.

Polarization

The other key CMB observable is polarization. Thomson scattering of a radia-
tion field with a quadrupole anisotropy produces linear polarization. The relevant
epoch for the generation of polarization in the CMB is around recombination since
at early times scattering is too efficient to allow a significant quadrupole to grow,
while after recombination scatterings are very rare (until the universe reionizes).
The CMB polarization signal is expected to have a rm.s. of ~ 5uK, peaking at mul-
tipoles ¢ ~ 1000 (the angle subtended by the photon mean free path at last scatter-
ing). To study the polarization pattern of the CMB sky is convenient to decompose
the polarization (vector) field in two components: a curl-free component, called
E-mode, with no handedness, and a gradient-free component, called B-mode, with
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handedness (see left panel of Figure 2.2). From their definition it follows that in ab-
sence of parity-violating physics, the two are uncorrelated. This leaves with three
non-zero polarization spectra: the two auto-correlation Cf* and CP? spectra, and
the cross-correlation spectrum C} £ between E and temperature anisotropies. These
are shown in the right panel of Figure 2.2 in comparison with the temperature
power spectrum to highlight the small amplitude of the polarization signal com-
pared to the primary C] T spectrum. Scalar perturbations, produced by density and
isocurvature fluctuations, generate positive parity polarization patterns, and there-
fore, can only produce E-mode polarization. The oscillating baryon-photon fluid
results in a series of acoustic peaks in CFF at the troughs of C/T since the polariza-
tion anisotropies are sourced by the fluid bulk velocity which vanishes at density
extrema. The C[F patterns comes from correlations between density and velocity
perturbations on the last scattering surface — which can be both positive and neg-
ative — and is of larger amplitude than the E-mode signal. B-mode polarization
can be induced by tensor perturbation, generated by the primordial gravitational
waves predicted in the inflationary scenario, or by gravitational lensing due to the
intertwining structures along the line of sight. A measurement of the gravitational
waves power probes directly the energy scale of inflation. Therefore, detection of
the B-mode polarization signal at ¢ < 100 will allow to constrain this energy scale,
usually parametrized with r = A/ As, the tensor to scalar ratio of the amplitudes
of the primordial spectra (see solid red line in Figure 2.2). At smaller scales (¢ 2 100)
the weak lensing induced-B mode signal become dominant (dashed red line in Fig-
ure 2.2). Lensing does not produce nor rotate polarization, but warps its spatial
distribution in a Gaussian-random fashion which blurs the original parity prop-
erties, thereby leaking E modes into B modes. This signal, in addition to galactic
emission, is one of the major contamination for experiments devoted to the detec-
tion of the gravitational waves signal. The "bump” at low multipoles (¢ < 20) in
the polarization spectra is due to the re-scattering of CMB photons at reionization.
The position of this peak is set by the size of the horizon at reionisation, while its
amplitude is determined by the duration of the ionization process.

2.1.2 Current constraints from CMB surveys

The Planck satellite belongs to the third generation of all sky CMB surveys after
COBE and WMAP, and represents the state-of-the-art of CMB experiments. Results
from the first data release (Planck Collaboration, 2013d), using measurements of
the temperature (¢ < 2500) and lensing potential (40 < ¢ < 400) power spectra,
provide percent level constraints on the six base ACDM parameters (see Table 2.1),
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Table 2.1: Constraints at 68% C.L. on the six base ACDM parameters from:
Planck temperature power spectrum alone, combining Planck temperature and
lensing potential spectra (Planck+lensing) or combining Planck temperature data
with WMAP polarization at low multipoles (Planck+WP) and high resolution ex-
periments SPT and ACT (Planck+WP+HighL). Data from (Planck Collaboration,
2013d). The six base parameters listed are: the physical cold dark matter and
baryon energy densities ()ch? and 1?2, the ratio between the sound horizon and
the angular diameter distance at decoupling ©; , the Thomson optical depth at
reionization T the scalar spectral index ns and the amplitude of the primordial
power spectrum As.

Parameter Planck Planck+lensing Planck+WP Planck+WP+HighL
Q2 0.02207 £ 0.00033  0.02217 £ 0.00033  0.02205 £ 0.00028 ~ 0.02207 - 0.00027
QcH? 0.1196£0.0031  0.1186£0.0031  0.1199 £0.0027  0.1198 £ 0.0026
1000 1.04132 £ 0.00068  1.04141 £ 0.00067 1.04131 £ 0.00063  1.04132 £ 0.00063
T 0.097 4 0.038 0.089 £ 0.032 0.08919012 0.09190%

ns 09616 £0.0094  0.9635+£0.0094 09603 +£0.0073  0.9585 = 0.0070
In(10°45)  3.103+£0.072 3.085 + 0.057 3.08970:0%2 3.090 £ 0.025

and exhibit no evidence to favour any extension to the consensus cosmological
model. For smaller angular scales (2500 < ¢ < 10*) the best CMB measurements
up today are provided by the ground based experiments ACT and SPT (Das et al.,,
2014; Reichardt et al., 2012). Temperature anisotropies data from these experiments
are often combined with those of all sky CMB surveys like WMAP and Planck
(Planck+WP+HighL in Table 2.1) to improve parameters constraints, especially of
those parameters affecting the shape of C]T at small angular scales (e.g. the total
neutrino mass).

Although CMB polarization data alone have the potential to constrain cosmo-
logical parameters as temperature anisotropies data do, the current sensitivity of
polarization experiments limits their constraining power. WMAP E-mode polar-
ization spectra at low-multipoles (¢ < 23) (Bennett et al., 2013) have been used
in combination with Planck C/T spectrum to improve the constraints on T (see
Planck+WP column in Table 2.1). At the time of writing this Thesis the Planck Col-
laboration has not yet released results from polarization measurements, but only
shown an excellent visual agreement between their best-fit ACDM model and their
CJE and CFE polarization spectra at ¢ > 100. Similarly, a number of experiments
(CAPMAP (Bischoff et al., 2008), QUAD (Brown et al., 2009), QUIET (QUIET Col-



48

laboration, 2012), BICEP1 (BICEP1 Collaboration, 2013), WMAP (Hinshaw et al.,
2013), ACT (Naess et al., 2014)) demonstrated the quantitative agreement with
ACDM prediction and placed upper limits on primordial and lensing B-modes.
Hanson et al. (2013) using SPT data detected at 7.7¢ significance the B-mode signal
produced by gravitational lensing, while the Polarbear Collaboration (2014) pro-
vided its first measurement. Finally, the Bicep2 Collaboration (2014) announced
the first detection of non-zero B-mode polarization at degree angular scale from
primordial gravitational waves, which, if confirmed, would imply a tensor-to-scalar
ratio value of r = O.20J_r8:8g (cf. Planck Collaboration, 2014, which investigated the
level of dust polarization in the BICEP2 experiment field and found a dust power
of the same magnitude as reported by Bicep2 Collaboration (2014) over the same /¢
range, highlighting the need for assessment of the polarized dust signal.).

2.2 Clusters of galaxies

Among the different probes of the LSS, galaxy clusters have played a significant
role in the definition of the “concordance” ACDM model, starting with the Zwicky
(1933) discovery of dark matter in the Coma Cluster, passing through the ruling out
of critical matter density models (e.g. White et al., 1993b; Borgani et al., 2001), up to
the most recent cosmological constraints from large cluster surveys (e.g. Vikhlinin
et al., 2009b; Mantz et al., 2010; Allen et al., 2011). As shown in Chapter 1, accord-
ing to the hierarchical growth structure model, clusters are the largest and most
recent objects that have undergone gravitational relaxation and entered into virial
equilibrium. Arising from the high density peaks of the initial matter distribution,
the galaxy cluster population bears the imprints of the statistical distribution of
the initial perturbations, their subsequent growth and the dynamics of the collapse
of dark matter halos. Thanks to this three-fold dependence galaxy clusters can
supply cosmological information with a number of critical tests. Their mass and
redshift distribution, depending on the amplitude and growth rate of density per-
turbations, as well as on the redshift evolution of the cosmic volume, can provide
thigh constraints on the amplitude of the power spectrum cg, density parameters
like O, Qp, Oy, and modified gravity models. Furthermore, clustering of galaxy
clusters, through its dependence on the halo bias and matter power spectrum, pro-
vides complementary information on the growth rate, shape and amplitude of the
power spectrum, as well as constraints on the level of primordial non-Gaussianities.
Finally, internal properties of clusters, such as baryon fraction or radial density pro-
tile, can be used to get insight on the nature of the dark energy and dark matter.



49

Galaxy clusters are multi-component systems consisting of dark matter and
baryons in several phases (black holes, stars, cold, warm and hot gas and non-
thermal plasma). From one side this multi-component nature challenges the study
of the astrophysical processes which determine the observational properties of the
structures inside the clusters. On the other side it offers multiple observable signals
across the electromagnetic spectrum (Figure 2.3): at X-ray wavelengths, the diffuse
hot intra cluster medium (ICM) shines due to the thermal bremsstrahlung emission;
stellar emission from galaxies and intracluster light dominates the optical and near-
infrared bands; at millimeter wavelengths, the hot plasma in the ICM distorts the
CMB spectrum through the SZ effect (see §2.1.1).

In order to exploit clusters as cosmological tools, we need to determine the evo-
lution of their space density, that is the number of clusters within given mass and
redshifts ranges, per unit volume. Thus, besides an efficient method for detecting
clusters over a wide range of redshifts, an observable estimator of the cluster mass
— mass proxy — and a robust method to compute the selection function — i.e. the
survey volume within which clusters are found — are needed. In particular, having
a robust mass proxy which correlates tightly with the mass —i.e. with a low-scatter
— is mandatory in large cluster surveys for which follow-up observations of indi-
vidual clusters are feasible only for a small fraction of the detected objects. On the
other side, follow-up data are needed to improve the accuracy of the calibration of
the mass-proxy relation, and thus reduce the uncertainties in the mass estimation.
In what fallows I will review the methodology used to build cluster samples in the
optical/near-IR, X-ray and microwave bands, along with the statistical tools used
to infer parameters constraints and some recent results.

2.2.1 Cluster surveys in the optical/near-IR band
Cluster identification

The optical identification has been the first technique used to detect clusters of
galaxies since the end of the XVIII century, with the Charles Messier’s (1784) and
William Herschel’s (1785) catalogues of nebule. The first extensive and statistical
complete sample of galaxy clusters was built by Abell (1958) — later extended to
the Southern hemisphere (Abell et al., 1989) — based on visual inspection of pho-
tographic plates. Clusters were identified as enhancements in the projected galaxy
density and were characterized according to their richness — number of galaxy
members — and estimated distance. With the advent of CCD imaging, purely vi-
sual inspection gives way to automated detection techniques, whose algorithms
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Figure 2.3: Images of the cluster Abell 1835 (z = 0.25) in the X-ray (left), optical
(center) and millimeter (right) band, all centred on the X-ray peak position. Images
respectively from: Chandra X-ray Observatory / A. Mantz, Canada France Hawaii
Telescope / A. von der Linden et al., Sunyaev Zel’dovich Array / D. Marrone.

depend on the available photometric data. If only single band data are available
the most used ones are the match filter methods (e.g. Postman et al., 1996; Lobo
et al.,, 2000; Dong et al., 2008) which exploit prior knowledges of the luminosity
profile typical of clusters to enhance the spatial galaxy overdensity at a given po-
sition. This method has been successfully applied to several surveys — e.g. ESO
imaging survey (Olsen et al., 1999), SDSS (Bahcall et al., 2003; Szabo et al., 2011),
2MASS (Kochanek et al., 2003), XFS (Dietrich et al., 2007) — to detect clusters up
to z ~ 1 and down to masses of order ~ 10¥M.. However, projection effects and
the loose relation between cluster richness and optical luminosity reduce the com-
pleteness and purity of these catalogues. An effective way to reduce the impact
of projection effects rely on the use of multi-bands imaging. One way to exploit
multi-colour data is to obtain photometric redshifts of galaxies; these in turn allow
to detect clusters in 3-d space — two spatial coordinates and redshift — as groups of
galaxies whose mutual distances do not exceed a chosen linking length (friend-of-
friend percolation algorithm: Huchra and Geller, 1982; van Breukelen et al., 2006;
Li and Yee, 2008; Farrens et al., 2011; Wen et al., 2012). Another efficient detection
method which exploit colour information relies upon the existence of a red sequence
for cluster galaxies in the colour-magnitude diagram (e.g. Gladders and Yee, 2000).
The population of rich, relaxed clusters up to z ~ 1 is dominated by early type
galaxies, placing them on a narrow and distinctive locus of the colour-magnitude
diagram — the red sequence — which can be easily detected. The colour bands are
chosen so as to bracket the redshifted 4000 A break feature of galaxy spectra; there-
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fore the choice of the colour-cuts enables the estimate of the redshift of the cluster.
The cluster red sequence method has been applied for the first time using two
wavebands to build the Red Sequence Cluster Survey catalogue (Gladders and Yee,
2005), and later applied to several photometric galaxy surveys including the Spitzer
IRAC shallow survey (Eisenhardt et al., 2008) and SDSS (Koester et al., 2007; Hao
et al., 2010; Rykoff et al., 2014). This technique has proven to be very effective in
removing field galaxy contamination, however for un-relaxed, low-mass clusters,
especially at z 2 1, the red sequence is not well established, and the method becomes
less efficient.

Mass estimation

If spectroscopic or high-quality imaging data are available cluster masses can be es-
timated directly, by applying dynamical methods (e.g. Virial theorem, Jeans equa-
tion) in the first case, or analysing the gravitational lensing effect on background
galaxies in the second.

The gravitational potential well generated by the cluster mass is the main driver
of the orbital motion of the member galaxies, which can be treated as collisionless
test particles of the local gravitational field. Using spectroscopic measurements
of the cluster galaxies line-of-sight velocities, under the assumption of spherical
symmetry and dynamical equilibrium, the mass enclosed within radius r can be
estimated by means of the Jeans equation (e.g. Binney and Tremaine, 1987):

M(<r) = G ( dinr | dlnr 22)

where 71, (r) is the galaxy number density, o(r) the radial velocity dispersion
and B(r) = 1 — 0?/0?, the relative difference between the radial and the tangen-
tial (0y) velocity dispersion, is the velocity anisotropy parameter. The latter, which
quantifies the anisotropy of the orbits induced by e.g. dynamical friction, tidal
effects or infall events, cannot be directly measured and it is determined by mod-
elling the velocity dispersion profile or by considering higher-than-second-order
moments of the velocity distribution (e.g. Merritt, 1987; van der Marel et al., 2000;
Lokas and Mamon, 2003; Wojtak et al., 2005). Significant uncertainties for this
mass estimator come from the assumption of dynamical equilibrium of the system
and contaminations by spurious cluster members. Another technique, usually re-
ferred to as the caustic method (Diaferio and Geller, 1997), allows to estimate the
mass from the projected phase-space distribution of cluster galaxies. In general

ro? (dlno? dlnnglx—{—Zﬁ)
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Figure 2.4: Left panel: HST image of the galaxy cluster Abell 1689. The long arcs
around the cluster correspond to distorted images of background galaxies due to
strong lensing effects. Credit: NASA/ESA. Right panel: Example of lensing mass
reconstruction in the core of the galaxy cluster MACS]0717.5+3745 obtained from
18 multi-passband images acquired with the Advanced Camera for Surveys aboard
the HST. Cyan contours represent the mass distribution inferred in the strong lens-
ing study by Limousin et al. (2012); white contours show the mass distribution
obtained with the weak lensing analysis by Jauzac et al. (2012) using the orange
cross as cluster centre. Magenta contours represent the K-band light distribution
of the cluster. Image from Jauzac et al. (2012)

the “Jeans” and caustic methods have been shown to provide consistent results be-
tween them (Biviano and Girardi, 2003; Rines et al., 2003) and with lensing mass
measurements (Natarajan and Kneib, 1996; Diaferio et al., 2005), while the agree-
ment is poorer if compared with X-ray determined mass profiles (Benatov et al,,
2006).

Gravitational lensing offers a direct way to probe directly the cluster potential
insensitive to the dynamical state of the system. The gravitational lensing effect,
predicted by the theory of general relativity, refers to distortion and/or magnifi-
cation of distant galaxies images caused by the bending of light passing through
clusters potential wells (see Hoekstra et al., 2013, for a recent review on this topic).
In the so-called strong lensing regime, the deflection of the light is large enough
to crate multiple images of the same source and arcs (see left panel of Figure 2.4).
These strong lensing events are confined in the inner region of the cluster and en-
ables precise measurements of the projected masses on scales enclosed by these



53

lensed images. At larger radii, the tidal gravitational field causes subtle distor-
tion of the shape of background galaxies — weak lensing regime — resulting in a
coherent alignment of the sources which can be quantified statistically with the
so-called shear signal (see later §2.4). Probing different scales of the cluster, the
combination of strong and weak lensing data greatly improve the calibration of the
projected mass maps (Bradac et al., 2005; Meneghetti et al., 2010) (right panel of Fig-
ure 2.4). In both lensing regimes, accurate mass reconstructions are usually done
by fitting the observed strong lensing features or the azimuthal shear signal with
parametrized mass models (e.g. Kneib et al., 1996; Broadhurst et al., 2005; Hoekstra,
2007). Projection effect due to the matter distribution along the line of sight and tri-
axiality of the dark matter halos are the main source of uncertainty in lensing mass
estimation (e.g. Meneghetti et al., 2010). Also relevant for the lensing analysis are:
the knowledge of the redshifts of the source galaxies, to relate the observed shear
signal to the lens mass, and the level of contamination by unlensed cluster galax-
ies, which will dilute the observed shear signal. Despite these limitations, lensing
measurements provide currently the most reliable (unbiased) estimates of cluster
masses and are widely used to accurately calibrate the mean mass-observable scal-
ing relations (e.g. Johnston et al., 2007; Rozo et al., 2009; Rykoff et al., 2008; von der
Linden et al., 2014).

In optical cluster studies, the most used mass proxies are the richness and lumi-
nosity, both measured summing up the number or the luminosities of the cluster
member galaxies in a certain magnitude range and out to a certain radius from the
cluster centre. With the availability of high-quality photometric data and highly
efficient detection methods these two mass proxies have been proven to be as re-
liable tracers of cluster mass as X-ray luminosity (see below §2.2.2). Figure 2.5
shows an example of calibration between mass and optical /near-IR luminosity (left
panel) and between mass and richness (right panel). The luminosity-mass relation,
Lopt — Msqp, obtained by Popesso et al. (2005) from i-band SDSS data for a sam-
ple of clusters detected within the ROSAT All Sky Survey (RASS), shows a low
intrinsic scatter of 30%, comparable to that of the X-ray luminosity (Lx) mass re-
lation. The right panel shows the richness-mass relation from Andreon and Hurn
(2010) obtained from the CIRS catalogue (Rines and Diaferio, 2006) of 53 X-ray se-
lected clusters with spectroscopic SDSS data. Again the two quantities are tightly
correlated with a scatter of 0.19 dex, comparable to that of the Lx-mass relation.
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Figure 2.5: Left panel: Lo, — Mso relation in the i SDSS band from Popesso et al.
(2005). Empty and filled squares correspond to mass estimates based on veloc-
ity dispersion analysis from spectroscopic data and on mass-X-ray temperature
(Tx) relation, respectively. The three lines represent the best fit relation obtained
using objects with masses estimated through the dynamical analysis (dot-dashed
line), masses from the M-Tx relation (dashed line), or both (solid line). Right
panel: richness-mass (1200 — Mpgo) relation obtained from the CIRS cluster cata-
logue (Rines and Diaferio, 2006) with dynamical mass measurements. The nota-
tion 1y = n(r < ryo) stands for the number of cluster galaxies observed within
the cluster centric radius rogo (see Eq. (1.33)). The solid line marks the mean fitted
regression line, while the dashed lines show the intrinsic scatter. The shaded re-

gion marks the 68% confidence region for the regression. From Andreon and Hurn
(2010).

2.2.2 Cluster surveys in the X-ray band
Cluster identification

As mentioned at the beginning of this section, clusters are multi-component sys-
tems. Approximately 80 — 85% of their mass is provided by DM, while only the
2 — 5% is constituted by cool baryons in stars and galaxies. The remaining ~ 15%
of the mass is provided by the diffuse Intracluster Medium (ICM). The ICM is a
plasma, mostly composed by hydrogen and helium, heated by the cluster’s grav-
itational energy at temperatures of kgT ~ 2 — 10keV (or T ~ 107 — 108K). At
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these temperatures the gas light up in the X-ray band mainly due to the ther-
mal bremsstrahlung emission, and, to a lesser extent, to emission lines of heavy
elements and recombination processes. This allows to detect galaxy clusters as
extended X-ray sources with a typical luminosity of Ly ~ 10¥ — 10%ergs~!. Fur-
thermore, being the bremsstrahlung emissivity proportional to the square of the
gas density, and given the relatively low surface density of X-ray sources, clusters
are observed as high contrast objects in the X-ray sky, making X-ray selection less
prone to projection effects than the optical one. On the other hand, the concen-
tration of the X-ray emission could represent a problem for the detection of the
faintest objects which are usually distinguished from point sources — mostly active
galactic nuclei and star-forming galaxies — with proper detection algorithms (e.g.
Rosati et al., 1995; Vikhlinin et al., 1998; Lazzati et al., 1999). Another inherent fun-
damental advantage of X-ray selection is the ability to define flux-limited samples
with well-understood selection functions. The latter depends on the survey strat-
egy and on the details of the adopted cluster finding algorithm (see Rosati et al.,
2002, for a review). In particular, the effective area covered by a X-ray survey as
a function of the flux (sky coverage) depends on the exposure time across the ob-
served area, the degradation of the PSF? across the field of view and background
noise, both instrumental and from unresolved astrophysical X-ray sources. Once
the survey flux-limit and sky coverage are defined it is possible to compute the sur-
vey volume, which allows a reliable comparison between the theoretical and the
observed cluster space density.

The first cluster catalogues used for cosmological studies were built using data
from Ariel V and HEAO-1 all-sky surveys, and follow-up observations by the Ein-
stein Observatory and EXOSAT (Edge et al., 1990; Gioia et al., 1990). In the 90’s, the
lunch of the ROSAT satellite allowed a significant step forward in X-ray surveys of
clusters, thanks to the unprecedented sensitivity and spatial resolution, as well as
low instrumental background, of its detector. The ROSAT all-sky surveys (RASS;
Voges et al. (1999)) yielded a number of cluster catalogues exploited for cosmology
which include: the Brightest Cluster Sample (BCS; Ebeling et al. (1998)) for the
northern hemisphere; the ROSAT-ESO flux limited X-ray (REFLEX; Bohringer et al.
(2004)) cluster survey in the southern hemisphere; the HIFLUGCS (Reiprich and
Bohringer, 2002) and Massive Cluster Survey (MACS; Ebeling et al. (2010)) sample
of X-ray brightest clusters at high Galactic latitudes. A number of X-ray cluster

2The Point Spread Function characterizes the response of an imaging instrument to a point
source. For extended sources the observed image corresponds to the convolution of the PSF with
the real image of the objects.
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catalogues have also been constructed based on serendipitous discoveries in the
pointed phase of the ROSAT mission, which covers much smaller areas than the
RASS, but reach an order of magnitude or more fainter in flux. Notable among
these are the ROSAT Deep Cluster Survey (RDCS; Rosati et al. (1998)) and the 400
Square Degree ROSAT PSPC Galaxy Cluster Survey (400d; Burenin et al. (2007)),
both used to derive cosmological constraints. The sample of 1743 clusters identified
by means of the all-sky survey and pointed observations of the ROSAT satellite are
collected in the meta-catalogue MCXC by Piffaretti et al. (2011).

The current generation of X-ray satellites XMM-Newton, Chandra, and Suzaku,
thanks to their improved angular and spectral resolution, have been extensively
employed in follow-up observations to obtain spatially resolved spectra of individ-
ual clusters (e.g. Vikhlinin et al., 2009a; Pratt et al., 2010; Mantz et al., 2010; Arnaud
et al.,, 2010). The XMM-Newton satellite has been used also to perform a num-
ber of cluster surveys, including: the XMM Cluster Survey (Romer et al., 2001),
a serendipitous survey aimed at the detection of all galaxy clusters in all XMM
archive fields, the multi-wavelength XMM Large-Scale Structure survey (Pierre
et al.,, 2006), and the XMM Distant Cluster Project, a serendipitous survey dedi-
cated to find and study clusters of galaxies at z > 1 (Fassbender, 2008). More-
over, several other studies have been carried out using XMM-Newton, Chandra,
and the Swift/X-ray (deep) observations of small contiguous areas of the sky (e.g.
Finoguenov et al., 2010; Adami et al., 2011) or pointed observations (e.g. Barkhouse
et al., 2006; Peterson et al., 2009; Mehrtens et al., 2012; Tundo et al., 2012), providing
cluster samples up to few hundreds objects and up to redshift z ~ 1.6.

Masses from X-ray observations

For survey observations, the primary X-ray observables are flux, spectrum and
spatial extent. The X-ray emitting ICM, tracing the matter inside clusters, pro-
vides information on the morphology of the system. Moreover, the dominant
bremsstrahlung emissivity at frequency v is proportional to:

dL
dVdv

€y = x n2g(v, T)T Y2 exp(—hv/kgT) (2.3)
where 7, is the number density of electrons and g(v,T) o In(9kgT/4hv) is the
Gaunt factor. Therefore, the measured X-ray luminosity (Lx) of the cluster can be
used to infer the mean temperature and density of the ICM, or, if spatially resolved
spectra are available, their radial profiles. Under the assumption of a spherically
symmetric distribution and hydrostatic equilibrium of the ICM, the measured gas
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density and temperature profiles can be related to the total mass within the radius
r through the formula:

M(<r) = (2.4)

_ rkgT(r) (dinpgs(r)  dInT(r)
G wumy dinr dinr )’

with y the mean molecular weight and 1, the proton mass. Thanks to the sensitiv-
ity of Chandra and XMM-Newton X-ray observatories, out to intermediate radii,
measurements of the gas temperature and density profiles are possible for a fair
number of clusters. While at larger radii (r 2 rs09), where the X-ray emission is
faint, the low and stable particle background of Suzaku allows the observation of
the ICM emission in the cluster outskirts. Two main approaches are used to es-
timate hydrostatic masses. One uses parametrized fits to the observed projected
surface brightness and spectral temperature data to compute the derivatives of
Eq. (2.4) and thus the mass profile. A second approach assumes a functional form
for the density profile (e.g. Navarro et al., 1997) and estimates the gas density pro-
tile from the measured X-ray surface brightness to recover the temperature profile
from Eq. (2.4). The mass profile parameters are thus obtained by a x? analysis of
the recovered temperature profile and that measured from the spectral data. Hy-
drostatic mass measurements suffer for different sources of systematic biases, e.g.
associated to departures from spherical symmetry, to biases in X-ray measurement
of gas temperature (e.g. Mahdavi et al., 2008; Rasia et al., 2012), and, especially,
to violation of hydrostatic equilibrium due to the presence non-thermal pressure
support (e.g. Lagana et al., 2010; Shi and Komatsu, 2014). Comparison between
hydrostatic and weak lensing masses indicates biases up to 20% between the two
mass estimates, which tend to vanish when considering only the more relaxed sys-
tems (e.g. Mahdavi et al., 2013; Israel et al., 2014; Donahue et al., 2014).
Temperature profiles can be obtained only for a small number of clusters due
to the long exposure time required. Indeed, while ~ 10> — 10% photons are suffi-
cient to detect the cluster and measure its global temperature, reliable temperature
profiles for hydrostatic mass measurements need ~ 10* photons. One of the main
advantages of the X-ray selection is the observed strong correlation between X-ray
observables — luminosity and temperature — and mass. These thigh relations among
the observed cluster properties themselves (Lx — Tx) and mass (Lx — M, Tx — M)
are expected for nearly self-similar systems, in which the thermodynamical prop-
erties of the ICM are determined only by gravity. In this case clusters of different
sizes are the scaled version of each other, and so their observed properties. In the
self-similar model, assuming spherical symmetry and hydrostatic equilibrium, the
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Figure 2.6: Left panel: Lx — Mpy relation for X-ray selected low-z HIFLUGCS
and high-z WARPS clusters. Masses were estimated using hydrostatic equilibrium
within Rpgo, and the luminosities within the same radius were scaled by the evolu-
tionary factor predicted by the self-similar model. Solid and dashed lines correspond
to the best-fit to the high-z and low-z sample, respectively. The dot-dashed line is the
best-fit to the unscaled high-z sample and can be used to quantifies the goodness of
the self-similar scaling. Image from (Maughan et al., 2006). Right panel: M5y — Yx
relation obtained from 17 low-z, relaxed clusters observed with Chandra (Vikhlinin
et al., 2009a). The hydrostatic masses in the y-axis are scaled by the evolutionary
factor predicted by the self-similar model. The dashed and dotted line show a power
low fit with free slope and fixing the slope to the self similar value, respectively.
Also shown in the plot with open points are weak lensing mass measurements
from Hoekstra (2007).

following relations hold:
M T}3</2E(z)*1 , LxxT%2E(z), M« L“;’(/4E(z)*7/4 2.5)

where E(z) is the evolutionary factor given in Eq. (1.14) and the second and third re-
lations hold for pure thermal bremsstrahlung emission. Several groups calibrated
these relations observationally finding departures from the self-similar expecta-
tions. In particular, the Ly — Tx relation exhibits a steeper slope than expected in
the self-similar model (Lx o T>2('5_3) with a large scatter, unless of excising the con-
tribution to the luminosity from the cluster central region which is often affected by
radiative cooling (e.g. Markevitch, 1998; Pratt et al., 2009; Maughan et al., 2012). As
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for the Lx — M relation (and thus the Ty — M relation) observations confirmed the
correlation between X-ray luminosity and mass, although with some scatter and
a slope slightly steeper than the self-similar scaling (see left panel of Figure 2.6),
consistently with what found for the Lx — Tx relation. Another X-ray mass proxy
proposed by Kravtsov et al. (2006), and used in the analysis of Chapter 5, is the
quantity Yx = Mgas X Tx, which approximates the total thermal energy of the ICM.
The goodness of this mass proxy relies on the fact that the total thermal energy is
weakly disturbed by merger events. In the simplest self-similar model Yx scales
with the cluster mass as M « Yi/ °E(x)~%/5. Hydrodynamical simulations (e.g.
Nagai et al., 2007; Fabjan et al., 2011) and observations (e.g. Arnaud et al., 2007;
Pratt et al., 2009) confirmed the expected self-similar scaling and the low scatter
of the proxy (see right panel of Figure 2.6), and importantly, the low sensitivity of
Yx — M relation to the dynamical state of the cluster. The agreement with the self-
similar model further improve if Yx is computed using Tx measured excising the
core regions (r S 0.15R500) where the clusters is often affected by radiative cooling
(Kravtsov and Borgani, 2012).

2.2.3 SZ cluster surveys
Cluster identification

We have seen in §2.1.1 that the SZ effect induces a distortion of the spectrum of
CMB photons passing through the hot ICM. The magnitude of the SZ effect, which
depends on the probability that a photon is scattered by an electron of the ICM
(orne; see §1.2.2) and the fractional amount of energy gained in the interaction
(AE/E = kgT,/mc?), is quantified by the Compton y-parameter:

kgT,
y= / dl mB Cinm, (2.6)

where the integral is along the line of sight, and T,, m, and n, are the electron
temperature, mass and density, respectively. The temperature difference induced
by the SZ effect relative to the mean CMB temperature, Tcyp, is equal to:

ATsz = Tems - fsz(v) -y, (2.7)

where fsz(v) encodes the distinctive frequency dependence of the thermal SZ ef-
fect, which leads to a decrement of the CMB intensity at v < 220GHz, and a to
corresponding increase above this frequency. Worthy of note, ATgz, which is pro-
portional to the cluster pressure along the line of sight, is independent of redshift.
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Figure 2.7: Upper panel: Comparison of SZ and X-ray cluster catalogues in the
mass-redshift plane. Different marks correspond respectively to: 516 optically con-
firmed clusters from the 2500 deg2 SPT-SZ catalogue (crosses; Bleem et al., 2014); 91
clusters from ACT survey (points; Hasselfield et al., 2013); 809 SZ-selected clusters
from the Planck survey (diamonds; Planck Collaboration, 2013b); 740 X-ray selected
clusters from the RASS (squares; Piffaretti et al., 2011). While the SPT and ACT data
provide a nearly mass-limited samples, the cluster samples selected from ROSAT
and Planck data are redshift-dependent owing to cosmological dimming of X-ray
emission and the dilution of the SZ signal by the large Planck beams, respectively.
Image from Bleem et al. (2014). Lower panel: Ysz; — Msgg relation obtained from
a sub set of 71 SZ-Planck clusters for which good quality XMM-Newton observa-
tion are available. Masses were estimated using the Yx mass-proxy within rsq,
while the integrated Comptonisation Ysz within the same radius is multiplied by
the self-similar scaling in the y-axis. The dashed best fit line , obtained correcting
the clusters flux for selection bias, has a slope of 1.79, slightly steeper than what
expected (5/3) in the self-similar model . Figure from Planck Collaboration (2013b).
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In other words, the SZ signal does not undergo surface brightness dimming, like
the optical and X-ray ones, providing mass-limited cluster samples nearly indepen-
dent of redshift (see upper panel of 2.7). The observed temperature distortions in
the CMB caused by the thermal SZ effect are small, typically on the level of hun-
dreds of K for the most massive clusters. The development over the past decades
of high-sensitivity bolometric cameras has enabled in 1999 the first spatially re-
solved observation of the SZ effect in a cluster (Komatsu et al., 1999; Pointecouteau
et al., 1999), and in 2009 the first discovery of a previously unknown cluster in
a blind SZ survey (Staniszewski et al., 2009). Nowadays, such discoveries have
become routine, with catalogues produced by the ACT (Hasselfield et al., 2013),
SPT (Bleem et al., 2014) and Planck (Planck Collaboration, 2013b) containing tens
to hundreds of massive clusters out to z ~ 1.5 (upper panel of 2.7). Most of the
detection algorithms are based on the matched-filter approach which, given priors
on the cluster spectral and spatial characteristics, uses filters designed to maximize
the SZ contrast over a set of observations containing contaminating signals (e.g.
Melin et al., 2006). As for the cluster redshift, it is not directly measurable from the
SZ map, and optical or X-ray follow-up observations are always necessary.

SZ-mass scaling relation

For every cluster detected in a SZ map it is possible to measure the integrated
Comptonisation parameter Ysy over the solid angle AQ) subtended by the object:

o o 1 oT
Yoy = /A 0= 5 / kg, T,dV, 2.8)

where D 4(z) = (14 z)r(z) is the cosmology dependent angular diameter distance.
The volume integral of the electron pressure, P, = kpn,Te, in the r.h.s. of Eq. (2.8)
corresponds to the total energy density of the ICM. Therefore, the parameter Ygy is
expected to be strongly correlated to the cluster mass through the virial theorem,
and relatively insensitive to the dynamical state of the system. Assuming hydro-
static equilibrium of the ICM and a self-similar model, the Y5z — M scaling relation
reads:

Da(2)*Ysz o« MY/3E(2)%/3. (2.9)

Hydrodynamical simulations (e.g. Sehgal et al., 2010; Kay et al., 2012) and obser-
vations (Arnaud et al., 2010; Marrone et al., 2012) concordantly, show small depar-
tures from the simplest self-similar scaling (see lower panel of Figure 2.7), while
the actual scatter (~ 20%) is usually larger than what predicted by hydrodynami-
cal simulations. This increase is partially due to contaminations from small halos
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Figure 2.8: Comparison of a number of constraints on og at the common value of
Om = 0.30, obtained from cluster datasets and CMB surveys: M08, Mantz et al.
(2008); M10, Mantz et al. (2010); M14, Mantz et al. (2014); H09, Henry et al. (2009);
V09, Vikhlinin et al. (2009b); R10, Rozo et al. (2010); B13, Benson et al. (2013);
H13, Hasselfield et al. (2013); WMAP, Hinshaw et al. (2013); Planck+WP, Planck
Collaboration (2013d). The shaded, horizontal band reflects the 68.3% confidence
interval obtained by Mantz et al. (2014). Figure from Mantz et al. (2014).

along the line of sight, which are not resolved in SZ observations but contribute to
the total signal.

2.2.4 Cosmological constraints from cluster surveys

Current constraints on cosmological parameters from cluster surveys are mainly
obtained comparing the observed cluster abundance with the theoretical one. The
latter is specified for a given cosmological model by the HMF, n(M, z) (see §1.3.2),
the comoving volume element, dV /dzd(), and the survey completeness, X(M, z, 0)
— which depends on the strategy and specifics of the survey— through the equation:

Zi+1 dv My
L 0 X(M, 2 Q . 2.1
N;j /Z [ 40%5a M (M, z,Q)n(M,z2) (2.10)

i
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Table 2.2: Constraints at 68% C.L. on the cluster normalization condition, og()*,
obtained from X-ray, optical and SZ cluster surveys assuming a ACDM model.
The 4™ and 5% columns present constraints for single parameter extensions to
the standard ACDM model: the total neutrino mass, ) m,, and the dark energy
equation of state (EoS), w = P4/ pge. Parameters listed without error bars are kept
tixed in the analysis to the standard ACDM value. Upper limits are at 95% C.L.

Data 03(Om/0.27)* « Y. my w
X-ray (RASS) (Mantz et al., 2014) 0.82+0.03 0.17 < 0.22eV —0.98 £0.15
X-ray (RASS) (Henry et al., 2009) 0.90 +0.04 0.30 0.0eV -1
X-ray (RASS) (Vikhlinin et al., 2009b)  0.784 +0.027  0.47 0.0ev —1.08 £0.15¢
Optical (SDSS) (Rozo et al., 2010) 0.806 +0.033 0.41 0.0ev —1.05 £0.34¢
SZ (SPT) (Benson et al., 2013) 0.767 +£0.037 030 0.12+09eV¥ —1.09 + 0.36%
SZ (ACT) (Hasselfield et al., 2013) 0.768 £0.025 0.30 < 0.57eV° —1.05£0.11¢
SZ Planck Collaboration (2013a) 0.764£0.025 0.30 0.40=£0.21eV* -1

Note: ? combined with Planck+WP data; ? combined with ACT and SPT data (HighL); ¢ combined
with WMAP 7-year data (Komatsu et al., 2011); 4 combined with Hy prior from HST (Riess et al.,
2011); ¢ combined with BBN prior on Qh? from Kirkman et al. (2003)

where AQ) is the solid angle covered by the survey, and the subscripts i, j refer
to the redshift and mass bin considered, respectively. This probe is particularly
effective in constraining the parameters combination o3(),, for which some recent
results are presented in Table 2.2 and shown in Figure 2.8. Besides few excep-
tions, optical, X-ray and SZ surveys provide consistent results, which are, however,
in tension with the most recent Planck CMB constraints for the standard ACDM
model (0g3(Qm /0.27)%3 = 0.868 + 0.016; Planck Collaboration, 2013d). This tension
suggests either the need for new physics, systematics in the measurements, or a
combination thereof; in Chapter 5 a detailed analysis of this issue is presented. The
contribution of cluster surveys to cosmology is better seen in combination with
other probes (e.g. CMB and BAO), thanks to the different scales and redshifts
probed by the former. In particular, probing the amplitude and the growth of the
matter fluctuations, the cluster abundance is sensitive to those parameters beyond
the six ACDM ones, which affect the late time evolution (z < 2) of the cosmic
structures at cluster scales. Examples of these are the total neutrino mass, the dark
energy EoS (see 4and 5™ columns of Table 2.2), the grow rate index (e.g. Mantz
et al., 2014) and the level of non-Gaussianities (e.g. Benson et al., 2013).

A complementary probe to the cluster abundance is the clustering of clusters.
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The observed clustering properties can be compared to the theoretical expectations
by means of the halo-mass bias and matter power spectrum (see §1.4 and §3.3.2).
Currently, the constraining power of this probe is limited by the relatively small
number of clusters detected within a survey and/or the uncertainties in the mass
measurements, and only limited efforts have been done to measure it (e.g. Hiitsi,
2010; Balaguera-Antolinez et al., 2011). However, for upcoming cluster surveys,
like e-ROSITA or Euclid, the cosmological information carried by the clustering
properties of galaxy clusters is expected to improve considerably the constraining
power of these datasets (e.g. Sartoris et al. 2012; see also Chapter 3).

2.3 Baryonic Acoustic Oscillations

In the last decade, the advent of large galaxy surveys provides a new robust method
to measure cosmic distances alternative to the luminous-distance techniques such
as those based on type Ia supernovae. As explained in §1.2.1, the acoustic oscil-
lations of the baryon-photon plasma in the pre-recombination era imprint a char-
acteristic scale in the clustering of matter — the BAO scale — determined by the
distance travelled by the acoustic waves prior to the baryon-photon decoupling —
the acoustic horizon, rs >~ 150Mpc (see e.g. Bassett and Hlozek, 2010, for a review).
The exact size of this “standard ruler” depends on the baryon density and on the
overall matter density. The baryon density affects the plasma inertia and hence
its sound speed (Eq. (1.17)). The total matter density affects the cosmic expan-
sion rate (Eq. (1.3)) and hence the redshift at which the baryon-photon decoupling
occurs and the physical size of the BAO scale at different redshifts. The signal,
therefore, relies on a simple, linear and well understood physics that can be cali-
brated by CMB anisotropy measurements and is quite insensitive to non-linear or
astrophysical processing that typically occurs on much smaller scales. This makes
experiments using the BAO signal relatively free of systematic errors, and more-
over, provide a geometrical method to test cosmological models.

2.3.1 BAO scale detection and measurement

The challenge of this probe is primarily statistical: because this is a weak signal
at a large scale, one needs to map enormous volumes of the universe of order
1[h~1Gpc]? to detect the BAO and obtain a precise distance measurement.

There are several tracers of the density field that can be used to this end. In
general they are required to have: a strong spectroscopic signature to allow a fast
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Figure 2.9: Two point correlation function (left) and power spectrum (right) as mea-
sured from the BOSS DR11 CMASS catalogue (black circles with error bars). The
power spectrum is divided by a smoothed model without BAO to enhance the
acoustic features. Solid lines show the best fit BAO model in each case. The top
and bottom panels correspond to measurements obtained prior and after the recon-
struction procedure, respectively. One can see that reconstruction has sharpened
the acoustic features considerably for both ¢(s) and P (k). Figure from Anderson
et al. (2014).

and accurate redshift determination; a high density and/or clustering bias, so that
to reduce the Poisson noise and/or the required number density to detect the sig-
nal; and finally they should by easy to select. At low redshift (z < 0.5) Luminous
Red Galaxies (LRGs) are an effective choice, thanks to their strong absorption fea-
ture (the 4000A break), high surface brightness and high bias (b ~ 2). At redshift
z 2 1, where the star formation rate of normal galaxies is ten time higher than the
local one, emission-line galaxies become the ideal target. However, the low clus-
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tering bias of these objects demands an higher target density compared to LRGs.
Other possible tracers are clusters of galaxies and quasars; the former have a large
bias but a low number density, the latter are particularly effective at high redshift
being extremely luminous and easy to select. Cross-correlation among multiple
sight-lines Ly-« forest in quasar spectra offers another possibility to probe the 3-
dimensional structure between redshift 2 < z < 3 (White, 2003; McDonald and
Eisenstein, 2007). The challenge here is systematics, as one must control the contin-
uum of the quasars emission and the spectrophotometry of the measurements, as
well as possible theoretical systematics associated with the state of the intergalactic
medium.

The BAO signal can be statistically measured from the two point correlation
function®, as a peak in correspondence of the acoustic scale, or from its Fourier
transform, the power spectrum, where the single acoustic scale gives rise to a har-
monic sequence of oscillations (see top panels of Figure 2.9). The statistical sen-
sitivity of BAO measurements is limited by non-linear structure formation: non-
linearities not only shift the peak position, but also smooth out and broaden the
peak of the correlation function. This issue is commonly overcome applying a
procedure to reconstruct the linear density field (e.g. Eisenstein et al., 2007; Pad-
manabhan et al., 2012, ; see lower panels of Figure 2.9). Briefly, the reconstruction
procedure attempts to partially reverse the effects of non-linear growth of structure
and large-scale peculiar velocities, using the measured galaxy density field and
Lagrangian theory relations between density and displacement.

Depending on whether the separation is along the line of sight or in the trans-
verse direction, distances in cosmology are measured in two different ways. Sepa-
rations in the radial direction are estimated by measuring differences in cosmolog-
ical redshift, r||(z) = cAz/H(Z) , while separations in the transverse direction are
inferred by measuring angles in the sky, 7| (Z) = (1 +z)D4(2)A®. Thus, the BAO
scale measured along the line of sight at the mean ensemble redshift zZ provides
constraints on the Hubble parameter H(Z), while the transverse mode provides a
measurements of the angular diameter distance D 4(Z). In the past, limited survey
volume has made it difficult to analyse the differential clustering along the line of
sight and transverse directions. As a result, most BAO analyses have been based
on the spherically-averaged clustering statistics (e.g. Percival et al., 2010; Anderson
et al., 2012; Padmanabhan et al., 2012), which only allow to measure Dy (z), the

3The two point correlation function quantifies the excess clustering on a given scale relative to a
uniform distribution with the same mean density.
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spherically-averaged distance to redshift z, defined as

Dy(z) = [cz(l —|—ZZ)DA(Z)2H(Z)_1]1/3 . (2.11)

However, H(z) is degenerate with D 4(z) in this isotropic analysis, preventing a
direct measurements of the expansion rate of the Universe. Moreover, the cluster-
ing of galaxies is not truly isotropic, as assumed in Eq. (2.11), due to both large-
scale RSD and from assuming the wrong cosmology when calculating the 2-point
statistic (Alcock and Paczynski, 1979). More recently, thanks to the larger volume
probed by current galaxy surveys (e.g. SDSS-III), it has been possible to measure
the anisotropic BAO signal and exploit the additional cosmological information to
break the H(z) — D 4(z) degeneracy (Beutler et al., 2013; Anderson et al., 2014, ; see
Figure 2.10).

2.3.2 Current constraints from BAQO scale measurements

The baryon acoustic peak method has become one of the most promising ways of
studying the geometry of the Universe and the nature of dark energy. It comple-
ments the study of distant type Ia supernovae that discovered dark energy in the
first place. The supernovae are easiest to measure at low redshift, where the total
cosmic volume limits the acoustic peak method, while the latter gains in precision
at higher redshift.

The first convincing detections of BAO came in 2005 from the SDSS Data Re-
lease 3 (DR3) and the final 2dFGRS samples (Eisenstein et al., 2005; Cole et al.,
2005), providing constraints on both curvature and dark energy EoS parameters.
Since these first detections, the clustering of successively larger SDSS spectroscopic
samples has been analysed by several groups using different methods (e.g. Hiitsi,
2006; Percival et al., 2010), reaching a precision of 1.9% in the measurement of the
spherically-averaged distance Dy, applying the reconstruction technique (Padman-
abhan et al., 2012; Xu et al., 2013). New BAO detections have recently been made
in three other samples. Beutler et al. (2011) report a 2.40 detection from the 6dFGS,
obtaining a 4.5% distance measurement to z = 0.1, which combined with WMAP
7-years data (Komatsu et al., 2011) provide the constraints w = —0.97 £ 0.13.
Analysing data from the WiggleZ survey, Kazin et al. (2014) measured Dy in three
redshift slices centred on z = 0.44, 0.60, and 0.73, with an accuracy of 4.8, 4.5 and
3.4 percent, respectively. Combining these data with Planck CMB measurements
the authors obtained w = —1.18f8:%9 and 100Q), = —0.641’8:% assuming a wCDM
or an open ACDM model. At the time of writing this Thesis, the state of the art in
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Figure 2.10: Left panel: the Dy /r; measured from three recent galaxy surveys,
divided by the best-fit flat ACDM prediction from the Planck data. Also shown in
the figure to illustrate the capability of BAO measurements in constraining the dark
energy EoS and curvature parameters, are the Planck results assuming a flat model
with w = —0.7, as well as that for a closed ACDM Universe with (), = —0.01. All
error bars are shown at 1¢. Right panel: comparison of the 68% and 95% confident
regions in the D4 (z = 0.57) — H(z = 0.57) plane obtained from the high-z BOSS
sample (z = 0.57) considering the isotropic (grey contours) or the anisotropic (orange
contours) BAO signal. Also shown with green and BLUE contours the constraints
from WMAP 9-years and Planck. Figures from Anderson et al. (2014).

BAO scale measurements is provided by SDSS-III BOSS DR11 sample, which con-
tains nearly 10° galaxies in the redshift range 0.2 < z < 0.7 across 8500deg?. From
the analysis of this survey Anderson et al. (2014) obtained 1% and 2% accuracy
distance measurements at the median redshift z = 0.57 and z = 0.32; combined
with Planck data these BAO measurements constrain the dark energy EoS and the
curvature parameter to w = —1.19 £0.15 and 100} = 0.17 £ 0.51, respectively.
Moreover, extracting the anisotropic BAO signal from the high-z BOSS sample fur-
ther improves the constraints, yielding w = —1.07 £ 0.09 and 100) = 0.06 + 0.18.

In the left panel of Figure 2.10 are shown the spherically-averaged distances
Dy measured by these three galaxy surveys along with the Planck prediction for
a ACDM model (grey shaded region). All the BAO results are consistent among
them and with the Planck CMB measurements. Also shown in the Figure 2.10
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to illustrate the utility of BAO measurements for constraining the w and () pa-
rameters, are the Planck predictions for a wCDM model with w = —0.7 (red shaded
region) and a closed ACDM Universe with () = —0.01 (blue shaded region). In the
right panel of Figure 2.10 are compared the 68% and 95% confidence regions in the
D(z) — H(z) plane obtained from the isotropic (grey contours) and anisotropic (or-
ange contours) BAO analysis of the high-z BOSS sample (CMASS). The anisotropic
BAO signal partially breaks the D4(z) — H(z) degeneracy allowing to place indi-
vidual constraints on the two parameters.

Finally, even if with a lower statistical significance, the BAO signal has been
detected also in the distribution of clusters (Hiitsi, 2010; Veropalumbo et al., 2014),
and at high redshift, z 2 2, using the Ly-a forest in quasar spectra (e.g. Slosar
et al., 2013; Delubac et al., 2014) and cross-correlation between quasars and the Ly-
« forest (Font-Ribera et al., 2014), finding consistent and competitive results with
the BAO scale measurements performed with other tracers.

Redshift Space Distortions

Another observable provided by galaxy surveys is the Redshift Space Distortion
(RSD). The radial distance of a galaxy is derived by measuring its redshift, which
depends on its relative velocity with respect to the observer, and so include both the
Hubble recession and its peculiar velocity. The line of sight component of this addi-
tional velocity cannot be easily separated from the Hubble flow and contaminates
the measurement of radial separations between galaxies, making the observed clus-
tering of galaxies anisotropically distorted. These distortions are referred to as
RSDs (see Hamilton, 1998, for a review). The anisotropic pattern of RSDs in galaxy
clustering allows to extract information on the peculiar velocities which are di-
rectly related to the gravitational potential perceived by the galaxies. Given the
amount of matter in the Universe, the theory of general relativity provide a clear
and testable prediction for the amplitude of this anisotropic signal, which can be
used to constrain the parameters combination:

f(2)os(z) = — = (2.12)

In the last decade, galaxy redshift surveys became large enough to test this predic-
tion and make RSD measurements useful to place constraints on the cosmological
growth rate (e.g. Peacock et al., 2001; Hawkins et al., 2003; Guzzo et al., 2008; Blake
et al., 2011, Samushia et al., 2012; Beutler et al., 2012; Reid et al., 2012; Chuang
et al., 2013). Latest RSD constraints on the growth rate are provided by Beutler
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et al. (2013) using ~ 7 x 10° galaxies in the redshift range 0.43 < z < 0.7 detected
within the SDSS-III BOSS survey. The authors obtain fog = 0.419 4 0.044 at the
effective redshift z.¢ = 0.57; this result, as well as most growth of structure con-
straints obtained in other galaxy surveys or using different low-redshift probes (e.g.
cosmic shear and cluster abundance), lies below the Planck prediction for a ACDM
model.

2.4 Cosmic shear

The cosmic shear denotes tiny shape distortions of distant galaxy images that arise
from gravitational lensing of light by the LSS of the Universe. It is a cumulative,
anisotropic gravitational shear effect that a light bundle experiences by passing
through cosmic structures on the way from the galaxy to the observer. This well
understood physical effect, potentially, is one of the most powerful probes of cos-
mology, allowing not only the direct study of dark matter, but also, through the
study of the growth of structures, a unique probe of gravity and dark energy on
large scales. However, shortly after its first detection, cosmic shear has turned out
to be one of the most challenging signal to be interpreted for cosmological parame-
ter inference (see e.g. the reviews by Hoekstra and Jain, 2008; Weinberg et al., 2013,
and references therein).

2.4.1 Cosmic shear principles

Although the lensing effect is very weak, it modifies the shapes of galaxies in a
coherent manner and can therefore be detected, analysed statistically, and inter-
preted within a cosmological model. The coherent distortion of background im-
ages (shear) can be related to the underlying matter density distribution through
the theory of general relativity (e.g. Bartelmann and Schneider, 2001, for a detailed
review). Briefly, under the weak field and Born approximations, the deflection an-
gle of a light ray, o8, arising from all the potential gradient along the line of sight,
V1 ®(x), between the observer and the source is given by:

. - - 2 [Xs D —
66 = — 85 == | d;(%vﬂp(x), (2.13)

where 8} and & are the observed image and true source positions in the sky, and
the integral is computed along the radial distance, x, between the observer and the
source, xs. Eq. (2.13) clearly shows that the weak lensing distortions are related
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to the projected gravitational potential along the line of sight. However, since we
only know the position of the observed image but not true position of the source,
the deflection angle cannot be directly measured. The observable quantities are the
distortions, 960/ 8@}, induced by these deflections, which at lowest order are given
by the Laplacian of the so called deflection, or lensing, potential 1:

69 (8, xs) - 2 (xs . Dalxs —x)
- = d =1; with 9, = —/ d )
o0, 991,00 Vi v xs) = o “Dalxs)Da(x)

(DA(X)9,x).-
(2.14)
Thus, in linear approximation, the remapping of the source’s surface brightness

into the image’s surface brightness can be described by the Jacobian matrix:

G s _ (oo o N_(l-x-m  —m
42%(19)—8—1%—<5z’]’+¢,z]>—( —y  1—k+m @15)

where we defined the convergence x = V2¢/2, and the complex shear ¢y = 77 +
i72, with 91 = (P11 — ¥ 22)/2 and ¥, = P15. Note that in Fourier space holds
the relation 4(£) = —1/2(¢1 + il2)*$(¢) = e>*%(£). In the weak lensing regime,
the convergence quantifies the magnification of an image, while the shear gives the
ellipticity induced on an initially circular image. From Eq. (2.14) and the Poisson
equation (V2® = 3H(2]Qm5 /2a; Eq. (1.8)), it follows that for a redshift distribution
of sources p[z(x)]dx, between 0 < z < z(xmax), the convergence is related to the
matter density contrast, J, through:

> - Xmax -
K@) = [0 = [ dweDawi ), @16
where the weight W(x) is the lens efficiency defined as:
BHZQm Xmax D (XS — X)
W(x) = 2002 / dxs plz(xs)] =X — 1) 217
(X) 26211()() A(X) N XS p[ (XS)] DA(XS) ( )

Taking the Fourier transform of (&), and computing the angular convergence (or
shear) power spectrum in the flat sky approximations one gets:

N sx (gl Iy &k Xmax W- W
i) = SR GO e g, W00, (€
(2)20P(€ =€) (2m)?6P(€—£)  Jo Da(x)? Da(x)
(2.18)
where i and j denote the redshift bins the sources belong to. The power spectrum
Cij(€), illustrated for a ACDM and wCDM model in Figure 2.11, can therefore be
used to constrain the 3D matter power spectrum, P;.
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Figure 2.11: Shear power spectra obtained from a galaxy sample splits into two
redshift bins. Shown are two auto-spectra, labelled (11) and (22), and one cross-
spectrum, labelled (12), following the notation of Eq. (2.18). The solid curves are
predictions for the fiducial WMAP 7-years ACDM model. The boxes show the
expected measurement error considering the sample variance and intrinsic ellip-
ticity errors (see Eq. (2.19)) for a 5000 deg® survey. To emphasise the capability
of this probe in distinguish different dark energy models, the thin lines show the
predictions for a model with w = —0.9. Figure from Hoekstra and Jain (2008).

2.4.2 Shear measurement

The cosmic shear signal can be measured only statistically correlating the elliptici-
ties of a large number of galaxies. The observed ellipticity of a galaxy, €,ps, is the
result of the sum of its intrinsic ellipticity, s, and the shear distortion, 7*. The
observed angular two-point correlation function, £*%(9), obtained averaging over

4For the sake of clarity here we assume the weak lensing limit: 7, ¥ < 1; the actual quantity
which contributes to the observed ellipticity is the reduced shear g = v/ (1 — «) (see Eq. (2.15))
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all galaxy pairs (a,b) separated by angle 9, is thus related to the two-point shear
correlation function (y*y?) through:

G (8) = (elps€aps) = (eded) + (ed”) + (v"ed) + (v"9") (2.19)

The function (7y7), which corresponds to the Fourier transform of Eq. (2.18), is the
quantity we want to measure being directly related to the underlying matter power
spectrum of density fluctuations. However, the intrinsic alignment term (eses),
and the shape-shear correlation term (e;y) cannot be neglected in tomographic or
3D shear measurements. In particular, the intrinsic alignment term arises from
close pairs galaxies which could be aligned by the tidal forces of DM structures
surrounding them; the shape-shear correlation term is relevant for galaxies sep-
arated by large physical distances, where the same structure responsible for the
shear of the background galaxy causes the alignment of the nearby galaxy (Hirata
and Seljak, 2004). The impact of the former can be mitigated, if redshift infor-
mation is available, down-weighting the signal of physically close pairs (e.g. King
and Schneider, 2002; Heymans and Heavens, 2003). The latter can be disentangled
from the shear signal looking at the different redshift dependence of the two (e.g.
Joachimi and Schneider 2008; cf. also Bridle and King 2007).

One of the most challenging task in the cosmic shear analysis is the shape mea-
surements of faint galaxy images. The shape and the size of images are affected
by the PSF of the telescope optics and, for ground based surveys, also by the at-
mospheric turbulence (the so called seeing). A number of techniques have been
developed to address this problem, which can be divided in two classes. One
class of methods is to measure moments of the galaxy image, and relate, e.g. the
quadrupole moments, to the shear, given a model for the PSF (see Massey et al,,
2007a, and references therein). The other class of methods starts with a set of
models for a galaxy (e.g., an elliptical Sersi¢ profile, or a linear combination of ba-
sis images), then simulates the observational procedure and finally performs a )(2
analysis to find the model which best fits the data (e.g. Refregier, 2003; Miller et al.,
2007). For both strategies to be efficient an exquisite knowledge of the PSF is re-
quired. Besides the aforementioned issue related to the PSF correction and intrinsic
alignment contaminations, another sources of systematics in shear measurements
is the photometric redshift error.

2.4.3 Recent results from cosmic shear surveys

The modern era of lensing studies was introduced by the availability of arrays of
large-format CCDs. Cosmic shear was detected for the first time in 2000 by four
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Table 2.3: A summary of cosmic shear results from optical survey. Note that some
of the listed results are independent analyses or extensions of the same datasets and
hence are not independent. Errors are to be intended at 68% C.L. if not otherwise

stated.

Reference & Telescope/instrument Result
ACDM model extended models
Bacon et al. (2000) - WHT/EEV-CCD 0g =15+05 (@0, =0.3)
Van Waerbeke et al. (2000) - CFHT/UH8K Detection?
Wittman et al. (2000) — Blanco/BTC Detection?

Rhodes et al. (2001) — HST/WFPC2
Hoekstra et al. (2002) - CFHT/CFH12K
Bacon et al. (2003) — Keck II/ESI + WHT
Jarvis et al. (2003) — Blanco/BTC+Mosaicll
Hamana et al. (2003) — Subaru/SuprimeCam
Heymans et al. (2005) - HST/ACS

Massey et al. (2005) - WHT/PFIC
Semboloni et al. (2006) — CFHT /MegaCam
Massey et al. (2007b) - HST/ACS

Fu et al. (2008) — CFHT/MegaCam
Schrabback et al. (2010) — HST/ACS

Huff (2012) — SDSS

Lin et al. (2012) — SDSS

Jee et al. (2013) — Mayall+CTIO/Mosaic

05 (Q /0.3)048 = 091102
03(Qw /0.3)%% = 0.871017 (95%CL)
08(Q, /0.3)%08 = 0.97 +0.13
08(Qn /0.3)%5 = 0.711012 (20)
03(Qm /0.3)%% = 07817032 (95%CL)
05 (Q /0.3)%6% = 0.68 £ 0.13
03(Q /0.3)%% = 1.02 £ 0.15
g = 0.89 £ 0.06 @), = 0.3
03(Q /0.3)04 = 0.866 7058
03(Qm /0.3)%%* = 0.70 £ 0.04
03(, /0.3)%51 = 0.75 £ 0.08
o5 = 0.636701% @0, = 0.265
05(Q /0.3)07 = 0.64 280
g = 0.833 £ 0.034°

w < —0.41 (90%)CL

Kilbinger et al. (2013) - CFHT/MegaCam
Heymans et al. (2013) - CFHT/MegaCam
Kitching et al. (2014) - CFHT/MegaCam

08(Q /0.27)%6 = 0.79 £ 0.03
05 (Qn /0.27)046 = 077003
03(Q, /0.27)046 = 0.69 + 0.22

w = —0.727029,1000 = —0.5+£1.1¢

w = —1.2340.344

w = —1.05+0.33,1000 = —0.2 4 0.84

2Consistent with 0, = 0.3 (A or open), cluster normalized; Q;; = 1,03 = 1 excluded.
bConsistent with ACDM or OCDM, but not with COBE normalized to Q,, = 1.
€Other parameters fixed to WMAP 7-year values.

dCombined with WMAP 7-year data.

independent groups (Bacon et al., 2000; Kaiser et al., 2000; Van Waerbeke et al.,
2000; Wittman et al., 2000). Over the same period, a number of studies were car-
ried out yielding the first cosmological constraints on the parameter combination
03(Qm )" (see Table 2.3). However, results from these early studies highlighted the
need for a deeper understanding of the complex systematics — ranging from optical
distortions in telescopes to intrinsic galaxy alignments — which affect this kind of
measurements. Great progresses have been made in overcoming these difficulties
over the last years. Current constraints, obtained from different datasets (SDSS,
CFHTLenS) and using different analysis methods, provide consistent results, com-
petitive with those obtained with other probes of the LSS. These constraints are
currently sufficiently accurate and robust to be used, in combination with other
datasets (e.g. CMB), to test several extension of the ACDM model, such as dark
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energy or massive neutrino models (3™ column of Table 2.3; see also Chapter 5),
or modifications of gravity as well (e.g. Simpson et al., 2013). Similarly to cluster
number counts results, the parameter combination 0g(Qm)* inferred from shear
measurements is in tension with the most recent Planck CMB constraints. A pos-
sible way to alleviate this tension is to extend the cosmological model to massive
neutrinos, as will be shown in Chapter 5 exploiting CFHTLenS data. As for the
next generation surveys, the Euclid mission is expected to improve considerably
the constraints provided by shear measurements (Laureijs et al., 2011): being a
space-based mission, Euclid imaging will not be affect by seeing effects that seri-
ously limit current observations from ground, allowing shape measurements for
~ 1.5 billion galaxies.

Finally, worth to mention is the 25¢" detection of lensing signal on the CMB
performed by the Planck Collaboration (2013e). The authors used the temperature-
gradient correlations induced by lensing to reconstruct a map of the CMB lens-
ing potential, which provides an integrated measure of the mass distribution back
to the CMB last-scattering surface. The power spectrum of the lensing potential
derived from this reconstruction is in good agreement with expectations from the
best-fit ACDM for the Planck temperature power spectrum, and supplies degeneracy-
breaking power for parameter constraints: it improves CMB-alone constraints on
curvature by a factor of two and also partly breaks the degeneracy between the
amplitude of the primordial perturbation and the optical depth to reionization (see
3" column of Table 2.1).

2.5 Ly-a forest

Absorption spectra of distant luminous quasars (QSOs) provide a means to probe
the properties of the intergalactic medium (IGM)° at high redshift through the anal-
ysis of the so called Ly-a forest (see e.g. Ferrara and Pandolfi, 2014, for a review).
Briefly, the UV light of a distant quasar — in the wavelengths blue-wards of the
Ly-a emission line, A < 1216A - traversing the IGM towards the observer could
be absorbed by intervening bunches of neutral hydrogen atoms once the photons
are redshifted — due to cosmic expansion — to the proper transition frequency. This
scattering process is equivalent to an effective opacity of the medium, with an op-
tical depth proportional to the number density of neutral hydrogen atoms which

SWith the term IGM we refer to the baryonic matter (gas) which is not part of collapsed objects,
such as galaxies. When the IGM falls from the filamentary structures of the cosmic web into galaxy
clusters it heats up to temperatures of order 107 — 108K, and it is referred to as Intracluster Medium.
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Figure 2.12: The Ly-« forest in the spectrum of the high redshift QSO HS 0105+1619
observed with the Keck-I HIRES spectrograph. The peak at 4426 A=1216A(1 +2.62)
corresponds to the Ly-a emission line. The features present in the part of the
spectrum red-ward of the Ly-a emission are absorption lines from heavy elements
(e.g. carbon, silicon, nitrogen, oxygen, iron). Figure adapted from O’Meara et al.
(2001).

compose the cloud. Thus, the Ly-a forest, that is the series of absorption features
observed in QSOs spectra at wavelengths corresponding to 1216(1 + za)A, where z,
is the redshift of the absorbers, can be used to map the distribution of the IGM (see
Figure 2.12). In particular, the transmitted flux can be related to the gas density
which is a biased tracer of the underlying DM distribution. Therefore, the cluster-
ing statistics of the flux can be used to constrain the shape and amplitude of the
matter power spectrum and measure the structure growth at redshifts inaccessible
to other LSS probes such as cosmic shear or clusters (e.g. Croft et al.,, 2002; Viel
et al., 2004a). From the theoretical side, several physical processes must be taken
into account to model properly the relation between transmitted flux and matter
fluctuations. These are usually calibrated using hydrodynamic cosmological simu-
lations, and since the physical conditions are only mildly non-linear, uncertainties
in their effects are not a major source of concern (e.g. Borde et al.,, 2014a). On
the observational side, the primary complication is the need to estimate the un-
absorbed continuum of the quasar, relative to which the absorption is measured.
For statistical analyses of large QSO samples there are strategies for mitigating the
bias caused by continuum errors (e.g. Slosar et al., 2011). Nonetheless, residual
uncertainties from continuum determination can be significant compared to the
precision of measurements.

One of the earliest study which employed Ly-a data was performed by Croft
et al. (1999) using 19 QSOs spectra. The authors found an amplitude and slope of
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the power spectrum which was consistent with a COBE-normalised ACDM model
with a primordial scale invariant fluctuation amplitude. With the availability of an
ever increasing number of QSOs spectra, several groups (e.g. Nusser and Haehnelt,
2000; Pichon et al., 2001; Zaldarriaga et al., 2001; Viel et al., 2004a) started to work
with Ly-a data, improving the analysis methods and developing different statis-
tical tool for cosmological inference (e.g. Viel et al., 2004b; Lidz et al., 2006). A
substantial breakthrough was achieved with the measurement of the Ly-a forest
power spectrum based on 3300 SDSS QSOs spectra from data releases one and two
by McDonald et al. (2005). Probing the matter density fluctuations on small scale,
the Ly-« forest has been readily recognized as a powerful tool to constrain neutrino
properties (see also Chapter 5). For instance, Seljak et al. (2006) uses SDSS Ly-«
forest data in combination with CMB and SNe measurements to constrains the to-
tal neutrino mass, finding ) m, < 0.17 (95% CL). A further step forward has been
made thanks to the recently released data from the SDSS-III BOSS. This survey has
been specifically designed to target quasars at redshift z > 2, and to obtain spectra
of many more of them than in the previous phases of SDSS. Slosar et al. (2011),
using the first 14000 quasars of the BOSS survey, performed a detailed measure-
ment of the Ly-a power spectrum in 3D redshift space. With the data release 9,
containing more than 60000 quasars, the measurement of the redshift space power
spectrum has been extended up to the scales of the BAO, yielding the highest red-
shift measurement of the BAO peak position and providing new constraints on the
expansion history of the Universe (Busca et al., 2013; Slosar et al., 2013). The most
updated results are the one provided by Palanque-Delabrouille et al. (2013), who
measured the one-dimensional power spectrum of the transmitted flux of BOSS
DR11 QSOs, and inferred og = 0.83 & 0.03 and n; = 0.97 £ 0.02, a factor 3 im-
provement in precision with respect to earlier SDSS constraints of McDonald et al.
(2005).
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Constraining neutrino properties with the Eu-
clid galaxy cluster survey

As explained in §1.5, neutrino oscillation experiments have provided conclusive
evidence for neutrinos having non-zero masses — through the measurement of the
mass squared difference between neutrino species — but current terrestrial exper-
iments are capable of giving only loose constraints on their absolute mass scale
(0.06eV < Y. my < 6eV). On the other hand, cosmological data provide a means to
constrain neutrino masses due to the effects neutrinos induce on background evo-
lution and growth of structures: relativistic neutrinos affect the pre-recombination
Universe and thus the statistical properties of the CMB anisotropies, whereas,
when they become non-relativistic, neutrinos suppress matter density fluctuations
at small scales. Given these multiple effects massive neutrinos leave an imprint
on many cosmological probes, ranging from CMB anisotropies to cosmic shear,
clusters and Ly-a forest, which are currently used to constrain their properties.
In particular, the upper limit on the total neutrino mass, accordingly to different
recent studies, lies in the range Y} m, < 0.2 —0.6eV (95% CL) (e.g. Seljak et al,,
2006; Zhao et al., 2013; Xia et al., 2012; Riemer-Serensen et al., 2013; Hinshaw et al.,
2013; Joudaki, 2012; Burenin and Vikhlinin, 2012; Zhao et al., 2012; Planck Col-
laboration, 2013d; Wyman et al., 2013; Battye and Moss, 2013; Beutler et al., 2014;
Giusarma et al., 2014; Mantz et al., 2014), depending on the probes and datasets em-
ployed. Moreover, the number of active neutrinos is known to be three to high pre-
cision through the measurement of the invisible width of the Z boson at LEP (The
ALEPH Collaboration et al., 2005), nevertheless, there exist several scenarios which
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allow the effective number of neutrinos to be different from its standard value,
Netf = 3.046 (e.g. Steigman, 2013). Current Planck CMB data alone do not favour
non-standard values of N, there are, however, several studies (e.g. Burenin, 2013;
Hamann and Hasenkamp, 2013; Wyman et al., 2013; Battye and Moss, 2013) that
including different probes of the LSS in their analyses found results which go in
the opposite direction.

We have seen in §2.2 that galaxy clusters, thanks to their capability of probing
the amplitude and growth of structures on scales of ~ 10 Mpc, provide a powerful
tool to constrain the neutrino properties. However, while current constraints based
on galaxy cluster data rely on relatively small samples of clusters identified at red-
shift below one (e.g. Burenin et al., 2007; Rozo et al., 2009), next generation of X-ray
(e.g. eROSITA!), Sunyaev-Zeldovich (e.g. CCAT?, SPT-3G) and optical (e.g. DES?,
LSST*%, PanSTARRS?, Euclid °) surveys is expected to increase by orders of magni-
tude the number of galaxy clusters detected, further extending the probed range
of redshift up to z ~ 2. Such large cluster surveys will provide tight constraints
on cosmological parameters, independent and complementary to those recovered
from other cosmological probes. In this Chapter we explore the cosmological infor-
mation contained in the cluster catalogue that will be provided by the photometric
redshift survey of ESA’s Euclid mission, which has been approved for lunch in
2020. Specifically, we will make use of cluster number counts and cluster power
spectrum to derive forecast errors on the total neutrino mass and effective number
of neutrino species. Moreover, we will assess how much extended models (wCDM
and open ACDM ), or an uncertain knowledge of the relation between mass and
observable, degrade the constraints on neutrino properties.

The Chapter is organized as follows. In Section 3.1, we briefly explain the
physical and observable effects of Nog and ) m,. In Section 3.2 we introduce the
Euclid mission, and specify the characteristics of the Euclid cluster survey used
in the analysis. Section 3.3 describes the formalism which we used to compute
the cluster number counts (§3.3.1) and power spectrum (§3.3.2), while in § 3.3.3 we
outline our forecasting procedure. Our results for different cosmological model are
presented in Section 3.4, and finally in Section 3.5 we draw our conclusions. The
results presented in this Chapter have been published in Costanzi Alunno Cerbolini

Thttp:/ /www.mpe.mpg.de/eROSITA

2ht’cp: / /www.ccatobservatory.org/index.cfm
3 http:/ /www.darkenergysurvey.org/

“http:/ /www.lsst.org/lsst/

5http: / /pan-starrs.ifa.hawaii.edu/public/
®http:/ /www.euclid-ec.org/



81

T T 1 T
1
L ﬁ 0.9
% 08F
2 09 | :E 07 b
T s
é 08 T 06
S 987 o i
EE: \ﬁ\/\\7 < 0.5
= . Stgréda\r/d Rl/lod%l § 04 |
a 07 m,=0.3 eV, = =) |
> ¥ mi=0.6 eV, Noy=3 — T 03
rm,=0.3 eV, Ngy=4 — ° 02 |
X m,=0.0 eV, N=4 g
0.6 - m,=0.0 eV, Ngg=5 — ] 2 o4l
1 1 0 1 Il
0.001 0.01 0.1 1 1014 101
k [n/Mpc] Mp a1 [Me/h]

Figure 3.1: Effects of the variation of ) m, and N (keeping the number of massive
species equal to three) on the linear matter power spectrum and halo mass function
at z = 0. The y-axis represents the ratio of the linear matter power spectrum (left)
and HMF (right) obtained for different values of ) m, and Ny to the standard
results for a ACDM model with ) m, = 0 and Neg = 3.046. All other parameters
(Qm, Qa, Ho, ng, A%{, T) are kept fixed to the WMAP 9-yr best-fit values for ACDM.
Both an increase of ) m, or Ny determines a suppression of the matter power
spectrum and HMF, making the effects of the two parameters degenerate for these
two observables.

et al. (2013) on the “Journal of Cosmology and Astroparticle Physics”.

3.1 Effects of varying ) m, and Neg

We already seen in §1.5.3 that massive neutrinos affect both the background evolu-
tion, by changing the expansion rate and the time of matter-radiation equality, and
the structure formation, through the free-streaming effect. These effects produce a
suppression of the matter power spectrum at small scales (left panel of Figure 3.1),
and in turn, a reduction of the number density of massive halo (right panel of
Figure 3.1)

Similarly, a variation of N affects the expansion rate and shifts the matter-
radiation equality, through Eq. (1.42). We recall here that the epoch of equality
sets the time at which sub-horizon DM density fluctuations can start to growing
under the action of gravity (see §1.2). Such modification is seen in the matter power
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spectrum as a shift to larger scale of its peak, which is determined by the size of the
particle horizon at the time of matter-radiation equality. Moreover, since on sub-
Hubble scales density fluctuations grow more efficiently during matter dominated
epoch (i.e. after equality), the matter power spectrum is suppressed on small scales
relatively to large scales (left panel of Figure 3.1). These effects, in turn, determine
a suppression of the halo mass function (right panel of Figure 3.1), especially in the
high mass end.

Comparing the various curves in Figure 3.1 obtained for different combinations
of }_ m, and Ngg, it is clear that the effects induced by these two parameters on
the matter power spectrum and HMF are almost degenerate. Thus, we expect the
constraints on the total neutrino mass and the effective number of neutrinos from
power spectrum and HMF analyses to be highly correlated.

To actually detect the signature of massive neutrinos in the matter power spec-
trum and HMF we need a cosmic tracer of such quantities. As mentioned in the
introduction we will use the cluster number counts and cluster power spectrum
to this end. In the next sections, after having introduced the Euclid mission, the
formalism used to quantify the two observables and the forecasting procedure will
be described.

3.2 The Euclid survey

Euclid is a Medium Class mission of the ESA Cosmic Vision 2015-2025 programme,
planned for lunch in 2020. Thanks to its three imaging and spectroscopic instru-
ments working in the visible and near-infrared bands, Euclid will cover 15,000
square degrees of extragalactic sky with the wide survey, thereby providing high-
quality images from visual imaging for more than a billion galaxies, accurate pho-
tometric redshifts from near-IR imaging photometry (in combination with ground-
based data) for about 2 x 10% galaxies and about 5 x 107 spectroscopic redshift at
z > 0.7 from near-IR slitless spectroscopy. The primary driver for the Euclid mis-
sion is to understand the accelerated expansion of the Universe and the rate of
structure growth. To this end the mission is optimised for two independent pri-
mary cosmological probes: cosmic shear (see §2.4) and BAO (see §2.3). In addition,
the Euclid survey will yield data of several complementary cosmological probes,
among which, galaxy clusters.

To fulfil the scientific goals for the cosmic shear survey, Euclid has been de-
signed to measure the shapes of ~ 30 galaxies per square arc-minute, with a me-
dian redshift greater than 0.8, in one broad visible R+I+Z band (550 — 920 nm)
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down to AB mag 24.5 (100). To reach the full potential of the weak lensing tech-
nique the required photometric redshift accuracy for these galaxies is 0, /(1 + z) <
0.05. This level of accuracy is achieved by using three additional Euclid near-IR
bands (Y, ], H in the range 0.92 — 2.0 micron) reaching AB mag 24 (5¢ ) in each,
complemented by ground-based photometry in visible bands derived from public
data or through collaborations with projects such as DES, KiDS, and Pan-STARRS.

The spectroscopic survey has been optimised for the detection of the BAOs. By
using a slitless spectrometer, with a spectral resolution of A/AA ~ 250 and limiting
line flux of 3 x 10_16ergs_1cm_2, Euclid will target Ha emitting galaxies providing
spectroscopic redshifts for over 3,500 galaxies per square degree with an accuracy
of 0 /(1 +z) < 0.001 and a completeness higher than 45 per cent.

As for the galaxy cluster survey, the most efficient method to build the Euclid
galaxy cluster catalogue relies on the analysis of the photometric data. To predict
cosmological constraints from the expected sample of galaxy clusters, we use the
analytic selection function adopted in the Euclid Red-Book (Laureijs et al., 2011) to
forecast the contribution of the cluster survey to the cosmological constraints. The
computation of the selection function is based on using the luminosity function of
cluster galaxies to compute the number of galaxies expected within Rogoc’/ down to
the H4p = 24 magnitude limit reached in the photometric survey, as a function of
the cluster mass and the cluster redshift.

Specifically, we use an average of the K;-band luminosity functions of nearby
clusters, evaluated within Rsgo. by Lin et al. (2003), which we then evolve passively
with redshift (Lin et al., 2006). We transform the Ks; magnitudes into the H4p band
by using the mean colour for cluster galaxies. Integrating the luminosity function
down to the apparent magnitude limit of the survey we obtain the number density
of cluster galaxies within Rspo.. Then, after appropriate scaling and multiplication
by the corresponding sphere volume, we obtain the number of cluster galaxies
within a sphere of radius Rppp.. Given the direct relation between cluster mass
My, and radius Rpgo., we obtain the number of observable galaxies for a cluster
of given mass at any redshift.

In practice, this procedure is equivalent to adopting a scaling relation between a
cluster mass Mygo. and richness, a relation which evolves with redshift because of
passive evolution of the cluster population, and where the knowledge of the lumi-
nosity function allows the richness to be estimated down to the redshift-dependent
absolute magnitude limits that correspond to the fixed apparent magnitude limit

7Recall that Ry, is defined as the radius encompassing an average density equal to 200 times
the cosmic critical density at a given redshift.
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of the survey.

We then calculate the predicted number of fore-/back-ground galaxies within
a cylinder of angular radius corresponding to Ry, at the cluster redshift, and of
length equal to 3 times the photometric redshift error, with the idea that photo-
metric redshifts will be used to reduce the fore-/back-ground. The signal-to-noise
(S/N) for cluster detection is then obtained from the ratio between the number
of cluster galaxies and the rms of the number of fore-/back-ground galaxies. The
latter is contributed by both Poisson noise and cosmic variance.

Assuming S/N = 3 for the fiducial limiting signal-to-noise for a reliable cluster
detection turns into a selection function which provides My 200c(z) defined as the
limiting mass within Rpgo. for a cluster to be included in the survey. As a result,
one finds Miim 200¢(2) >~ 1.6 X 101*M, at z > 0.5, while decreasing at lower redshift,
reaching ~ 5 x 10 M., at z = 0.2 (see dashed line in Figure 3.2). Even though a
S/N = 3 level may look optimistic the selection function adopted in this work is
derived using a simplistic analytical model which does not take into account any
sophisticated algorithm for cluster detection, and without making use of the full
information available (e.g. from cluster density profiles, luminosity functions, red
sequence and spectroscopic data). Therefore, the chosen limiting signal-to-noise is
likely to represent a conservative estimate, and we can assume the cluster sample to
be 100% complete and pure. Clearly, a detailed assessment of the completeness and
purity of the cluster sample should require a detailed analysis of the performance
of different cluster detection algorithms when applied to the Euclid survey, which
is beyond the aim of this paper. Moreover, as discussed in Rozo et al. (2010), what
matters in parameter estimation is not the level of the survey completeness and
purity, but the uncertainty in their calibration. Thus, the assumption of a 100%
pure and complete sample for S/N > 3 can be considered as assuming that purity
and completeness will be accurately measured in this regime (see Sartoris et al.,
2014, for further details).

3.3 The analysis method

A standard method in cosmology to constrain model parameters from survey data
is to compute the probability that an observed quantity, such as the cluster abun-
dance or power spectrum, is reproduced by a theoretical model described by a
set of parameters (Bayesian inference approach). Otherwise, in forecast analyses,
for which no real data yet exist, two approaches are commonly employed; in one
case, given the specifics of the planned survey and a fiducial cosmological model,
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Figure 3.2: Galaxy cluster selection function for the Euclid photometric survey, ex-
pressed as the limiting mass for a cluster to be included in the survey as a function
of redshift, My 200c(z). Dashed and solid lines represent the limiting mass for
detection thresholds S/N=3 and 5, respectively. Figure from Sartoris et al. (2014).

a synthetic set of data of the survey is generated and then used to parameter in-
ference in the same fashion of real data. The other approach exploits the Fisher
matrix formalism in which the confidence level on parameter measurement can be
estimated from the derivatives of the observables with respect to the model param-
eters around the best fit point. Even though the Fisher Matrix technique has the
advantage of allowing for a quick, analytic estimate of the confidence limits, on
the other hand it approximates the likelihood function as a multivariate Gaussian
function of the model parameters. In general, this turns out to be a coarse approxi-
mation since the likelihood function can be highly non-Gaussian (e.g. Perotto et al.,
2006); moreover the results obtained with this technique depend on the step chosen
in the calculation of numerical derivatives with respect to the parameters (e.g. Wolz
et al., 2012). For these reasons we choose to use the first approach in our analysis.
Specifically: i) we computed the mock cluster power spectrum and number counts
for a Euclid-like photometric survey; ii) these are then used to build the likelihood
functions of the two observables, and finally iii) the likelihoods are sampled by
means of a Monte Carlo Markov Chain (MCMC) technique to obtain forecast con-
straints. In what follows the models and procedure used to perform this analysis
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are described.

3.3.1 Cluster number counts

Following Eq. (2.10), the number of clusters expected for a survey having sky cov-
erage A() with an observed mass between Mffn and Mfi’n .1 and redshift between
z1 and zj,1 can be expressed as:

21+ V Mo,fn+
Nim = AQ 1dzd—/ el
2] Z

[ A /0 dMn(M,z) p(M?|[M),  (.1)
1L,m

where we approximated the survey completeness function with X(M,z, Q) =
[ dM°Pp(M°"||M). In this notation Mf,lrjnzo is equal to My, (z), the minimum value
of the observed mass for a cluster to be included in the survey discussed in §3.2. To
compute Eq. 3.5 we convert My, 200c(z), computed following the procedure out-
lined in §3.2, t0 Miim 200m(2) — the limiting mass within a radius encompassing an
overdensity equal to 200 times the mean density of the Universe — consistently with
the chosen halo mass function (see below). To this end we follow the recipe given
in Hu and Kravtsov (2003), assuming a NFW profile (Navarro et al., 1997) as halo
density profile and using their fitting formula (C11).

The integral over the observed mass is computed within bins having width
Alog M = 0.2, extending from Mpin(z) to 1018571 M, whereas the integral over
the redshift is evaluated in bins of width Az = 0.2 between z = 0.2 and z = 2.
The sky coverage is set to the required area for the wide Euclid survey AQ) =
15,000deg? (Laureijs et al., 2011). For n(M,z) we adopt the expression provided
by Tinker et al. (2008), with mass function parameters obtained for overdensity
Am = 200 with respect to the mean density of the universe (see their Table 2).
Moreover, to take into account massive neutrino effects, we follow the prescription
used by many authors® (e.g. Brandbyge et al., 2010b; Marulli et al., 2011; Ichiki
and Takada, 2012; Villaescusa-Navarro et al., 2013) neglecting the weakly clustering
neutrino component when calculating the halo mass (M1, = 47r20/3, with p =
Pm — Pv). Many other calibrations of the halo mass function from simulations have

8In Chapter 4 a refined calibration of the HMF in cosmology with massive neutrino, based on
a later study, is presented. As will be explained later, this improved HMF calibration entails a
second order effect on the absolute number of clusters predicted for a given cosmological model.
The net effect of this change in clusters count on parameters constraints is to shift the confidence
contours with respect to the results obtained with the standard HMF calibration. Such an effect
is not relevant for forecast analyses, for which the best-fit values of the parameters are set by the
chosen fiducial model.
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been presented by several authors (e.g. Sheth and Tormen, 1999; Jenkins et al., 2001;
Warren et al., 2006; Crocce et al., 2010). However, for the purposes of this work
the choice of the best-calibrated mass function has a minor impact. Indeed the
forecast errors depend primarily on the number of clusters expected for a given
cosmological model, which is far more sensitive to the exponential shape of the
mass function rather than to the calibration details of the mass function. The factor
p(M°P||M) takes into account the uncertainties that a scaling relation introduces in
the knowledge of the true cluster mass. Following the prescription of Lima and
Hu (2005), p(M°"||M) gives the probability of assigning to a cluster of true mass
M an observed mass M, as inferred from a giving scaling relation. Under the
assumption of a lognormal-distributed intrinsic scatter around the nominal scaling
relation with variance ¢7, ,,, the probability can be written as:

exp[—x*(M*)]

Mob (271(712nM) ’

p(MP|M) = (3.2)

where
_ InM®—-By—-InM

2
(20'1n M )
Here the parameter By represents the fractional value of the systematic bias in the
mass estimate. Moreover, according to Sartoris et al. (2010) we assume the follow-
ing parametrization for redshift dependencies of the halo mass bias and variance
(we do not consider a possible mass dependence of these parameters):

Bm(z) = Bmo(1+2)"
UlnM(Z) = UlnM,O(l + Z)'B . (3-4)

In our formalism, we have four nuisance parameters, By, 0in M0, @ and 8, which
can be allowed to vary along with the other cosmological parameters during the
forecast procedure (see § 3.4.4).

Including Eq. 3.2 into Eq. 3.1 it follows that:

AQ) A+
Nip=—
I, m > .

x(M°b) (3.3)

dz Z—Z/O dMn(M,z) x [erfc(x)m) — erfc(xmi1)] (3.5)

where erfc(x) is the complementary error function. For Euclid data, the photomet-
ric redshift measurements will be calibrated using a combination of the spectro-
scopic survey and ground-based visual bands photometry, with an expected limit-
ing precision of o(z) ~ 0.05(1 + z) (Laureijs et al., 2011). While this error refers to
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Figure 3.3: The cumulative cluster redshift distribution as predicted by the refer-
ence cosmological model and the reference values for the mass nuisance parameters
(see Table 3.1), for the Euclid cluster survey.

the photometric redshift of a single galaxy, the redshift of a cluster identified in the
photometric survey should be reduced by a factor N'/2, where N is the number
of galaxies assigned to the cluster. For a typical cluster at z ~ 1.0 with N ~ 100
detected galaxies the error is reduced by a factor 10, leading to o(z) ~ 0.01. Thus
in the following, we assume that the errors on cluster redshift measurements can
be neglected.

An additional effect on the number counts is induced by line-of-sight peculiar
velocities, which can scatter redshifts by 6z ~ 0.003 for velocities of ~ 1000km s~ .
However, since the redshift bins adopted in the analysis have a width of Az = 0.2,
i.e. far larger than the éz value associated to the peculiar velocities, it is a fair
assumption to neglect this effect.

From Eq. 3.5, using this survey specifics and fiducial parameter values listed in
Table 3.1, we expect that Euclid will find of order 1.5 x 10° cluster with a S/N better
than 3, between z = 0.2 and z = 2.0, with ~ 4 x 10* having z > 1 (see Figure 3.3).

3.3.2 Cluster power spectrum

In order to include information from the clustering of galaxy clusters, we calculate
the averaged cluster power spectrum within a given redshift interval using the
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expression:
[ dz 9 n?(z) P (k, z)

Z]
rdagni)

Pk, z) = (3.6)

where n(z) = [;°dMn(M,z) x erfc(x;m—o) is the comoving number density of
clusters that are included in the survey at redshift z (e.g. Majumdar and Mohr,
2004). The cluster power spectrum P (k,z) is expressed in terms of the underlying
matter power spectrum P(k,z) according to P (k,z) = b2(z) P(k,z); the term of
proportionality beg is the cluster mass function averaged linear bias, defined as:

_Jo dMn(M, z) erfe(xm-0) (M, z)

bett(2) = I dMn(M, z) erfe(ximeg) 57)

For the linear bias of dark matter halos, b(M,z), we adopt the fitting function
of Tinker et al. (2010) (Eq. (1.39)) for overdensity A = 200 (see their table 2). The
linear matter power spectrum P(k, z) is computed with the publicly available soft-
ware package CAMB (Lewis et al., 2000), which takes correctly into account the effect
of massive neutrinos also in a mild non-linear regime (Bird et al., 2012).

As for the effect of errors in photometric redshifts, they are expected to in-
troduce a smearing in the power spectrum at small scales (see e.g. Hiitsi, 2010),
thus degrading the information carried by clustering analysis. Consistently with
the number counts analysis we neglect in the following the effect of uncertain-
ties in redshift measurements, thereby not accounting for the damping of the
power spectrum due to photometric redshift errors. In order to avoid contribu-
tion to the matter power spectrum and scale-dependent bias introduced by non-
linearities, we do not include in our analysis modes with wavenumbers larger than
kmax = 0.1Mpc™! (Percival and White, 2009). Although massive free-streaming
neutrinos mainly affects the power spectrum at small scales (§1.5), a value of kmax
larger than ~ 0.3 Mpc ™! would not increase significantly the sensitivity of the sur-
vey. Indeed, given the level of Poisson noise associated to the cluster distribution
(see Eq. 3.10, and Figure 3.4), higher frequency modes are not adequately sam-
pled and, therefore, adding them to the analysis does not add significant infor-
mation (Sartoris et al., 2010). As for the minimum value of the wavenumber we
impose kmin = 0.003 Mpc*l ; again, using a smaller value of kni, does not change
the final results, since extremely large scales are not sampled by the surveys. Ac-
cording to the Euclid specifics the average cluster power spectrum is evaluated in
the redshift range 0.2 < z < 2.0, considering 9 bins of width Az = 0.2 each. Finally,
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Figure 3.4: Wavenumber dependence of the relative error of the cluster power spec-
trum, opa / Pl defined as in Eq. 3.10, at four different redshift: z = 0.2,0.6,1.0,1.6,
from bottom to top curves, respectively.

in our analysis we neglect the correction to the power spectrum due to redshift
space distortion effects.

3.3.3 Forecasting

The forecast is based on the Bayesian inference technique, for which a likelihood
function of the mock data is first constructed and then sampled in order to esti-
mate the marginalized probability distribution of the parameters. To explore the
parameter space by means of Monte Carlo Markov Chains we use the publicly
available code CosmoMC® (Lewis and Bridle, 2002), where we included a module for
the calculation of the cluster number counts and power spectrum likelihoods.

Our most general parameter space is:

0@ = (Wh%, Qh?, O, T, n5,10g[10"° A], fu Negr, O, w, Brio, O o &, ) (3.8)

%http:/ /cosmologist.info/cosmomc/
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Table 3.1: Fiducial parameter values.

Quh? Qh? Os T g log[10'°A,] £,
0.02253 0.1122 1.0395 0.085 0.967 3.18 0

Netf Oy w ByMo  Oin Mo o
3.046 0 -1 0 0.45 0

o™

where the first six are the usual standard ACDM parameters: the physical baryon
Qph? and cold dark matter Qch? densities, the ratio (multiplied by 100) between
the sound horizon ant the angular diameter distance at decoupling ©s, the reion-
ization optical depth T, the scalar spectral index ns and the amplitude of initial
power spectrum Ag. Besides these parameters we performed several forecasts for
different extensions of the minimal cosmological model, by fitting (along with the
other parameters): the neutrino density fraction f, = (), /() , the effective number
of neutrino species Ng¢, the spatial curvature () and the dark energy equation of
state parameter w. Finally, in order to assess the effect of the uncertain knowledge
of the mass-observable relation we consider also the case in which the four nui-
sance parameter are treated as fitting parameters to be determined along with the
cosmological ones.

Throughout this paper, our reference model is chosen to be a flat ACDM model
with three neutrino species. The fiducial ACDM parameter values are listed in
Table 3.1, consistently with the WMAP-7+BAO+Hj best-fit model by Komatsu
et al. (2011). These fiducial parameter values are also consistent with the latest
WMAP 9-year best-fit model (Hinshaw et al., 2013) and within 20 with the Planck
results (PPlanck Collaboration, 2013d).

As for the nuisance parameters, clusters mass within Euclid survey will be esti-
mated using photometric richness as a cluster mass proxy. An accurate calibration
of the scaling relation between richness and mass will be provided by weak lens-
ing mass measurements within the Euclid survey. We note that different authors
calibrated the presence of a possible bias in weak lensing mass measurements by
resorting to cosmological simulations of galaxy clusters (Becker and Kravtsov, 2011;
Rasia et al., 2012). The results of these analyses converge to indicate that a small,
but sizeable, underestimate in weak lensing masses, is induced by projection ef-
fects and amounts to 5-10%. For the purpose of the present analysis we prefer to
assume that weak lensing provides an unbiased calibration of the mass-richness re-
lation, thus fixing Byip = 0 as a reference value for the mass bias. For the intrinsic



92

scatter we assume 0y, 510 = 0.45 as estimated by Rozo et al. (2009) by demand-
ing consistency between available weak lensing and X-ray measurements of the
maxBCG clusters, and the X-ray luminosity-mass relation inferred from the 400d
X-ray cluster survey. The intrinsic scatter has the effect of increasing the number
of clusters included in the survey. Indeed, the number of low-mass clusters that
are up-scattered above the survey mass limit is always larger than the number of
rarer high-mass clusters which are down-scattered below the same mass limit (e.g.
Cunha, 2009). Because so far there are no evidences for the evolution of the nui-
sance parameters we adopt &« = 0 and B = 0 as reference values, thus making
the minimal assumption of constant bias and scatter with redshift. When the nui-
sance parameters are left free we consider two cases: one with strong prior on
the evolution parameters, with a and B not allowed to vary with respect to their
reference value, and the other one with no prior knowledge of their value. The
latter turns out to be a conservative assumption in view of the large number of
clusters for which mass measurements from weak lensing will be available from
Euclid (Laureijs et al., 2011). As such, the corresponding uncertainties expected
on cosmological parameters should be regarded as upper limits of the error in-
troduced by the uncertainties in the relation between cluster richness and mass.
The cluster power spectrum and number counts of the mock data are assumed to
be equal to the theoretical cluster power spectrum (Eq. (3.6)) and number counts
(Eq. (3.5)) of the fiducial model.
Since we are interested only in parameter error estimation, we define our likeli-
hood functions £ of the observable O as
Q°bs _ Oth
Xog=—2InL=) LT, (3.9)
ij Y0,

in such a way that x%; is equal to zero for the fiducial parameter values. In the
previous equation Ol-ojbs denotes the observed cluster power spectrum, P(f’lbs(ki,zj)

(number counts, NObS(Ml-, z]-)), while Of]h is the theoretical cluster power spectrum

(number counts) of Eq. 3.6 (Eq. 3.5). The statistical error associated to the observed
galaxy cluster power spectrum in a bin centred on (k;, zj) (Feldman et al., 1994)

reads: )
o, (2n)2(PR(ki, zj))? 1
Ope = 2 1 5th ’

where Vsur(z]-) is the comoving survey volume within the redshift bin centred on
zj, and Ak is the size of the bins in wavenumber space. In this way, constraints at

(3.10)
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redshift z are mostly contributed by wave-numbers k, which maximize the product
n(z)P(k,z) (see Figure 3.4). The average cluster power spectrum is computed
by integrating over redshift intervals having constant width Az = 0.2. This choice
of binning represents a compromise between the need of extracting the maximum
amount of information from clustering evolution and request of negligible covari-
ance between adjacent z-intervals (e.g. Stril et al., 2010). Indeed, the definition of
Eq. 3.9 holds only if the contribution from different redshift slices carry statistically
independent information. As for the statistical error of the observed number counts

for a given mass and redshift bin centred in (M;, z;), we consider only the Poisso-

nian noise, (712\’91 = Nth(Mi, z]-), neglecting the contribution from sample variance,
g

which accounts for the clustering of clusters due to large scale structure. Given
the large volume to be probed by the Euclid survey (~ 100k~ Gpc) and the expo-
nential suppression of cluster number density for mass larger than the maximum
cluster mass, the shot-noise errors dominate over sample variance for the most of
mass and redshift bins (see Hu and Kravtsov, 2003, also for a more rigorous defi-
nition of the number counts covariance matrix). Finally, since number counts and
power spectrum probe the same mass density field, the covariance between the two
is expected to be different from zero. In practice, it has been shown (e.g. Fang and
Haiman, 2007) that these two observables have in fact negligible covariance.

Because the full parameter space is quite large and some parameters are poorly
constrained by LSS observations, we perform our forecast combining the Euclid-
like cluster catalogue with Planck-like datal®. The mock CMB TT, EE and TE
power spectra have been simulated following the procedure of Perotto et al. (2006)
according to the specifications presented in the Planck Blue-Book (Planck Collab-
oration, 2006, page 4, Table 1.1) based on 14 months of observations, using the
three frequency channels with the lowest foreground levels at 100GHz, 143GHz
and 217GHz, and a sky fraction of fq, = 0.80. In order to avoid problems with
foreground signal, beam uncertainties, etc., we cut-off the spectra at {max = 2000.

19At the time of performing this analysis the first Planck data release has not been published
yet. However, the fiducial values adopted in this work are consistent within 20 with the mean
values obtained by the Planck Collaboration (2013d). For this data release the authors did not use
polarization spectra, so a direct comparison of our forecast with the actual constraints from Planck
is not possible. Nevertheless, for a ACDM+m, model, using Planck temperature power spectrum
in combination with a WMAP-9year polarization low-multipole likelihood the authors obtained
Y. my < 0.933 (95%CL), compatible with our expected error. The actual Planck data will be used in
the analysis proposed in Chapter 5



94

3.4 Analysis and results

Having defined the reference cosmological model and the specifics of Euclid survey
we now present forecast errors on neutrino parameters for various extensions of the
minimal ACDM model. For each of the cases that we describe here below, we run
four independent chains, requiring the fulfillment of the Gelman & Rubin Gelman
and Rubin (1992) criteria with R — 1 < 0.03 as convergence test.

3.4.1 Three massive neutrinos: ACDM+m,

We start by considering the scenario with three degenerate massive neutrino species.
A degenerate mass spectrum is justified on one side by the smallness of the mass
difference measured, on the other by the incapability of the Euclid cluster data to
probe directly the neutrino mass hierarchy, as we will explain later in § 3.4.2. In
Table 3.2 we report the 68% and 95% CL bounds on ) m, derived from different
data sets: Planck only, cluster power spectrum only, cluster number counts and
power spectrum (hereafter Euclid-Cl), and the combination of Planck and Euclid-
Cl. When only cluster power spectrum data are considered we obtain a quite loose
20 upper limit on ) m, of 1.20eV. Otherwise, the information contained in cluster
number counts alone is unable to constrain the total neutrino mass, but it greatly
improves the error on ) m, once added to cluster power spectrum data, mainly
thanks to the tight constraints provided on o3 (see left panel of Figure 3.5). Specif-
ically, the upper limit for ) m, shrinks by a factor ~ 4 to 0.35eV (95%CL). This
error is comparable to the present constraints obtained combining CMB and LSS
probes, and of the same order of magnitude of the error expected for Planck. Re-
garding parameter degeneracies for the galaxy cluster dataset, the total neutrino
mass is correlated with all the cosmological parameter affecting the galaxy power
spectrum shape (i.e. 0y, 03, 115; see red contours in Figure 3.5 and Figure 3.6).

The main power of constraints in cosmological parameters indeed originate
from the joint analysis of galaxy cluster and CMB datasets. In this case the error on
Y. my is reduced to 31 meV; an improvement of more than one order of magnitude
that would allow a 20 detection of the total neutrino mass even in the minimal nor-
mal hierarchy scenario (}_m, ~ 0.06 eV). The reason for such an improvement can
be easily understood by looking at the right panel of Figure 3.5 which shows the
68% and 95% confidence regions in the () m, — 0g) plane from Planck data, Euclid-
Cl data and the combination of the two. Taken independently, the CMB and galaxy
cluster data exhibit significant degeneracies in this plane, but the nearly orthogonal
degeneracy directions allow their combination to provide tight constraint on these
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Table 3.2: Constraints on }_m, for ACDM+m, model from Planck, cluster power
spectrum (Pl — only), Euclid-Cl (cluster number counts and power spectrum) data,
and the combination of the two data sets Euclid-Cl+Planck. Because the parameter
T is not constrained by Euclid data, when CMB measurements are not included 7
is kept fixed to its fiducial value.

Model ACDM+m,,

Data Planck P“—only Euclid-Cl Euclid-Cl+Planck

¥ 1y [eV] 68% CL <041 <041 < 0.17 < 0.017
95% CL <074 <1.20 < 0.35 < 0.031

parameters, and in particular on the neutrino mass. When Planck priors are added
to the Euclid-Cl constraints, all degeneracies are either resolved or largely reduced
(see blue contours in Figure 3.5 and Figure 3.6). Similar levels of sensibility on
Y m, are also expected combining Euclid galaxy or cosmic shear power spectrum
measurements with Planck CMB data (e.g. Carbone et al., 2011; Audren et al., 2012;
Hamann et al., 2012).

3.4.2 Varing Nggr: ACDM—1m1,+ Negr

We now explore the scenario with massive neutrinos and N effective number of
neutrino species. Again, we distribute the sum of neutrino masses equally among
three active species (N, = 3), and we treat additional contribution to N¢ as mass-
less, such that Ngg = 3 + ANgg, with the prior ANy > 0. While the choice of
keeping N, fixed does not affect constraints from CMB measurements (what mat-
ters is Neg), it could change the sensitivity to ) m, and N, based on galaxy clusters
data. Indeed, changing N, would change the mass of each massive neutrino and
thus its free-streaming lenght beyond which the power spectrum is suppressed
(see Eq. (1.46)). We checked the case with fixed ANy and N, as free parameter
and we find no qualitative changes in our results. This means that the data are
not sensitive to the exact position of the break in the power spectrum induced by
free-streaming neutrinos, and thus to the neutrino mass hierarchy. Table 3.3 shows
the joint constraints on the sum of neutrino masses and on the effective number of
neutrino species from Planck data alone and the combination of Planck and Euclid-
Cl datasets. Looking at Planck data alone, the quality of the constraints on ) m,
are nearly unchanged from the single-parameter extensions discussed earlier, as it
would be expected for independent parameters. Indeed, ) m, and Ng are con-
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and the combination of cluster power spectrum and number counts (small con-
tours; Euclid-Cl). The insert plot shows a zoom of the confidence contours given
by the Euclid-Cl dataset compared with the contours obtained from the Fisher Ma-
trix technique using the same dataset. Right panel: contours from Planck (green),
Euclid-Cl (red) and Planck+Euclid-Cl (blue) datasets. The insert plot shows a zoom
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of the confidence contours obtained from the Planck+Euclid-Cl datasets.

Table 3.3: Constraints on )_m, and Ngg for ACDM+m,+ Ngg model.

Model ACDM+my,+Ngg

Data Planck Euclid-Cl+Planck
68% CL < 042 < 0.022

YomyleV] g0, oL < 078 < 0.040

Net 95% CL < 3.36 < 3.14
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Figure 3.6: The 68% and 95% CL contours in the ) m, — (Qm, ns) planes for a
ACDM-+m, model, from Euclid-Cl (red contours) and the Planck+Euclid-CI (blue
contours) datasets. When only Euclid-Cl dataset is used the parameter 7, which is
not constrained by this data, is kept fixed to its fiducial value 0.085.

strained by different features in the CMB spectra: the early integrated Sachs-Wolfe
effect for ) m,, the damping scale and the position of the acoustic peaks for N (see
e.g. Hinshaw et al., 2013, and references therein). However, since both ) m, and
Negs have similar effects on the matter power spectrum (§ 3.1), the correlation of
the two degrades the upper bound on the sum of neutrino masses inferred from
Euclid-Cl+Planck data by ~ 30% to }_m, < 0.040[eV] at 95%CL. With this accuracy,
it would still be possible a 2 ¢ detection of neutrino masses in the minimal normal
hierarchy scenario. Constraining N is mainly achieved through CMB measure-
ments of the redshift of the matter-radiation equality z,; and the baryon density
Qph?. However, keeping z.; and Qph? fixed as N increases can be achieved by in-
creasing the cold dark matter density Q)ch?, which displays a large correlation with
Nege (Hou et al., 2011). Euclid-Cl data alone are unable to provide constraints on
the number of effective species. However, the inclusion of clusters dataset allows to
significantly improve the measurements of QO h? (by constraining o3), thus reduc-
ing the 2 error on the effective number of neutrino by a factor larger than 2.5 from
0.36 to 0.14 (see right panel of Figure 3.7). After the inclusion of Euclid-Cl data N
still exhibits strong degeneracies with many cosmological parameters (e.g. OQmh?,
Hjp and ns), and a correlation of ~ 0.5 with }_m, (see left panel of Figure 3.7).
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Figure 3.7: The 68% and 95% CL contours in the Neg — (Qm, Y. m,) planes for a
ACDM-+my+Negs model, from: Planck (green contours) and Planck+Euclid-Cl (blue
contours) data.

Table 3.4: Constraints on ) m, and Ng for the two parameter extensions (w, ()y)
from Euclid-Cl+Planck datasets.

Data Planck+Euclid-Cl
Model ZUCDM+mV+Neff ACDM+my+Neff+Qk
¥y [eV] 68% CL < 0.024 < 0.024
95% CL < 0.046 < 0.046
Negt 95% CL < 3.16 < 3.17

3.4.3 Extended models: wCDM+m,4 Neg and curved Universe

Next, we consider how the constraints on }_m, and Ny are affected when addi-
tional degrees of freedom are introduced in the cosmological model. The effect on
(Y_my, Negr) of adding these degree of freedom to the ACDM-+m,+Neg model are
shown in Figure 3.8 and listed in Table 3.4. We start by considering a constant dark
energy equation of state (w = Pg./pqe 7 —1). In this case the evolution of the
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Hubble parameter reads:

2w
H(Z) :HO |:Qde(1 —|—Z)3 exp |:3/0 112

}1/2

dz'] + O (1+2)2
3.11)

+ Om(142)° + O (1 +2)*

4

which reduces to Eq. (1.14) for w = —1. Therefore, changing the value of w affects
the expansion rate of the Universe, and in turn, the growth of structure through
Eq. (1.13). Neutrino properties () m,, Nogg) and w are generally degenerate be-
cause they can both affect the shape of the matter and CMB power spectra (e.g.
Xia et al., 2007). Looking at Figure 3.9 (a), we indeed see this degeneracy in the
plane Ngg — w, which displays a correlation of ~ 0.5, whereas the parameters w
and ) m, show almost no correlation. The Euclid clusters catalog, probing the
evolution of the LSS up to z ~ 2, will be able to put tight constraints on the dark
energy equation of state; we find for the combination of Planck and Euclid-Cl data:
—1.011 < w < —0.987 (95%CL). Given the small uncertainty on w the constraints
on neutrino mass and effective number of species are only slightly degraded when
w is allowed to vary; the 95% CL upper limit for N is relaxed from 3.14 to 3.16
due to the degeneracy with w. Whereas, the 95% CL upper limit for )} m, un-
dergoes only a small degradation from 0.040eV to 0.046 eV, caused by the weak
constraints on parameters that are correlated with )_m, induced by the extension
of the parameter space. Secondly, we relax the prior on the curvature of the uni-
verse by considering the case ACDM+m,+Negs + (). Since current data do not
support departures from the flat ACDM model either through () # 0 or w # —1,
we introduce these parameters separately. From the combination of Planck and
Euclid-Cl datasets we obtain, for the curvature parameter, the following constraint:
—0.0024 < O < 0.0024 (95%CL). As CMB power spectrum suffer from a well
known “geometrical degeneracy” (e.g. Bond et al., 1997; Zaldarriaga et al., 1997),
Euclid-CL data considerably improves the error on () breaking such degeneracy
thanks to the tight constraint on (), (given by the growth information encoded in
the dataset). The spatial curvature mainly affects the expansion rate via the Fried-
mann equation, as well as the total neutrino mass and number of effective species
do. As it can be seen in Figure 3.9 (b), this results in a correlation with both ) m,
and Neg of the order of ~ 0.5 and ~ 0.6, respectively. Despite these quite large
degeneracies with (), the small error associated to the curvature parameter leads
to a slight relaxation of the constraints on neutrino properties: the upper limit
for neutrino mass degrades by ~ 10%, passing from 0.040 eV to 0.046 eV (95%CL),
while the 20 error on N shift from 0.14 to 0.17, a 20% degradation.
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Figure 3.8: The marginalized one-dimensional posteriors for ) m, (left) and N
(right) for different parameter extensions from the combination of Euclid-Cl and
Planck datasets.

Table 3.5: Constraints on }_m,, and Ngg for ACDM+m,+ Ny models with free nui-
sance parameters.

Data Planck+Euclid-Cl
Model ACDM+my,+Ngg+nuis  ACDM+my,+ Neg+nuisey
¥ 1y [6V] 68% CL < 0.049 < 0.031
95% CL < 0.083 < 0.056
Negt 95% CL < 3.18 < 3.16

Thus, in both cases, the parameter extension entails a relaxation of the con-
straints on ) m, and Neg; nonetheless, given the high accuracy with which w and
)y are expected to be measured, the survey would still allow a 20 detection of
neutrino mass in the minimal normal hierarchy scenario and reveal the presence of
possibles extra relativistic species.

3.4.4 Nuisance parameters

Finally, to assess the effect of an uncertain knowledge of cluster masses on ) m,
and N.g constraints, we treat the ACDM+-m,, + Ne¢ case with the four nuisance pa-
rameters as fitting parameters, following the so-called self-calibration method (e.g.
Majumdar and Mohr, 2004; Lima and Hu, 2005; Sartoris et al., 2012). The results
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are listed in Table 3.5. We start with the the over-conservative assumption of no
priors on all the four nuisance parameters (ACDM+m1, + Ngg+nuis model). The un-
certainties on scaling relation parameters compromise our ability to recover the
halo mass function from cluster data, thus reducing the cosmological information
achievable from cluster number counts. This results in a larger error for the param-
eters that are primarily constrained by cluster number counts, in particular for oy,
the normalization of the power spectrum. Looking at Figure 3.10 (left panel), the
constraints on oy are relaxed by a factor of ~ 10 compared to the ACDM-+m1,+ N
model, and the parameter recovers a large degeneration with ) m, of the order
of ~ 0.65. This effect, along with the degradation of other parameters errors (e.g.
0(Qm)), entails a relaxation of the upper limit for ) m, by a factor larger than two,
from 0.040 eV to 0.083 eV. With these loose constraints, in the case of minimal nor-
mal hierarchy scenario, it would not be possible to have a 20 detection of neutrino
mass. Because the constraints on neutrino mass from cluster number counts relay
on the evolution of the high-mass end of the mass function, ) m, is rather degen-
erate with « and S, the two nuisance parameters which control the evolution of the
systematic bias and intrinsic scatter (see Eq. 3.4). To emphasize the role played by
the uncertain redshift evolution of the nuisance parameter on the determination
of ) m, we show in Figure 3.10 the contours for a model with a and B kept fixed
(ACDM+my+Neg+nuis,, model). In this case the degradation of the total neutrino
mass constraints with respect the ACDM+m1,+Ngg model is only of ~ 40%, from
0.040eV to 0.056€V. In other words, an accurate knowledge of the redshift evo-
lution of the nuisance parameter improves the 2c upper limit of ) m, by ~ 33%
compared to the previous case with no prior on the nuisance parameters.

Likewise, the forecast error on N is influenced by the loss of constraining
power of the cluster number counts data, even if to a lesser extent than the bounds
on ) my, since the constraints on N, are primarily contributed by CMB measure-
ments. The 20" upper limit shifts from Neg < 3.14 to Neg < 3.16 and Neg < 3.18, in
the model with strong evolution prior and free nuisance parameters, respectively.
In these case the degradation is mainly due to the larger error associated to OQmh?,
which is highly degenerate with Ng¢ as explained in Section 3.4.2 and shown in
Figure 3.10 (right panel). We remind that the results for the model with no prior
have to be regarded as an upper limit on the error introduced by the uncertain
knowledge of the scaling relation; nevertheless, these results highlight the impor-
tance of having robust calibration of the scaling relation, and in particular of their
evolution with redshift, to fully exploit the cosmological information contained in
the Euclid cluster catalog.
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Figure 3.10: Joint two dimensional marginalized constraints on the planes (}_m, —
o) and (Negs — Qmh?) at 68% and 95% CL from Euclid-Cl+Planck data. The con-
tidence regions are for the ACDM+m,+Ngg model discussed in 3.4.2 (small blue
contours) and the two extended model with nuisance parameters: all nuisance
float (larger light violet contours) and fixed evolution parameters a and B (dark
violet contours).

3.5 Conclusions

In this Chapter, we presented forecasts on the capability of the future Euclid photo-
metric galaxy cluster survey, in combination with Planck-like data, to provide con-
straints on neutrino properties. Specifically, we rely on two observables: the cluster
number counts and their power spectrum. Our analysis is based on the Markov
Chain Monte Carlo methods rather than the Fisher Matrix technique, which results
in more reliable error bars. We start by considering a reference ACDM model in
agreement with the results of WMAP 9-year.

In order to study possible degeneracies with ) m,, besides the ACDM model
with massive neutrino, we also consider models with N effective number of rela-
tivistic species, a constant dark energy equation of state w and curvature. Follow-
ing the self-calibration approach, along with the other cosmological parameter, we
decide to explore also the effect of leaving free the nuisance parameters that de-
scribe the relation between cluster optical richness and mass, its scatter and redshift
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evolution.
Our results can be summarized as follows:

e From the combination of Euclid number counts and clustering data we pre-
dict a 20 upper limits for the total neutrino mass of ) m, < 0.35eV, compara-
ble with present constraints from the combination of CMB and LSS probes (e.g.
Zhao et al.,, 2012; Wyman et al., 2013; Battye and Moss, 2013; Beutler et al,,
2014; Giusarma et al., 2014; Mantz et al., 2014). When Planck data are added
to the Euclid-Cl ones the error on ) m, is reduced by a factor larger than
10 to }_ m, < 0.031eV. With this accuracy the total neutrino mass could be
detected at 20 level even in the minimal normal hierarchy scenario. The large
improvement is due to the different degeneracies present between Euclid and
Planck that are broken once the two experiments are combined.

e Because the effective number of neutrino species is degenerate with the sum
of neutrino masses, varying N.¢ entails a relaxation of 20 error bars on ) m,
by ~ 30% in the Planck+Euclid-Cl case. Still, the 20 error is lower than the
minimum neutrino mass admitted by neutrino oscillation experiments. The
Euclid-Cl dataset is unable to constraints N by itself, but improves the 2¢c
upper limits on Ngg from 3.36 using Planck-only, to 3.14 in the Planck+Euclid-
Cl case. The improvement is mainly due to the tighter constraints on Q,h?
provided by the Euclid-Cl datasets.

e In models with varying w or () the 20 error on )} m, is relaxed only by
~ 10%. In both cases the high accuracy with which w or )y are constrained
by the Planck+Euclid-Cl data prevents the error on ) m, from being largely
degraded. As for N, the parameter shows a correlation of the order of ~ 0.5
with both w and )y, which shifts the 2 upper limit for N to 3.16 and 3.17,
respectively.

e When nuisance parameters are considered in a conservative way (no prior)
our ability to recover the halo mass function from cluster data is compro-
mised. The degradation of cosmological information results in a ~ 2 times
larger 2¢ error for neutrino masses (} m, < 0.083eV) and a degradation of
~ 30% of the 20 error on the effective number of neutrinos (N < 3.18).
In this case the accuracy would not be sufficient for detecting the total neu-
trino mass with good significance in the minimal normal hierarchy scenario.
Whereas, assuming a perfect knowledge of the redshift evolution of the nui-
sance parameters we partially recover the informations contained in cluster
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number counts data. In this case the 2¢ upper limit for ) m, is degraded
only by 40% to ) m, < 0.056eV, while the 20 error on the effective number
of neutrinos degrades by ~ 15% to Neg < 3.16.

It is worth reminding that in our analysis we did not include the effect of redshift
space distortions in the distribution of galaxy clusters induced by peculiar veloci-
ties. This effect should be in principle included when forecasting the cosmological
constraining power of future cluster surveys; indeed, as demonstrated by Sartoris
et al. (2012), the inclusion of redshift space distortions carries significant cosmolog-
ical information through the growth rate of density perturbations.

As a concluding remark, we emphasize once again the importance to provide
an accurate calibration of the scaling relation between the observable quantity on
which cluster selection is based, optical richness in this case, and cluster mass.
Thanks to the exquisite imaging quality expected for the Euclid survey, weak lens-
ing masses for individual objects will be available for a significant fraction of the
clusters identified from the photometric selection. At the same time, staking analy-
sis will provide an accurate calibration of the relation between weak lensing masses
and richness. For this reason, the Euclid cluster survey will represent a powerful
complement to galaxy clustering and cosmic shear analyses to constrain cosmology
through the growth of perturbations.
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Massive neutrinos and the mass function of
galaxy clusters

Among the different probes of the LSS, galaxy clusters have played a significant
role in the definition of the “concordance” ACDM model (e.g. Allen et al., 2011;
Kravtsov and Borgani, 2012), and many ongoing (Planck, SPT, DES), upcoming
and future (eROSITA, LSST, Euclid) surveys will aim to use their abundance and
spatial distribution to strongly constrain cosmological parameters. In order to fully
exploit for cosmology the ever growing number of clusters detected, it is manda-
tory to have a reliable theoretical prediction for the cluster abundance (the halo
mass function, HMF), together with an accurate calibration of the observable-mass
relation. As for the former, since the pioneering work of Press and Schechter (1974)
many forms for the HMF have been proposed in literature (e.g. Sheth and Tor-
men, 1999; Jenkins et al., 2001; Reed et al., 2007; Warren et al., 2006; Tinker et al.,
2008; Crocce et al., 2010; Watson et al., 2013), often calibrated against large suites of
cosmological simulations (§1.3.2). Despite the great improvement of the numerical
results over the past decade many sources of systematic errors still affect the HMF,
including finite simulation volume, mass and force resolution, baryonic physics
and massive neutrino effects. In this Chapter we focus on the consequences of
non-vanishing neutrino masses.

The effects of neutrino mass on the HMF has already been studied in sev-
eral works (Brandbyge et al., 2010b; Marulli et al., 2011; Ichiki and Takada, 2012;
Villaescusa-Navarro et al., 2013). Brandbyge et al. (2010b) measured the HMF from
N-body simulations incorporating massive neutrinos using a hybrid scheme to sim-
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ulate neutrino particles. They showed that the HMF in models with massive neu-
trinos can be well reproduced by the Sheth and Tormen (1999) mass function by
using Pedm = Pm — Pv, instead of pm, when establishing the relation between the
halo mass and the top-hat window function radius (M = 47rpR3 /3, see Section 4.2
for details). Those results were later independently verified by Marulli et al. (2011)
and Villaescusa-Navarro et al. (2013) using a different set of N-body simulations.
More recently, Ichiki and Takada (2012) investigated the gravitational collapse of a
spherical region in a massive neutrino cosmology, showing that neutrinos play a
negligible role in the process. This led to the conclusion that the cold dark matter
power spectrum should be used to compute the r.m.s. of the matter perturbations,
(M), required to predict the HMF. In Castorina et al. (2014) this was tested against
N-body simulations, resulting in an excellent agreement.

In this Chapter we explore how the improved calibration of the HMF in cosmol-
ogy with massive neutrinos affect the determination of cosmological parameters
from galaxy clusters data. Firstly, using a suite of N-body simulations incorporat-
ing massive neutrinos as particles, we show that the abundance of halos, identified
using the Spherical Overdensity (SO) algorithm (see §1.3.2), is well reproduced by
the Tinker et al. (2008) fitting formula once the cold dark matter mean density
and linear power spectrum are used, in agreement with Castorina et al. (2014) and
the work of Ichiki and Takada (2012). The reason to use SO halos, rather than
Friends-of-Friend (FoF) halos as in Castorina et al. (2014), is that the mass proxy
in X-ray and SZ measurements is calibrated with spherically defined objects. Sec-
ondly, we use our findings to investigate the implications for cosmological param-
eter inference using cluster number counts. As a case study, we choose the Planck
SZ-selected sample of clusters Planck Collaboration (2013b), for which we perform
a Monte Carlo Markov Chain analysis in order to compare constraints obtained
using different prescriptions for the HMFE.

The results presented in this Chapter have been published in Costanzi et al.
(2013). This is the last of a series of three papers. The first paper (Villaescusa-
Navarro et al., 2014) introduces a large set of numerical simulations incorporating
massive neutrinos as particles. It then studies the effect of neutrino masses on the
spatial distribution of dark matter halos, finding that halo bias, as typically defined
w.r.t. the underlying total matter distribution, exhibits a scale-dependence on large
scales for models with massive neutrinos. In addition, Villaescusa-Navarro et al.
(2014) investigates as well massive neutrinos effects on the spatial distribution of
galaxies by constructing mock galaxy catalogues using a simple halo occupation
distribution (HOD) model. In the second paper of the series Castorina et al. (2014)
the universality of the HMF and of linear bias in massive neutrino cosmologies
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Name | }_m, Box Om (@S (OIN O, h | ng NéD3M Nl} 3 0g
[eV] | [h~'Mpc] (z=0)
Ho6 0.60 1000 0.2708 | 0.050 | 0.7292 | 0.0131 | 0.7 | 1.0 | 512 512 0.675
H3 0.30 1000 0.2708 | 0.050 | 0.7292 | 0.0066 | 0.7 | 1.0 | 512 512 0.752
HO 0.00 1000 0.2708 | 0.050 | 0.7292 0 0.7]1.0| 512 0 0.832
Hé6s8 | 0.06 1000 0.2708 | 0.050 | 0.7292 | 0.0131 | 0.7 | 1.0 | 512 512 0.832

Table 4.1: Summary of the simulations used in the present work.

is discussed in terms of halo catalogues determined with the Friends-of-Friends
algorithm on the simulations introduced in Villaescusa-Navarro et al. (2014). It is
shown that the proper variable to describe the HMF of a massive neutrino model
is the variance of cold dark matter perturbations, rather than the total ones (i.e. in-
cluding neutrinos) typically assumed in previous analyses Brandbyge et al. (2010b);
Marulli et al. (2011); Villaescusa-Navarro et al. (2013). If the correct prescription is
used then the HMF becomes nearly universal with respect to the neutrino mass.
The paper discusses also similar results for the bias of halos at large scales, which
is found to be almost scale independent and universal when expressed in terms of
CDM quantities alone.

The Chapter is organized as follows. In Section 4.1 we describe the numerical
simulations we have used to calibrate the HMF of dark matter halos identified
using the SO criterion. The halo mass functions for the different cosmological
models and the procedure used to compute them are shown in Section 4.2. The
implications of our results, in terms of cluster number counts, are presented in
Section 4.3, while the likelihood analysis is shown in Section 4.4. Finally, we draw
the main conclusions of this Chapter in Section 4.5.

4.1 N-body simulations

The analysis presented in this Chapter has been obtained using a subset of a large
suite of N-body simulations presented in Villaescusa-Navarro et al. (2014), whose
main features are summarized below.

The N-body simulations, containing CDM and neutrino particles, have been

run using the TreePM code GADGET-3, which is an improved version of the code
GADGET-2 Springel (2005). The TreePM algorithm (e.g. Xu, 1995) is an hybrid tech-
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nique, where short-range forces are computed with the so called “tree” method!
(e.g. Appel, 1985; Barnes and Hut, 1986; Dehnen, 2000), while long-range forces are
determined with Fourier techniques (Particle-Mesh (PM) methods, e.g. Hockney
and Eastwood, 1981; Klypin and Shandarin, 1983; White et al., 1983). The neutri-
nos have been simulated using the so-called particle-based implementation. In this
implementation, neutrinos are treated as an extra set of particles, in the same way
as the CDM, with the difference that, at the starting redshift of the simulation, the
neutrinos receive an extra thermal velocity component obtained by random sam-
pling the neutrino Fermi-Dirac linear momentum distribution. On small scales,
the force affecting the neutrinos is computed using the short-range Tree force; this
feature is required to correctly account for the clustering of neutrinos within dark
matter halos and to reproduce the neutrino halos down to small scales (Villaescusa-
Navarro et al., 2013). This particle-based approach is better suited to study the effects
of massive neutrinos on the spatial distribution of dark matter halos since it allows
to capture the fully non-linear regime, as opposed to the so-called grid method used
in earlier studies (Brandbyge and Hannestad, 2009; Viel et al., 2010; Marulli et al.,
2011), in which neutrinos only contribute to the long distance force through the
PM method.

The starting redshift of the simulations was set to z = 99. The initial conditions
were generated at that redshift by displacing the particles positions from a regular
cubic grid, using the Zel’dovich approximation (Zel’dovich, 1970). We incorporate
the effects of baryons into the CDM particles by using a transfer function that is a
weighted average of the transfer functions of the CDM and the baryons, obtained
directly from the Boltzmann solver code CAMB (Lewis et al., 2000). The gravitational
softening of each particle type is set to 1/30 of their mean inter-particle linear
spacing. For each simulation we saved snapshots at redshifts 0, 0.5, 1 and 2.

The different cosmological models used for this paper are shown in Table 4.1,
together with the values of their cosmological parameters. Each simulation con-
sists of eight independent realizations obtained by generating the initial conditions
using different random seeds. The size of the cosmological boxes are 1 h~'Gpc for
all the simulations. The cosmological models span from a massless neutrino model
(HO) to cosmologies with )} m, = 0.3 eV (H3) and )} m, = 0.6 eV (H6 and H6s8).
Although observational constraints prefer a value of ) m, smaller than 0.30eV, a
value of 0.60 eV is not completely unreasonable, as the latest results of Planck Col-

!In tree codes particles are hierarchically grouped following a tree-like-scheme (root, branch, leaf)
according to their mutual distances; in this way only the gravitational interaction between nearby
particles needs to be treated individually, while the gravitational force of distant groups of particles
can be accounted for by means of a single multipole force.
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Figure 4.1: Density slices extracted from three simulations shearing the same initial
conditions but with different total neutrino mass: ) ,m, = 0.0eV (top left panel),
Y. my, = 0.3eV (top right panel) and ) m, = 0.6eV (lower panel). The panels show
the project CMD overdensities (0/p = 1+ J; colour coded) at z = 0 obtained from
the three simulations for boxes of 100k~! comoving Mpc aside.
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laboration (2013d) indicate. The simulations H6, H3 and HO share the value of the
large-scale power spectrum normalisation A, whereas the value of this parameter
has been tuned in the simulation H6s8 to obtain the same value of og of the simu-
lation HO. The value of the parameter oz depends on the neutrino masses since the
amplitude of the power spectrum is fixed on large scales, thus, models with higher
neutrino masses will have a lower value of 0g. The values of the other cosmological
parameters are common to all the simulations: Oy = Qcgm + Qp + Oy = 0.2708,
O, =0.05 04 =1—Qpp =0.7292, h = 0.7 and ngs = 1.0. In all the simulations the
value of the parameter () 4y, is given by Oy, — (O, — )y, i.e. is fixed by requiring
that the total matter density of the Universe is the same for all the cosmological
models. The number of CDM particles is 5123, and for the models with massive
neutrinos the number of neutrinos is also 5123. The masses of the CDM particles
are 5.6 x 1011 h=1M,, for the model HO, while for the others model the masses are
slightly different since the value of .4, varies from model to model.

In Figure 4.1 are shown illustrative slices extracted at z = 0 from three sim-
ulations with the same parameters of the simulations HO (}_m, = 0.0eV), H3
(Y my, = 03eV) and H6 (} m, = 0.6eV), shearing the same initial density field
— i.e. generated using the same random seeds. Looking at the densest regions
(yellowest areas), one can see that increasing the neutrino mass (clockwise) the struc-
tures become less evolved, in particular at the knots of the cosmic web, where the
neutrino free-streaming suppresses the growth of structures (see §1.5.3).

4.2 The halo mass function

The dark matter halos used to compute the HMFs have been identified using the
SUBFIND algorithm (Springel et al., 2001). Even though SUBFIND is capable of iden-
tifying all the halos and sub-halos from a given particle distribution, we have used
it to identify spherical overdensity (SO) halos. The virial radius of a given dark
matter halo corresponds to the radius within which the mean density is A, =200
times the mean density of the Universe at that redshift. We restrict our analysis to
SO halos containing at least 32 particles.

SUBFIND has only been run on top of the CDM particle distribution. This is
equivalent to neglect the contribution of neutrinos to the masses of the dark matter
halos. Such assumption is supported by different studies (Ringwald and Wong,
2004; Brandbyge et al., 2010b; Villaescusa-Navarro et al., 2011, 2013) which have
shown that the contribution of massive neutrinos to the total mass of dark matter
halos is below the percent level for the neutrino mass range relevant for this paper.
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We have explicitly checked that the contribution of neutrinos with ) m, = 0.6 eV
to the total masses of dark matter halos ranges from 0.01% for halos with My =~
103 h—1 M), to 0.5% for the most massive halos with Mpyy ~ 10> i~ M. To make
sure that our results are not affected by selecting the halos on top of the CDM
particle distribution we have run SUBFIND on top of the total matter (i.,e. CDM
plus neutrinos) density field. We find that the HMF of SO halos changes by less
than 0.5% on a very wide range of masses. However, the masses of some low
mass halos are slightly changed when including neutrinos. This is because some
of these low mass halos contain many unbound neutrino particles, which bias the
estimate of their masses by an unreasonable amount. This effect is less important
for more massive halos and/or for simulations in which the number of neutrino
particles is much larger than the number of CDM particles. In order to avoid this
spurious contamination in the masses of some dark matter halos we decided to
rely on the halo catalogues obtained by running SUBFIND just on top of the CDM
particle distribution.

Having built the DM halo catalogues we can now compute the HMFs for the
various simulations with massless and massive neutrinos. We recall here that the
comoving number density of dark matter halos per unit mass at redshift, n(M, z),
is commonly parametrized as follows:

n(M,z) = f(a,z)%dlnad;v(IM’Z) , 4.1)

where p is the comoving mean density of the Universe and ¢ (M, z) is defined as:

2 _ L/w 2 2
P(M2) = o [ AP WK R), 42)

with P(k,z) being the linear matter power spectrum at redshift z, and W(k, R) the
Fourier transform of the top-hat window function of radius R. The relationship
between the halo mass, M, and the radius in the top-hat window function is given
by M = 47pR3/3.

Our aim here is to compare the results of the left and right-hand side of eq. (4.1).
The left-hand side is directly measured from the N-body simulations, whereas the
right-hand side can be computed using a fitting formula for the function f(c,z)
together with some prescriptions for cosmological models with massive neutri-
nos. We calculate the left-hand side of eq. (4.1) by approximating the quantity
dn(M,z)/dM by An(M,z)/ A M, where the width of the mass intervals has been
chosen to be Alog(M) = 0.2. The comoving number density of dark matter ha-
los in a given mass interval An(M, z) has been directly obtained from the N-body
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halo catalogue. In order to compute the right-hand side of eq. (4.1) we need the
following three ingredients: i) the function f (o, z); ii) the value of p to establish the
relation between the halo mass and the radius in the top-hat window function and
iif) the linear matter power spectrum P(k, z).

Since we are considering SO halos, we compare our N-body results to the fitting
formula of Tinker et al. (2008) (Eq. (1.36)), also defined in terms of SO halos, with
best-fit parameters for the overdensity Ay, = 200, according to the chosen halo
identification criterion.

In a standard ACDM cosmology the quantities p and P(k) appearing in eqgs. (4.1,
4.2) are evaluated for the total dark matter field. However, it is not obvious which
quantities have to be used for a model with massive neutrinos. The work of Brand-
byge et al. (2010b) demonstrated that the abundance of dark matter halos in mas-
sive neutrino cosmologies cannot be reproduced by the Sheth and Tormen (1999) fit
if the total matter density and linear power spectrum were used when calculating
the rh.s. of eq. (4.1). The authors proposed to use, instead, the mean cold dark
matter density p.4m, computing, however, the variance ¢?(M, z) still in terms of
the total matter power spectrum. Such prescription, that we will refer to as the
matter prescription, was later corroborated by several works Marulli et al. (2011);
Villaescusa-Navarro et al. (2013).

More recently, Ichiki and Takada (2012) studied the gravitational collapse of
a spherical region in a massive neutrino cosmology, showing that neutrinos play
a negligible role in the process and leading to the conclusion that the cold dark
matter power spectrum should be used to predict the HMF. Indeed, Castorina et al.
(2014) shown that, for Friends-of-Friends (FoF) halos, a good agreement between
the Crocce et al. (2010) fitting formula and the same suite of N-body simulations
used in this analysis is obtained if both p and P(k) are computed in terms of CDM
quantities alone. We call this the cold dark matter prescription for massive neutrino
cosmologies, and it has been show in Castorina et al. (2014) that it is the only way
of obtaining a mass function that is nearly universal with respect to changes in the
background cosmology.

We now compare the abundance of dark matter halos from the N-body simu-
lations with the Tinker et al. (2008) prediction evaluated with both the matter and
cold dark matter prescriptions. We emphasize that for cosmologies with massless
neutrinos the above two prescriptions become the same. We show the results of
this comparison in Figure 4.2 where the data points correspond to the mean of
the mass function, n(M), measured from eight realizations while the error bars
represent the error on the mean. Predictions using the Tinker et al. (2008) fitting
formula along with the matter and cold dark matter prescriptions are shown by
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Figure 4.2: Mass function of dark matter halos identified using the SO criterion for
different cosmological models at redshifts z = 0 (upper-left), z = 0.5 (upper-right)
and z = 1 (bottom). The points show the halo mass function obtained from the
N-body simulations with massless neutrinos (red) and with neutrinos with masses
Yy my, = 0.3 eV (green) and ) m, = 0.6 eV (blue). The error bars represent the
dispersion around the mean value obtained from the eight independent realizations
for each cosmological model. The results of using the Tinker et al. (2008) fitting
formula along with the matter and cold dark matter prescriptions (see text for
details) are displayed with dashed and solid lines, respectively.
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Figure 4.3: Ratio between the HMF for cosmologies with massive neutrinos to the
halo mass function for the cosmological model with massless neutrinos (reference
model). The points represent the results from the N-body simulations whereas the
solid and dashed lines correspond to the ratios between the HMFs computed using
the Tinker et al. (2008) fitting formula together with the cold dark matter prescription
and the matter prescription for cosmologies with massive neutrinos, respectively.
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the dashed and solid lines, respectively. We show the results at redshifts 0, 0.5 and
1 for the simulations HO, H3 and H6 (results at z > 1 are noisy). For clarity we do
not display the results of the simulation H6s8 since they are very close to those of
the simulation HO.

We find that the cold dark matter prescription reproduces much better the abun-
dance of dark matter halos extracted from the N-body simulations. The agreement
between the Tinker et al. (2008) fitting formula (plus the cold dark matter prescription
for massive neutrinos) and our results is pretty good at z = 0, while at higher
redshift is a bit poorer. We note that the differences between the results from the
N-body simulations and the Tinker et al. (2008) fitting formula along with the cold
dark matter prescription are almost independent of the cosmological model, likely
arising from the different method used to identify the SO halos with respect to
Tinker et al. (2008). In addition, Castorina et al. (2014) shown that the HMF for
FoF halos (b = 0.2) using the same N-body simulations is very well reproduced
(within a 10%) by the fitting formula of Crocce et al. (2010) at all redshifts. We
emphasize that the use of a different HMF will not change the main conclusions of
this Chapter.

In Figure 4.3 we show the ratio of the HMF for cosmologies with massive neu-
trinos to the HMF for the cosmology with massless neutrinos. We find that the
abundance of SO halos is very well reproduced by the Tinker et al. (2008) fitting
formula once the cold dark matter prescription is used for cosmologies with mas-
sive neutrinos.

4.3 An application to cluster number counts

A different prescription for the HMF can affect the constraints on cosmological
parameters provided by cluster number counts by changing the number of clusters
predicted for a given cosmology and survey.

From Eq. (2.10) it follows that the number of cluster expected to be detected
within a survey with sky coverage AQ) in a redshift bin [z;,z; ;1] can be expressed
as:

Zit1 dV (e
) = QO X (@) 4.
N(z;) /Z dz AQd dde/o dAMX(M,z,Q)n(M,z), 4.3)
where, we recall, dV /dzd() is the comoving volume element per unit redshift and
solid angle, X(M, z, Q) is the survey completeness and n(M, z) is the HME. Again,
we adopt the Tinker et al. (2008) functional form for the mass function defined in
eq. (1.36) with the best-fit parameters for the overdensity A = 200.

i
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Figure 4.4: Upper panel: Ratio of the CDM (Eq. (4.5)) to the matter power spec-
trum as a function of the wavenumber k, for two different redshifts, z = 0, 1, total
neutrino masses, ) m, = 0.6, 0.2eV, and numbers of massive species, N, = 1, 3;
keeping fixed ) m, and varying N,, corresponds to change the individual neutrino
mass, m, = ) my/N, (for degenerate neutrino species). Upper panel: Residual of
the HMF computed using the CDM prescription with respect to the HMF com-
puted using the matter prescription, at redshift z = 0, 1 and 2, and for three total
neutrino mass, ) m, = 0.06, 0.20,0.60 eV, assuming one massive neutrino.
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Figure 4.5: Ratio of the number counts obtained using the CDM over the matter
prescription for different combinations of (}_m, — 0g) values (colour-coded) and dif-
ferent neutrino mass splitting: one massive neutrino (upper panel) and three degen-
erate massive neutrinos (lower panel). For a given cosmology, the cold dark matter
prescription predicts a larger number of clusters, especially for high neutrino mass
and cosmology with three massive neutrinos. Black curves trace constant values of
the ratio; from the left to the right: 1.05,1.10,1.15,1.20 (upper panel); 1.1,1.2,1.3,1.4
(lower panel).
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Since we are interested in the relative change of N(z) due to the different HMF
prescription adopted in its computation, the completeness function can be simply
expressed as:

X(M,z, Q) = / AM® p(MOP(| M) , (4.4)
Miim(2)
where the lower limit in the mass integral, My, (z), represents the minimum value
of the observed mass for a cluster to be included in the survey, and p(M°’||M),
already defined in Eq. (3.2), gives the probability that a cluster of true mass M has
a measured mass given by M, accordingly to the uncertainties introduced by the
scaling relation between observable and mass.

We now turn to the implications of the prescription choice on the HMF predic-
tion. By replacing Pm(k, z) with Py, (k, z) one neglects the suppression of the total
DM density fluctuations on scales smaller than their free-streaming length (see up-
per panel of Figure 4.4), the scale below which neutrinos cannot cluster due to their
high thermal velocity (§1.5.3). The magnitude of the suppression depends on the
sum of the neutrino masses (see blue and red curves), while the scale below which
it takes place depends on the individual neutrino mass (see black and red curves)
and on redshift (see solid and dashed curves), through the free-streaming length
(Eq. (1.46)). This in turn affects the halo mass function by shifting the maximum
cluster mass (i.e. the scale beyond which the halo mass function is exponentially
suppressed) to larger values, thus increasing the predicted number of rare mas-
sive clusters. The effect is larger for larger total neutrino mass, larger number of
massive neutrinos and higher redshift (see lower panel of Figure 4.4).

In Figure 4.5 we show the ratio (colour coded) of the cluster counts predicted us-
ing the P.qm(k, z) (CDM prescription) over the one predicted using P (k, z) (matter
prescription) for different combinations of (}_m, — 03) values and for two neutrino
mass split schemes: a single massive neutrino (upper panel) and three degenerate
massive neutrinos (lower panel). In the former case the total neutrino mass is as-
signed to one neutrino species (m; = ) m, and my = m3 = 0), in the latter one it is
equally split among three massive species (m; = ) m, /3 with i =1,2,3). The plots
have been obtained by varying ) m, and As and keeping fixed Oy, (), T, Hp and
ns to the Planck mean value (see Table 2.1, Planck+WP). In order to mimic a Planck
SZ-cluster survey, we computed the number counts integrating eq. (4.3) between
0.0 < z < 1.0 with a sky coverage AQ = 27.000 deg® and we approximated the
Planck SZ-cluster completeness function using as lower limit in eq. (4.4) the lim-
iting mass M (z)? provided by the Planck Collaboration (2013a) (dashed black

2Following the recipe given in Hu and Kravtsov (2003), the limiting mass has been converted to
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line in their Figure 3). Moreover, since we are simply interested in quantify the
relative effect of using an improved HMF calibration we assumed no uncertainties
in the estimation of the true mass (M = M°P) and we set By; = 0 and ‘len y — 0in
eq. (3.2). Power spectra have been computed using CAMB (Lewis et al., 2000), where
P.4m(k, z) has been obtained exploiting the relation

chmTcdm(k/Z) + QbTb(k/Z) 1 )2 (4 5)
chm + Qb Tm(k/ Z) ’ '

Pcdm(kfz) = Pm(krz) <

with Tegm, Tp and Ty being the CDM, baryon and total matter transfer functions,
respectively.

Assuming one massive neutrino, changing the matter power spectrum to the
cold dark matter one in the HMF prediction increases the expected number of clus-
ters by ~ 5% in the minimal normal hierarchy scenario (}_m, = 0.06 €V), reaching
differences of ~ 20% for masses of } m, ~ 0.4eV. Considering instead three de-
generate massive neutrinos, the CDM prescription gives even a larger correction to
the cluster counts: the splitting of the total neutrino mass between three species
causes the free-streaming length to increase (see Eq. (1.46)), therefore widening the
range in which Py (k, z) is suppressed with respect to P.gm(k,z). As a result, the
difference in cluster counts computed with the two prescriptions reaches ~ 30% for
neutrino mass of the order of ) m, = 0.4eV. For a given cosmology the magnitude
of the ratio slightly depends also on the specifics of the survey: a lower My, (z)
would entail a larger difference between the expected number of clusters computed
with the two different calibrations, due to the larger mass range over which n(M, z)
would be integrated in the computation of N(z).

The difference in the predictions in turn affects the degeneracy between cos-
mological parameters. An example of this effect is shown in Figure 4.6, in the
(_m, — As) plane (upper panel) and the corresponding () m, — 0g) plane (lower
panel). The curves correspond to constant number counts obtained using Pn, (k, z)
(black) or Pgm (k, z) (red) in the HMF definition, following the same procedure of
Figure 4.5 to compute the expected number of clusters and keeping the other cos-
mological parameters ((Om, (), T, Hy, 1n5) fixed to the Planck mean value. Solid
and dashed curves are for models with one massive neutrino and three degener-
ate massive neutrinos, respectively. The different slope of the curves indicates a
different degeneracy direction between parameters. Consistently with the results

Miim 200(2) — the limiting mass within a radius encompassing an overdensity equal to 200 times the
mean density of the Universe — consistently with the chosen HMF.
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shown in Figure 4.5 the change in the slope is more pronounced in the case of three
massive neutrinos.

As illustrated in the next Section both these effects can contribute to modify the
information on cosmological parameters inferred from cluster data in models with
massive neutrinos.

4.4 Implications for cosmological constraints

The ultimate aim of an analytic expression for the HMF is to link the observed
abundance of galaxy clusters to the underlying cosmology. As already stated,
the recently released Planck data indicate some tension between the cosmolog-
ical parameters preferred by the primary CMB temperature measurements and
those obtained from cluster number counts using X-ray (Vikhlinin et al., 2009b),
optical richness (Rozo et al., 2010) and SZ-selected clusters (Benson et al., 2013;
Hasselfield et al., 2013; Planck Collaboration, 2013a). In particular, the values of
og and O inferred from cluster analyses are found to be lower than the values
derived from CMB data. It has been argued that this discrepancy could be due to
a wrong calibration of cluster mass (see e.g. Henry et al., 2009; Rozo et al., 2013)
or alternatively it may indicate the need to extend the minimal ACDM to massive
neutrinos (Planck Collaboration, 2013a; Wyman et al., 2013; Battye and Moss, 2013;
Hamann and Hasenkamp, 2013). In the latter case, the results presented in this
paper could in principle affect derived cosmological constraints which relies on an
incorrect calibration of the HMF in cosmological models with massive neutrinos.
In fact, in all previous cluster studies, the variance of the total dark matter field
has been used to put constraints on neutrino masses. In Section 4.3 we have shown
that, given a background cosmology, using the “wrong”prescription for the HMF
could lead to differences up to 30% in the expected number of cluster. However
that is not the the only reason to use the variance of the CDM field. Indeed, a key
assumption in previous cosmological analyses of clusters counts is that the shape
of the HMF is independent of the underlying cosmology, and the same functional
form can be used through all the parameter space. In Castorina et al. (2014) it
has been shown that universality of the HMF with respect to neutrino masses, and
more in general cosmology, is recovered only if the cold dark matter prescription
is adopted.

In order to assess the effects of the cold dark matter prescription on the param-
eter estimation we choose as a case study the sample of 188 SZ-selected clusters
with measured redshift published in the Planck SZ Catalogue (Planck Collabora-
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Figure 4.6: Curves of constant number counts (N = 600, 200, 100 and 50, top
to bottom) in the plane Y"m, — 10° - A (upper panel) and in the plane Y m, - o3
(lower panel), for the two prescriptions for the HMF, matter (black) and cold dark
matter (red) and for two neutrino mass splitting schemes, single massive neutrino
(solid lines) and three degenerate massive neutrinos (dashed lines). The different
slope of the black and red curves shows the different degeneracy direction between

parameters in the prescriptions.



124

tion, 2013b). The cosmological constraints have been obtained using the likelihood
function for Poisson statistics (Cash, 1979):

Nbin
In L(N°Ps|N™h) = ) [N;)bs In(Nh) — N}h—ln(Nbe!)] , (4.6)
i=1

where N°b, Nt represent respectively the number of clusters observed and the-
oretically predicted in the i-th redshift bin. The redshift range has been divided
in Npj, = 10 bins of width Az = 0.1 between z = 0.0 and z = 1.0, also including
in the analysis redshift bins with no observed clusters. We computed the pre-
dicted number of clusters , N, for a Planck-like SZ-cluster survey following the
procedure described in Section 4.3. The parameter space has been explored by
means of the Monte Carlo Markov Chain technique using the publicly available
code CosmoMC? (Lewis and Bridle, 2002), where we included a module for the com-
putation of the likelihoods function described above. Since we are interested in
the effects that a different prescriptions for the HMF has on parameter constraints
rather than the constraints themselves, we kept fixed Qbhz = 0.022, T = 0.085
and n; = 0.963, allowing only Qgmh?, 6, log(10'° - A;) and Y m, to vary. For
the same reason we neglect errors on nuisance parameters, which have been kept
fixed to By = 0 and o7, ,, = 0.2 in order to roughly reproduce the mean values
of Oy and oy obtained by the Planck Collaboration with Planck-SZ+BAO+BBN
data (Planck Collaboration, 2013a). We also checked that our results in the (), — 03
plane fixing ) m, to 0.06eV were in good agreement with those obtained by the
Planck Collaboration. Finally, due to the weak sensitivity of the cluster sample to
some cosmological parameters, we set a Gaussian prior on the total neutrino mass,
Y. m, = 0.06 £1.0eV, and one on the expansion rate, Hy = 68.9 + 3.0 km/s/Mpc
(from BAO measurements Addison et al., 2013). Note that the actual Planck cluster
likelihood is not publicly available. Therefore, a quantitative comparison with the
SZ Planck cluster results is not possible. However, since we are presenting results
in terms of relative effects between different HMF calibrations, we expect that our
findings will be robust and could be quantitatively similar to those to be derived
with a more accurate likelihood analysis.

The joint constraints on the (),-0g plane resulting from this analysis are shown
in Figure 4.7 with green contours for the CDM prescription and blue contours for
the matter prescription. The left panel is for a model with one massive neutrino
while the right one for a model with three degenerate massive neutrinos. The

3http:/ /cosmologist.info/cosmomc/
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Figure 4.7: Comparison of the 68% and 95% C.L. contours in the (), — 0g plane and
degeneracy curves obtained using the matter (blue) and cold dark matter (green)
prescription. We show the results when the sum of the neutrino masses is split
between one massive neutrino family (left panel) and three degenerate neutrino
tamilies (right panel). Also shown in the right panel in orange the contours from
PlanckCMB+BAO datasets for a ACDM+)_ m, model.
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dashed lines show the 0g(Q0/027)7 = Sg relation with v and Sg parameters ob-
tained by fitting a power-law relation to the likelihood contours. Also shown in
the right panel with orange contours are the constraints from Planck+WP+BAO
datasets for a ACDM cosmology with free Y_m, *. While the constraining power
of clusters is almost unaffected by different HMF prescriptions the degeneracy di-
rection become steeper in the CDM case. For one massive neutrino the shift can be
quantified as Ay = 0.05, or Acg = 0.01. The effect is even larger when considering
three massive neutrino, for which we obtain a shift of Ay = 0.14 and Acg = 0.02.
The different degeneracy of the CDM-case contours can be understood as follows:
for our set of free parameters moving toward large (), values in order to keep con-
stant the number of clusters one has to compensate with lower g and larger ) m,
values. Using the CDM prescription, however, for a given matter density and neu-
trino mass the value of g which reproduces the right number of cluster is smaller
than the one recovered using the matter prescription; moreover, the difference be-
tween oy values inferred from the two HMF prescriptions increases with the total
neutrino mass and is more pronounced when assuming three massive neutrinos
(see Figure 4.6).

Using the orange contours as a reference one can see that the shift of the con-
tours caused by the CDM prescription goes in the direction of increasing the ten-
sion with the Planck+BAO results. This means that when using the CDM pre-
scription in trying to reconcile the Planck CMB measurements with cluster number
counts, when extending the ACDM model to massive neutrinos, a larger ) m,
value will result from the combination of the two datasets.

The effects of the usage of the CDM prescription on parameter estimation are
clearly visible but with low statistical significance for the cluster sample chosen
for this work. However, owing to the much stronger constraining power expected
from upcoming and future cluster surveys, corrections to the o3-()y, degeneracy
direction of the order of Ay ~ 0.1 would offsets the resulting constraints by a
statistically significant amount (Costanzi Alunno Cerbolini et al., 2013; Khedekar
and Majumdar, 2013).

4.5 Conclusions

In this Chapter, by using a set of large box-size N-body simulations containing
CDM and neutrinos particles, we have studied the abundance of dark matter halos,

4Chains publicly available at http:/ /www.sciops.esa.int/.



127

identified using the SO criterion, in cosmological models with massive neutrinos.
The SO halos have been extracted from the N-body simulations by running the
SUBFIND algorithm on top of the CDM particle distribution to avoid spurious mass
contamination in the low mass halos from unbounded neutrino particles. We have
however explicitly checked that our results do not change if SUBFIND is run on
top of the total matter density field. We have compared the abundance of dark
matter halos in cosmologies with massless and massive neutrinos with the Tinker
et al. (2008) fitting formula along with the matter prescription and the cold dark matter
prescription. In both prescriptions we use pcgm = pm — pv instead of py,, when setting
the relation between the halo mass and the radius in the top-hat window function:
M = 47p.4mR3/3. However, in the cold dark matter prescription we use the CDM
linear power spectrum, P.4,,,, when computing the value of ¢(M, z), whereas in the
matter prescription we use the total matter linear power spectrum, Pp,.

We find that the abundance of SO halos is much better reproduced by the Tin-
ker et al. (2008) fitting formula once the cold dark matter prescription is used, in
agreement with the claims of Ichiki and Takada (2012) and the results of Castorina
et al. (2014). The agreement is very good at z = 0 while it worsens a bit at higher
redshift. Once we present the results as ratios of the HMFs for cosmologies with
massive neutrinos to the HMFs for cosmologies with massless neutrinos the agree-
ment with theoretical predictions improves significantly at all redshifts. We stress
that the conclusions of this paper are not affected if a different HMF fitting formula
was used.

We have investigated the effects that the cold dark matter prescription has on the-
oretical predictions of number counts and on the estimation of cosmological pa-
rameter from cluster samples. By using the Tinker et al. (2008) fitting formula
for the HMF we computed the expected number of clusters for a Planck-like SZ-
cluster survey. We found that for a cosmology with massive neutrinos the predicted
number of clusters is higher when using the cold dark matter prescription with re-
spect to the results obtained by using the matter prescription. For a given value
of O, the effect is more pronounced for large neutrino masses and in the case of
a splitting of the total neutrino mass between three degenerate species. Assuming
one massive neutrino family (and two massless neutrino families) the difference
in the predicted number counts between the two prescriptions is nearly 20% for
Y. my, ~ 0.4€eV, while it reaches ~ 30% in models with three degenerate massive
neutrinos.

The different prediction for the HMF in turn affects the degeneracy direction
between cosmological parameters and the mean values inferred from the cluster
sample. To quantify these effects we use as a case study the Planck sample of 188
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SZ-selected clusters with measured redshifts. We performed a Monte Carlo Markov
Chains analysis for the parameters Qgmh?, 6, log(10'° - A) and ¥ m,, both splitting
the sum of the neutrino masses between one and three massive species. Looking
at the combination 0g(Qm/0.27)7, the cold dark matter prescription provides a
steeper degeneracy direction (higher <) which causes the g mean value to lower.
The shift can be quantified as Ay = 0.05 and Ay = 0.14 for one and three massive
neutrino respectively, or in terms of the og mean value as Acg = 0.01 and Acg =
0.02. The offset has a low statistical significance for the cluster sample used in this
work but could entail a significant correction when the sample is combined with
other probes or for large cluster samples that will be provided by future cluster
surveys (see e.g. the results of Chapter 3). Furthermore, taking into account such an
effect has the consequences of exacerbating the tension between the cosmological
parameters derived from CMB data and those of cluster number counts (Planck
Collaboration, 2013a).
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Neutrino constraints: what large-scale struc-
ture and CMB data are telling us?

Results from Planck measurements of the CMB temperature anisotropies by them-
selves appear to be well described by the six standard ACDM parameters, and
show no preference for extended models. However, as mentioned in Chapter 2, in
the framework of the ACDM model, several probes of the low redshift Universe ex-
hibit tension with the Planck results. In particular, Planck finds a larger and more
precise value of the matter density at recombination than previous CMB data; this
results in a lower value for the current expansion rate Hy, and a higher value of
the matter density fluctuations og. These changes lead to a ~ (2 — 3)c tension with
direct measurements of Hp (Riess et al.,, 2011) and 0g measurements from galaxy
shear power spectrum (Heymans et al., 2013), galaxy-galaxy lensing (Mandelbaum
et al., 2013), RSD (Beutler et al.,, 2013) and clusters abundance (Vikhlinin et al.,
2009b; Rozo et al., 2010; Allen et al., 2011; Planck Collaboration, 2013a). Meanwhile,
agreement with distance measurements from BAO suggests that the discrepancy
cannot be resolved involving exotic dark energy models or curvature which modify
the recent expansion history.

Beside unresolved systematic effects neutrinos can offer a possible means to
relieve this tension. Sterile neutrinos change the expansion rate at recombination
and hence the calibration of the standard ruler with which CMB and BAO obser-
vations infer distances, while massive neutrino, either sterile or active, suppress
small scale clustering at late time, relieving the tension with g measurements (see
§1.5). A number of studies have carried out joint analyses of various data combina-
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tions finding that a neutrino mass of 0.3 — 0.4 eV provides a better fit to CMB data
with low redshift Universe measurements than the vanilla ACDM model (Burenin,
2013; Wyman et al., 2013; Battye and Moss, 2013; Hamann and Hasenkamp, 2013;
Archidiacono et al., 2013; Beutler et al., 2014; Giusarma et al., 2014; Archidiacono
et al., 2014), although these conclusions are not universally accepted (Feeney et al.,,
2013; Verde et al., 2013; Leistedt et al., 2014). While, none of these low redshift
datasets combined individually with CMB measurements provide strong evidence
for non-zero neutrino masses, the hint for neutrino mass is driven mainly by low
redshift growth of structure constraints (e.g. from shear and RSD measurements or
cluster number counts).

In particular, galaxy clusters offer a powerful complementary probe to the CMB
and geometric probes as BAO thanks to the tight constraints provided on the pa-
rameters combination, ogQ),. Most of the X-ray, Sunyaev-Zel'Dovich and optical
cluster surveys yield consistent results favouring a value for the cluster normaliza-
tion condition lower than the value derived from Planck data (see Table 2.2). This
tension between Planck and cluster data and the combination with BAO results
could be taken as an evidence for non-vanishing neutrino masses. However, the ro-
bustness of such constraints from cluster number counts depend on our capability
to recover cluster masses from proxies and to have precise theoretical predictions
for the spatial number density of halos. Thus it is worth to investigate possible
sources of systematic errors in cluster data which could lead to misinterpretation
of the results and to assess which combination of low-redshift datasets with CMB
data prefers a non-zero neutrino mass within a given cosmological model.

In this Chapter the reliability of neutrino mass constraints, either active or ster-
ile, from the combination of different low redshift Universe probes with measure-
ments of CMB anisotropies is discussed. In order to avoid misleading results due
to model dependence of the constraints, instead of adding priors obtained from
cosmological data within a ACDM model (e.g. Battye and Moss, 2013; Hamann
and Hasenkamp, 2013; Beutler et al., 2014; Giusarma et al., 2014), we performed a
full likelihood analysis for all the datasets employed in this analysis. In particular
for the clusters data analyses we took into account the effect of possible bias in
the mass estimation and adopted different prescriptions for the HMF. As for the
latter, we considered the correction to the HMF proposed by Ichiki and Takada
(2012) and Castorina et al. (2014) for cosmology with massive neutrinos discussed
in Chapter 4. Moreover, we investigated how the different calibration of the HMF
due to baryonic feedback processes presented in Cui et al. (2014) affects the cosmo-
logical constraints.

The Chapter is organized as follows: Section 5.1 describes the cosmological
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models and datasets used in this work; in Section 5.2 we present and discuss our
results, and finally, in Section 5.3 we draw the main conclusions . The results of
this analysis have been published in Costanzi et al. (2014).

5.1 Cosmological data analysis

5.1.1 Models

The baseline scenario analysed in this work is a ACDM model with three degener-
ate massive neutrinos, defined by the parameters:

{Qc?, 1%, O, T, 115,10g (10" Ag), Y my } . (5.1)

Note that given the current precision of cosmological constraints from available
data, the effect of mass splitting is negligible and the degenerate model can be as-
sumed without loss of generality (see e.g. Jimenez et al., 2010). We then consider
a scenario with a massive sterile neutrino component which has been suggested
as a possible solution for the reactor (Mention et al., 2011), Gallium (Abdurashitov
et al.,, 2006; Giunti et al., 2012) and accelerator (Aguilar-Arevalo and et al., 2001)
anomalies in neutrino oscillation experiments. Reactor and Gallium experiments
prefer a new mass squared difference of Am? > 1 eV?, while various accelerator ex-
periments constrain Am? to be ~ 0.5 eV? (see Abazajian et al., 2012, and reference
therein). For this model we assume one massive active neutrino with }_m, = 0.06
eV (the minimum mass allowed by neutrino oscillation experiments) and we in-
troduce two parameters to describe the extra hot relic component: the effective
number of extra relativistic degree of freedom, ANy = Neg — 3.046, and the ef-
fective sterile neutrino mass, m&. We recall here that the former parametrizes any
contribution to the radiation energy content besides photons and the three standard
neutrinos (N gf‘;ﬁ"e = 3.046) in the radiation dominated era (see Eq. (1.42)); thus, an
extra thermalised light fermion would contribute AN = 1, but more generally
a non-integer AN, value could arise from different physical phenomena. As al-
ready mentioned in §1.5.5, the large values of the mass squared differences and
mixing angles invoked to resolve reactor, Gallium (sin?2@ > 0.1) and accelerator
(sin?2@ ~ 5 x 1073) anomalies suggest a fully thermalisation of the sterile neu-
trino in the early Universe Langacker (1989), and thus a contribution of ANgg = 1
to the dark radiation. Depending on the production mechanism which generate
the sterile neutrino the parameter m¢f is related to the physical mass, ms, through

Eq. (1.48) —in the case of thermally-distributed sterile neutrino — or by the relation
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meH = (ANgg)ms — Dodelson-Widrow scenario (Dodelson and Widrow, 1994). In
both cases for a fully thermalised sterile neutrino, ANg = 1, the effective and the
physical mass are equal. In this analysis we adopted the prior m&f/ (ANgg)3/* < 10
eV in order to avoid a degeneracy between very massive neutrinos and cold dark
matter.

5.1.2 Data and analysis

In order to investigate how different datasets combinations constrain the neutrino
properties we used for this analysis: two different CMB datasets to constrain the
early Universe physics, BAO scale measurements as geometric probe, and cluster
abundance, Ly-a forest and cosmic shear measurements to probe the growth of
structures (see Chapter 2 for a concise review on these probes). Specifically, the
parameters constraints presented here have been obtained by means of the Monte
Carlo Markov Chain technique using the publicly available code CosmoMC (Lewis
and Bridle, 2002) for various combinations of the following datasets:

CMB — We considered CMB temperature and polarization measurements from
9-year WMAP data release (hereafter WMAP9) (Hinshaw et al.,, 2013) or, alter-
natively, temperature power spectrum from the Planck satellite (Planck Collabora-
tion, 2013d) combined with large-scale TE- and EE-polarization power spectra from
WMAP9 (hereafter Planck). These datasets are analysed using the likelihood func-
tions provided by the Planck Collaboration (2013c), and publicly available at Planck
Legacy Archive! and marginalizing over the foreground nuisance parameters. The
helium abundance is computed as a function of (),h? and N.g, following the Big
Bang Nucleosynthesis theoretical predictions. In the Planck analysis we fix the
lensing spectrum normalization parameter to its standard ACDM value Ap = 12,
if not otherwise stated. The WMAP9 dataset is not sensitive to the gravitational
lensing signal since its effects can be detected only at large multipoles.

BAO - We include the most recent and accurate measurements of the BAO
scales from BOSS Data Release 11 (Anderson et al., 2014). Exploiting a sample
of nearly one million galaxies observed over 8500 square degree between redshift
0.2 < z < 0.7, DR11 results provides percent level constraints on the peak position

1h’c’cp: / /pla.esac.esa.int/pla/aio/planckProducts.html
2In the Planck analysis the parameter A; modulates the lensing effect in the temperature power
spectrum (see §2.1.1), and scales the amplitude of the power spectrum of the lensing potential.
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of the spherically averaged galaxy correlation function at redshift z = 0.32 and
z = 0.57. The likelihood function associated to this dataset is estimated using the
likelihood code distributed with the CosmoMC package.

Shear — We use the 6-bin tomography angular galaxy shear power spectra data
from the CFTHLenS survey (Heymans et al.,, 2013)3. The survey spans over 154
square degrees in five optical bands, with shear and photometric redshift measure-
ments for a galaxy sample with a median redshift of z = 0.70. Constraints from
this datasets are derived using a modified version of the CosmoMC module # for the
weak lensing COSMOMS 3D data (Lesgourgues et al., 2007). The code has been
substantially modified in order to reproduce the analysis described in Heymans
et al. (2013) which makes use of 21 sets of cosmic shear correlation functions as-
sociated to 6 redshift bins, each spanning the angular range of 1.5 — 35 arcmin,
to extract cosmological information. Specifically, the likelihood function has been
computed as:

—2InL = (&1(8) - L) Cc V&L 9) - &L()), (5.2)

where &1(0) and &7 (8) are the observed and theoretical auto/cross-correlation
functions for the redshift bins i, j and angular separation 0, respectively. The co-
variance matrix, C, provided by the authors (Heymans et al., 2013), have been es-
timated using the 3-D N-body lensing simulations of Harnois-Déraps et al. (2012).
As in Heymans et al. (2013), when computing the theoretical correlation functions

1 (8) we accounted for the contribution from both intrinsic alignment of phys-
ically nearby galaxies and the shear-shape correlation for galaxies separated by
large physical distances along the line of sight, following the model proposed by
Bridle and King (2007). This model, which is based on a fitting approach, has the
advantage of needing only one additional nuisance parameter, marginalized over
in the analysis, to predict both the intrinsic alignment contributions to the shear
correlation functions. We verified that our module reproduces well the results pre-
sented in Heymans et al. (2013) for a ACDM model.

3http: / /cthtlens.org/astronomers/cosmological-data-products

4http:/ /www.astro.caltech.edu/ rjm/cosmos/cosmomc/

>The two point statistics used here are defined as &1 (8) = (eer)(9) & (exex ) (9) where € and
€y are the tangential and cross ellipticity of each pair of correlated objects, respectively; these two

point statistics are related to the shear power spectrum of Eq. (2.18) by the relation: 61(19) =
f ds 5/271'](&9)0/4(:1‘]‘(6).
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Ly-a — We rely on the SDSS Ly-a forest data from (McDonald et al., 2005) to
constrain the amplitude, slope and curvature of the linear matter power spectrum
at scale k = 0.009s km~! and redshift z = 3. We combine this dataset by im-
plementing the Ly-a likelihood code distributed with the CosmoMC package. The
module has been updated to work with the new version of CosmoMC and it has been
implemented with the patch written by A. Slosar © in order to support extended
model analysis. Note that this data set does not include the most recent BOSS data
of Palanque-Delabrouille et al. (2013) that will soon provide an updated value of
the upper limits obtained in Seljak et al. (2006), by using a new technique to sample
the parameter space (Borde et al., 2014b) and hydro simulations that incorporate
massive neutrinos (Rossi et al., 2014).

Clusters — Constraints from galaxy clusters are obtained exploiting the CCCP
catalogue presented in (Vikhlinin et al., 2009a). The catalogue consists of X-ray
Chandra observations of 37 clusters with (z) = 0.55 derived from the 400 deg?
ROSAT survey and 49 brightest z ~ 0.05 clusters detected in the ROSAT All-
Sky Survey, which provide a robust determination of the cluster mass function
at low and high redshifts. To derive cosmological constraints we developed our
own module for CosmoMC following the fitting procedure outlined in Vikhlinin et al.
(2009a). For the cluster masses we use Y, proxy mass estimations (Kravtsov et al.,
2006, see §2.2.2), which allows us to implement the X-ray luminosity-mass rela-
tion calibrated by Vikhlinin et al. (2009a) needed to compute the survey volume
as a function of the mass. The theoretical abundance of massive halo is computed
using the Tinker et al. (2008) HMF (Eq. (1.36)), where the coefficient of the fit-
ting formula were obtained interpolating Table 2 of Tinker et al. (2008) for halos
with Amean = Acdritical/ Qm = 500/, according to the cluster mass definition of
Vikhlinin et al. (2009a). For the parameter inference we used the likelihood function
of Eq. (4.6) for purely Poissonian statistics (Cash, 1979). We verified that our analy-
sis reproduces accurately the results of Burenin and Vikhlinin (2012) for the combi-
nation of WMAP 7-year and CCCP cluster data. To properly take into account the
effects of massive neutrinos on the HMF calibration, we neglect the weakly clus-
tering neutrino component when calculating the halo mass, as suggested by many
authors (e.g. Brandbyge et al., 2010b; Marulli et al., 2011; Villaescusa-Navarro et al.,
2013). Moreover, following Ichiki and Takada (2012) and Castorina et al. (2014),
and according to the results of Chapter 4, the variance of the matter perturbations,

®http:/ /www.slosar.com/aslosar/lya.html
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required to predict the HME, is computed using only the cold dark matter and
baryon linear power spectrum, in order to neglect the suppression of the matter
density fluctuations on scales smaller than the neutrino free-streaming length. As
shown in Chapter 4 these corrections entail an increase of the HMF with respect
to the previous calibration. This effect is larger for larger neutrino masses and
higher number of massive neutrino species. In turn, the increase in the HMF af-
fects the resulting constraints on cosmological parameters, e.g. by steepening the
08 — O degeneracy direction, thereby reducing the g mean value. Besides these
modifications to the original analysis of Vikhlinin et al. (2009a) we test the effect
of other sources of systematics. To address the impact on clusters constraints due
to baryonic feedback processes we implement the correction to the HMF proposed
by Cui et al. (2014); the net effect of baryonic processes is to generate shallower
density profiles and a corresponding decrease of halo masses with respect to the
dark matter only case used to fit the HMF (e.g. Jenkins et al., 2001; Reed et al.,,
2007; Warren et al., 2006; Tinker et al., 2008; Crocce et al., 2010). This effect is taken
into account correcting the halo masses through a mass dependent fit to the halo
mass variation induced by baryonic processes. Similar studies have been carried
out by different groups (Cusworth et al., 2014; Velliscig et al., 2014; Vogelsberger
et al., 2014; Martizzi et al., 2014) that found consistent results (cf. also Martizzi
et al., 2014).

The main source of systematic errors is related to the uncertainty in cluster
mass measurements. For the catalogue used in this work cluster masses have been
inferred by using a scaling relation between total mass and the product of hot intra-
cluster gas mass and temperature, as inferred from X-ray observations. This scaling
relation has been calibrated by resorting to X-ray hydrostatic mass measurements
for nearby galaxy clusters (see Vikhlinin et al., 2009a, for details). However, mass
measurements from X-ray measurements suffer for different sources of possible
systematic biases, e.g. associated to departures from spherical symmetry, to biases
in X-ray measurement of gas temperature (e.g. Mahdavi et al., 2008; Rasia et al,,
2012), or to violation of hydrostatic equilibrium due to the presence non-thermal
pressure support (e.g. Lagana et al., 2010; Shi and Komatsu, 2014).

To consider this uncertainty we introduce a nuisance bias parameter defined
as M®t/ M = By, which is varied in the range [0.8 : 1.0] when included in
the fit. This prior accounts for the constraints on the mass bias from Israel et al.
(2014) and Donahue et al. (2014) obtained comparing Chandra X-ray masses with
MMT/Megacam weak lensing masses of 8 clusters between redshift 0.39 — 0.80
and CLASH weak lensing masses of 20 clusters between redshift 0.2 — 0.5, respec-
tively. A different range for the mass bias, Byy ~ 0.7 £ 0.1, is suggested by the
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Figure 5.1: Summary of the 1o and 20 errors on ) m, obtained from the dataset
combinations discussed in Section 5.2.1 within a ACDM+}_m, model.

analysis by von der Linden et al. (2014) which however uses X-ray masses derived
from XMM-Newton temperature measurements. Temperature measurements from
XMM-Newton could be systematically lower with respect to those obtained from
Chandra observations, as discussed by Nevalainen et al. (2010), Schellenberger et al.
(2014) and Donahue et al. (2014), thus providing a larger mass bias.

5.2 Results

For each of the cases that we describe here below, we run four independent chains,
requiring the fulfilment of the Gelman and Rubin (1992) criteria with R —1 < 0.03
as convergence test. The best fit values were obtained with the BOBYQA maximisa-
tion routine provided in CosmoMC. If not otherwise stated, errors and upper limits
reported in the following text have to be intended at 95% confidence level.



137

Table 5.1: Constraints on Qm,, 03 and ) m, for a ACDM+)_ m, model combining
different datasets. Errors are reported at 68% confidence level for cg and (), and
both 68% and 95% confidence level for ) m,. Notations included in parenthesis
denote modifications to the standard setting: (BC) stands for the baryon correction
to the HMF, while (Bj;) and (Ap) indicate analyses with the bias or lensing signal
parameter marginalized out.

Dataset Om 0y Y my[eV]
68%CL  95%CL
WMAP9 03477007% 071470004 <068 <122
WMAP9+Cluster 026470019 07807007 <017 <034
WMAP9+Cluster(By,) 0275700 07937003 <016 <033
WMAP9+Cluster(BC) 02717001, 0789700 <016 <033
0.009 0.062 0.11
WMAP9+BAO 0.304%00); 0.759T00s 028705, <059
WMAP9+Shear 030510922 0.726%00% <050 < 0.85
WMAP9+Ly-a 032010035 0.8301005 <013  <0.29
0.009 0.015 0.09 0.17
WMAP9+BAO+Cluster 029810000 07357005 0357009 0.357017
WMAP9+BAO+Cluster(By) 02981000 07651005 0267071 026703
0.010 0.028 0.12 0.23
WMAP9+BAO+Shear 0.303" 0010 0.724% 5058 0.387015  0.38%)3;
WMAP9+BAO+Ly-a 03051000 0.833%00%  <0.09  <0.19
WMAP9+BAO+Cluster(By)+Shear 029710010 075210037 0297031 0.29107%
WMAP9+BAO+Ly-a+Shear+Cluster(By)  0.289700%  0.7877001%  0.167055 < 0.30
Planck 0.355700e, 07757007 <040 <093
Planck+Cluster 027210008 07827007 <015 <034
Planck+Cluster(B)) 02871001 0.802700% <012 <027
Planck+Cluster(BC) 02787009 0790700 <014 <032
Planck+BAO 03097000 08197007 <012 <024
Planck+Shear 03587008 0708700 <078 <112
Planck+Ly-a 032910058 08317001 <012 <027
Planck+BAO+Cluster 030070010 0.74170012 032709  0.321777
Planck+BAO+Cluster(B ) o.3ooi§;§§§ 0.791f§;§§§ 0.15j§j§§ < 0%20
Planck+BAO+Shear 03061007 076370051 0267070 02675
Planck+BAO+Ly-a 031070008 0.8367001% <007  <0.14
Planck+BAO+Cluster(By)+Shear 0.300190%  0.770%905 022199 0227047
Planck+BAO+Ly-a+Shear+Cluster(By) ~ 0.293700% 079870018 <015 < 0.24
Planck(Ar) 03581006 07167008 <070 <117
Planck(Ar)+Cluster 0276100, 0.769700% <022 <041
Planck(Ar)+BAO 030710010 0.7787003% 0227095 < 0.46
Planck(Ar)+BAO+Cluster 03017000 0.7347001¢ 0357508  0.35700

Planck(AL)+BAO+Shear+Cluster 0.300100%  0.7331001¢ 0351008 0.351012
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Figure 5.2: Left -Joint 68% and 95% CL contours in the 03 — (Qm, Ho, }_m,) planes
for a ACDM+) m, model from the combination of WMAP9 (upper panels) or
Planck (lower panels) data with different low redshift Universe probes. Right -
Posterior probability distribution for ) m, from the same data combination.

5.2.1 Massive neutrinos

We first turn our attention to the degenerate active neutrino case, whose results are
summarized in Table 5.1 and Figure 5.1. To illustrate how different probes of the
low redshift Universe combined with CMB measurements constrain cosmological
parameters we use them one by one, before combining them together (see Fig-
ure 5.2 and Figure 5.3, respectively).

Combing with WMAP9

The upper panels of Figure 5.2 show constraints on the og — (}_m,, Qm, Hy) planes
and the 1D likelihood distribution of Y m, for several datasets combined with
WMAP9 as CMB data. None of them exhibit tension with WMAP9 results nor ev-
idence for non-zero neutrino mass. The stronger constraint on the neutrino mass,
Y. my, < 0.29 eV, comes from the inclusion of Ly-« data, due to the high og value pre-
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ferred by this dataset. Similar results (on ) m,) involve the inclusion of cluster data
which shrinks and shifts the og — (), contours toward lower values requiring small
values for the total neutrino mass, } m, < 0.34 eV. Repeating the analysis with a
free mass bias parameter (Cluster(B)) hereafter) or taking into account the baryon
correction to the HMF (Cluster(BC) hereafter) slightly increases the g and (), val-
ues (see left panel of Fig 5.4) without significantly affecting the bound on ) m,
nor its best fit values. In the latter case the errors on g and (), remain unchanged
while the suppression of the HMF with respect to the standard case causes the shift
of the two parameters. Conversely, the inclusion of By in the fit relaxes the bounds
on og and Oy and shifts their contours owing to the low value assumed by the
bias, By ~ 0.9. On the other hand, BAO data shows a mild preference for larger
neutrino mass (see right panel of Fig 5.2) which displaces the neutrino bounds to
higher values, )} m, < 0.59 eV, reason for that being the tight constraints on
and the low o3 value allowed by this datasets combination. Shear measurement, as
cluster number counts, provides constraints on og(),;, but with a poorer constrain-
ing power than clusters data and with a degeneracy direction more similar to the
one given by WMAP9 data; therefore the inclusion of this dataset entails only a
small improvement on neutrino mass constraints.

We discuss now the constraints obtained from the joint analyses of different
probes of the low redshift Universe. The results are presented in the upper panels
of Fig 5.3. Both the additions of cluster and shear datasets to the WMAP9+BAO
joint analysis result in a larger than 20 preference for massive neutrino yielding
Y m, = 035+0.17 ¢V and }_m, = 0.381’8:%2 eV, respectively. Also when the bias
parameter is marginalized out the combination WMAP9+BAO+Cluster(Bj) shows
a 20 evidence for non-zero neutrino masses, although with larger error bars and a
lower mean value: }_m, = 0.26 £ 0.20 eV. The result can be understood as follows:
the BAO scale measurements basically fix the matter density parameter thus break-
ing the g — (), degeneracy typical of cluster and shear constraints. The tight con-
straints obtained for these two parameters along with the large value of O, (driven
by the BAO data) and small value of o3 (driven by cluster abundance or shear mea-
surements) are compensated with a large value of ) m,. At variance, Ly-x data
prefers large value of the power spectrum normalization, and when joined with
WMAP9+BAO data the large (), and oy values inferred require small neutrino
masses yielding the upper limit ) m, < 0.19 eV. The further inclusion of shear data
in the WMAP9+BAO+Cluster(B)ys) analysis does not improve substantially the er-
ror on the neutrino mass, but decreases g by ~ 0.01 thus favouring slightly larger
neutrino masses and increasing to 3¢ the significance of the mass detection.

Finally we jointly analyse the WMAP9, BAO, Ly-a, shear and cluster data in-
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Figure 5.3: Left -Confidence contours at 68% and 95% CL in the g — (Qm, Ho, }_my)
planes when combining WMAP9 (upper panels) or Planck (lower panels) with many
different probes of the low redshift Universe within a ACDM+}_m, model. Right -
Posterior probability distribution for ) m, from the same datasets.

cluding By into the fit obtaining ) m, < 0.30 eV. The addition of Ly-a forest
measurements raises the power spectrum normalization by ~ 0.04 which causes

a shift of the neutrino mass toward lower values and reduces to 1o the significance

of the mass detection. We decided not to combine Ly-a and cluster data without
marginalizing over the bias since the WMAP9+BAO+Ly-« and WMAP9+BAO+Cluster
data are already in tension by more than 20 (see upper panels of Figure 5.3).

Combining with Planck

Now we repeat the same analysis but replacing the WMAP9 dataset with Planck.
The results are summarized in Table 5.1 and shown in the lower panels of Fig 5.2
and Fig 5.3. Planck provides not only tighter cosmological constraints than WMAP9
data but it also prefers a larger matter density parameters, which in turn low-
ers the derived Hj value and increases the power spectrum normalization. For
datasets which are consistent with Planck measurements, i.e. BAO and Ly-a, the
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combination with this CMB data yields lower upper limits on the neutrino mass:
Yy m, < 0.27 eV and )} m, < 0.24 eV for Planck+Ly-a and Planck+BAO, respec-
tively. In this case the CMB+BAO combination does not show preference for large
neutrino mass thanks to the larger value and tighter constraints on g provided by
Planck. Conversely, the addition of shear or cluster data, which prefer lower o3,
shifts the contours outside the region allowed by Planck by 1¢ and 20, respectively.
This indicates that the extension to massive neutrino is not sufficient to bring the
two datasets in agreement with Planck measurements. The shear measurements
does not improve the constrains on ) m,, while clusters number counts yields an
upper limit of 0.34 eV . Including in the cluster analysis the baryon correction to
the HMF increases by few percents the og and (), values improving the fit by
Ax? ~ 2, but it is not sufficient to relieve the tension between the two datasets. Al-
lowing the bias to vary causes the contours to move towards the region allowed by
Planck bringing the datasets in better agreement at the expense of a large mass bias,
By ~ 0.8. In this case the best fit x? is reduced by ~ 9 with respect to the standard
Planck+Cluster analysis and, as expected for consistent datasets, the errors shrink
giving an upper limit of ) m, < 0.27 eV.

As above we start now to combine different probes of the low redshift Uni-
verse at the same time. The main results are shown in the lower panels of Fig-
ure 5.3. Similar to the previous results the inclusion of cluster or shear datasets
in the Planck+BAO joint analysis results in a preference for massive neutrinos at
more than 2c. We obtain ) m, = 0.32+ 0.17 eV combining Planck, BAO and
cluster data and ) m, = O.26J_r8§? eV replacing the latter with shear data. How-
ever, looking at the lower panels of Figure 5.2 it is clear that the large mean
value of } ;m, = 0.32 eV obtained from Planck+BAO+Cluster is driven by the ten-
sion between Planck+BAO and cluster constraints. In other words, the resulting
constraints cannot be used to claim a significant detection of the neutrino mass,
but rather they represent a compromise solution between discrepant datasets. In-
deed, if we repeat the analysis marginalizing over the bias the best fit improves by
Ax? ~ 11 — in this case the Planck+BAO and Planck+Cluster(By;) contours over-
lap; see middle panel of Figure 5.4 — and we obtain only a mild preference for
massive neutrino at 1o and an upper limit of ) m, < 0.28 €V at 20. A very tight
upper limit of ) m, = 0.14 eV results instead from the combination of Planck with
BAO and Ly-a data in agreement with the previous results obtained from WMAP9
data. Then we add progressively the shear and Ly-a constraints to the joint anal-
ysis Planck+BAO+Cluster(By). Again the inclusion of shear measurements after
cluster data does not alter significantly the error on ) m,, but lowers by ~ 0.02 the
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Figure 5.4: Left-Middle panel - Comparison of the confidence contours at 68%
and 95% CL in the g — O plane within a ACDM+)_m, model when combin-
ing WMAP9 (left panel) or Planck (middle panel) with cluster data using different
prescriptions: the standard one (Cluster), the baryon correction (Cluster(BC)) or
marginalizing over the bias (Cluster(By)). In the middle panel are also shown the
confidence contours for the joint analysis Planck+BAO: only when By, is allowed
to vary the Planck+BAO and Planck+Cluster(Bys) regions overlap. Right panel -
Joint 68% and 95% CL constraints on g — (), for different dataset combined with
Planck with the Aj-lensing signal marginalized out.

power spectrum normalization boosting the total neutrino mass to ) m, = 0.224_’8:%57;
eV, thus providing a 20 evidence for massive neutrinos. Instead, the shift to higher
og value induced by the Ly-a dataset pushes again the mean neutrino mass toward
lower value and wipes out the neutrino mass detection yielding ) m, < 0.24 eV.

Another possible way to relieve the tension between Planck and clusters data
is to marginalize over the lensing contribution to the temperature power spec-
trum, parametrized by the parameter Ar. The Planck Collaboration reported some
anomalies when Ay is included in the fit: for a ACDM+A1 model they found Ap =
1.22J_r8:§g (Planck Collaboration, 2013d), which is at 2¢ from the expected value of
one and 1¢ away from the lensing signal extrapolated from the 4-point function

quj = 0.99f8:}é. Since Planck constraints on neutrino mass mainly relay on lensing
information (massive neutrinos increase the expansion rate at z 2 1 suppressing
clustering on sub-horizon scales at non-relativistic transition; see e.g. Planck Col-
laboration, 2013d) marginalizing over Ay, significantly degrades the error on ) m,,.
Moreover, the preferred value of Ay > 1 shifts by ~ 1c the O, — 0 contours
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bringing Planck in much better agreement with cluster and shear data (see right
panel of Figure 5.4). The joint analysis Planck(Ap)+Cluster gives )} m, < 0.41 eV
with an improved best fit with respect to the Planck+Cluster analysis of sz ~ 16,
while Planck(Ay )+BAO yields ) m, < 0.46 eV with a mild preference for massive
neutrinos similar to the results obtained in combination with WMAP9. Combining
Planck(Ar) with cluster and BAO yields ) m, = 0. 35+0 15 eV: the tight constraints
on g and )y, provided by the combination of cluster and BAO data along with
the low value of power spectrum normalization preferred by the former and large
value of the matter density parameter preferred by the latter require large neutrino
masses to bring the two datasets into agreement. The further inclusion of shear
data, whose degeneracy direction between ¢z and (), overlaps the one inferred
from Planck(A;) data, does not change the parameter constraints nor shift their
preferred values. For this analysis we did not consider the Ly-a dataset which
exhibits a larger than 2¢ tension with Planck(Ap)+Cluster and Planck(A; )+shear
results in the 0g — (), plane due to the large value of the power spectrum normal-
ization favoured by Ly-a forest data.

5.2.2 Extra sterile massive neutrinos

We now explore the scenario with an extra sterile neutrino component. Table 5.2
and Figure 5.5 summarize the results obtained for the various data combinations.
For this cosmological model we employed only Planck as CMB dataset since the
constraints obtained from WMAP9 are much weaker than Planck ones. With the
same logic adopted in the previous Section we start combining single dataset with
the CMB data and then we add them progressively. The inclusion of N in the fit
opens new parameter degeneracies which relax the Planck contours and bring the
cluster and shear constraints in better agreement with the CMB data. In particular,
Neg > 3.046 increases the radiation energy content (see Eq. 1.42) and affects the
expansion rate of the Universe thus relaxing the bounds on Hp and the scalar spec-
tral index, with which N is positively correlated. When cluster constraints are
included we find a mild preference for massive sterile neutrino m¢ff = 0.54 4-0.26
eV (68%), and a 2¢ hint for extra dark radiation ANyg = 0.84J_r8:g(3). At variance with
the Planck+Cluster joint analysis performed in the previous Section — i.e. within a
ACDM+)_m, model — this time the Planck+Cluster combination does not exhibit
strong tension with the Planck results, which improves the x? best fit by ~ 11 (e.g.
compare the 0g — (), panels of Figure 5.2 and Figure 5.6). This fact, along with
the lower og and larger Hy — ns values preferred by cluster data and the positive
correlation between mgff and AN.g, accounts for the shift of the two parameters
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Table 5.2: Constraints on (), 03, mgff and ANgg for a ACDM model with massive
sterile neutrino using different datasets. Errors are reported at 68% confidence level
for oy and O, and both 68% and 95% confidence level for mS and AN,. Notations
included in parenthesis denote modifications to the standard setting: (BC) stands
for the baryon correction to the HMEF, while (Bj;) corresponds to analyses with the
mass bias parameter marginalized out.

Dataset

Om

08

ANegt

68%CL

95%CL

Planck
Planck+Cluster
Planck+Cluster(By)
Planck+Cluster(BC)
Planck+BAO
Planck+Shear
Planck+Ly-«
Planck+BAO+Cluster
Planck+BAO+Cluster(B )
Planck+BAO+Shear
Planck+BAO+Ly-«
Planck+BAO+
Shear+Cluster(By)
Planck+BAO+Ly-«
Shear+Cluster(B,)

0.32210:0%
0.30470:926
0.29570:0%%
0.296 19053
0.306"0:0%
0.3090:928
0.309100%
0.30370:0%
0.30370:957
0.305100%,
0.305190%
0.303100%0

+0.009
0.293% 5008

0.800"0- 02
074570923
0.794 093
0.770 9551
0.81870:933
075240035
0.843 10021
0.744 10013
078249020
0.753 70923

+0.020
0.844 7519

+0.017
0.75919017

+0.016
0.7947 016

mef[eV]
68%CL  95%CL
<034 <086
0.26
0547930 <098
<038  <0.69
0.31
04077, <081
<019 <043
0.22
048703 <099
<011 <027

+0.12
05378'%
+0.
0'35_8'%2
+0.
0447510
< 0.10

0.14
0.44J_r01 4

+0.11
0.2675713

0.26
0.53j8_%§
0.35t8;gi
0447532

<022
+0.28
0.44702%

+0.22
0.267 551

0.49'438
084'4.3
08502
08840
050'43%
055103
065 i3]
o814}
os143]
045141
LEE
0.78193%

+0.27
0.82757

< 1.07
084708
0851038
085708
< 1.04
< 1.30
< 1.49
08108
081708
< 0.99
<1.11

0.60
0.787 59

+0.55
0.827555
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with respect to the Planck-only analysis (see Figure 5.6). Analogous constraints
on mS are provided by the inclusion of shear measurements which lowers the g
mean value, while leaving the bounds on 15 and Hy, and thus on AN,g, unaffected
with respect to the Planck-only results. If we consider the Planck+Cluster analy-
sis, the BC to the HMF results in a 1¢ shift of the power spectrum normalization
toward higher values which reduces the m¢ mean value, while keeping the con-
straints on N¢ and the best fit value almost unchanged (see Figure 5.7). Similarly,
but with an increased magnitude, if we repeat the analysis marginalizing over the
bias the preferred oy value shifts by 2 at the expense of a large value for the bias,
By ~ 0.8, wiping out the former 1o preference for m&f larger than zero. For this
analysis we find a mild improvement of the best fit value of Ax? ~ 5 with respect
to the standard one. At odds the inclusion of BAO data reduces the error on (),
and slightly increases the g mean value with respect to the Planck-only analysis.
This results in tighter constraints for the sterile neutrino mass, mgff < 0.43 eV, and
leaves almost unchanged the bounds on AN,¢. When joined to the Planck analysis
the Ly-a data constrains oy in the high values region allowed by Planck data and
slightly increases the ns and Hy mean values. This entails an upper limit of 0.27
eV for the effective sterile neutrino mass and a ~ 20% increase of the AN.¢ mean

values.

We start now to combine Planck CMB measurements with different low redshift
probes. The main results of these analyses are shown in Figure 5.8. Also shown in
the Neg — mH plane are the mS values motivated by reactor and Gallium anoma-
lies (mf ~ 1 eV) and accelerator anomaly (mS ~ 0.70 V), for a fully-thermalised
sterile neutrino component (ANg¢ = 1). As for the ACDM+)_ m, model, including
BAO data in the Planck+Cluster or Planck+Shear analyses provides a 2¢ evidence
for massive sterile neutrino — mgff = 0.531“8:%2 eV and mgff = 0.441“8:%‘51 eV, respec-
tively — reason for that being the tight constraints on (), from BAO measurements,
which allow to break the cg — (), degeneracy, and the low 0g mean value preferred
by cluster and shear data. As for AN the Planck+BAO+Shear combination shows
only a mild preference for ANgg > 0, while the Planck+BAO+Cluster joint analysis,
driven by the large ns value required by cluster data, favours at 2¢ an extra dark ra-
diation component. However, even if not as strong as for the ACDM+)_m, model,
the Planck+BAO and Planck+Cluster results still exhibits a ~ 1o tension (see right
panel of Figure 5.7), which could drive the large m&ff value obtained from the com-
bination of the three datasets. Interestingly, at variance with the ACDM+) m,
analysis, the 20 detection of massive sterile neutrino remains also if we repeat the

Planck+BAO+Cluster analysis including the uncertainty in the mass bias. In this
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Figure 5.8: Upper panels - Confidence contours at 68% and 95% CL in the og —
(Om, mE®) and Neg — me planes from Planck combined with various probes of
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datasets combinations.
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case Planck, BAO and cluster(B)) results are in good agreement and the inclusion
of cluster data in the Planck+BAO joint analysis does not shift the contours out-
side the region allowed by the latter but only shrinks the errors, as expected for
consistent datasets. Compared to the previous analysis without mass bias the fit
improves by Ax? ~ 5. The inclusion of By in the fit increases the 0y mean value by
~ 0.04 which involves a decrease of ~ 35% of the mean effective sterile neutrino
mass, mS¥ = 0.35 4 0.27 eV, while leaving unaffected the bounds on ANg. This
datasets combination rejects at more than 3¢ the vanilla ACDM model, which is
located at the origin of Ngg — m& plane in Figure 5.8, but it also disfavours a ster-
ile neutrino mass of m&f ~ 0.70 eV as suggested by accelerator experiments, and
even more strongly rejects the value of m¢ ~ 1 eV motivated by reactor and Gal-
lium experiments. The further inclusion of shear measurements has the effect of
favour a slightly lower value of og, which increases the mean sterile neutrino mass
by 30% with respect to the Planck+BAO+Cluster(Bys) analysis, thus strengthening
the evidence for a light sterile neutrino species. Moreover, this shift is sufficient
to bring the Neg — mgff confidence contours in agreement with the sterile neutrino
mass motivated by accelerator experiments within 2c. As in the massive active
neutrino scenario, the inclusion of Ly-a data on the Planck+BAO analysis leads
to opposite results. The large value of og preferred by Ly-a data requires small
value for the sterile neutrino mass to be consistent with the Planck+BAO con-
straints. This provides a thigh upper limit of 0.22 eV on m&! in agreement with the
standard ACDM predictions. Finally, we add the Ly-a datasets to the combination
Planck+BAO+Shear+Cluster(By,) finding meff = 0.261’8:%421 eV. The Ly-a contours are
in tension with the Planck+BAO+Shear+Cluster(B);) results at more than 1¢, and
these constraints on m&f reflect the compromise between the low oz mean value
preferred by shear and cluster data and the large one inferred from Ly-a data. As
for AN, the inclusion of the Ly-a data does not shift its mean value but helps to
reduce the errors giving ANy = 0.82 £ 0.55, that is a larger than 20 preference for

extra dark radiation.

5.3 Conclusions

In this Chapter we presented neutrino mass constraints, either for an active and
sterile neutrino scenario, from the combination of CMB measurements with low
redshift Universe probes. We employed for this analysis CMB measurements from
WMAP9 or Planck in combination with BAO scale measurements from BOSS DR11,
galaxy shear power spectrum from CFTHLenS, SDSS Ly-a forest power spectrum



150

constraints and cluster mass functions from Chandra observations. At variance
with previous similar studies, which included in their analysis constraints derived
within a vanilla ACDM model, we performed a full likelihood analysis for all
the datasets employed in this work in order to avoid model dependence of the
constraints. Moreover, in the cluster data analysis we properly took into account the
impact of massive neutrino in the HMF calibration and we investigated the effects
on cosmological constraints of the uncertainty in the mass bias and re-calibration
of the HMF due to baryonic feedback processes as suggested in Cui et al. (2014).
For both neutrino scenarios assumed and CMB datasets employed, we found
that none of the constraints from the LSS data, combined on a one-by-one basis,
with CMB measurements provide strong — i.e. larger than 20 — evidence for mas-
sive neutrino. From the joint analysis Planck+Cluster we obtained ) m, < 0.34 eV
but we emphasize that the extensions to three massive active neutrinos is not suf-
ficient to bring the dataset in agreement with Planck results. Indeed the extension
to massive neutrinos does not improve the fit of the combination of Planck and
galaxy cluster data, with respect to the vanilla ACDM model. Taking into account
the effect of baryons on the HMF calibration or the uncertainty in the mass bias
increases the og mean value improving the fit with respect to the standard anal-
ysis of Ax? ~ 2 and Ax? ~ 9, respectively. In the latter case constraints from
Planck CMB and galaxy clusters agree within 1¢, with their combination prefer-
ring a vanishing neutrino mass. Alternatively, the Planck and cluster datasets can
be brought in agreement marginalizing over the lensing contribution to the temper-
ature power spectrum. In this case the Planck’s 0y — Oy, contours relax and shift by
~ 1o, improving the x? best fit value by ~ 16 with respect to the Planck+Cluster
analysis. Similarly, assuming an extra sterile neutrino species, which introduces
in the fit the additional parameter AN, relaxes the Planck’s bounds reducing the
discrepancy with cluster results by Ax? ~ 11 with respect to the same data com-
bination in a ACDM+})_ m, model. From this analysis we obtained a 1¢ preference
for non vanishing neutrino mass and ANgg = 0. 8410 68. Including also the mass
bias in the fit further improves the agreement between Planck and cluster datasets
by Ax? =~ 5 at the expense of an higher o3 mean value which cancels the former
1o detection of massive neutrinos. Preference for non-vanishing neutrino mass at
more than 20 were found instead combining CMB and BAO measurements with
shear or cluster data. The BAO constraints break the oz — (), degeneracy typi-
cal of cluster and shear data while the low g mean value preferred by the latter
is compensated by large neutrino mass. However, for the ACDM+}_m, model,
the large neutrino mass obtained from the joint analysis Planck+BAO+Cluster is
driven by the tension between Planck+BAO and cluster constraints. Indeed, in-
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cluding the mass bias parameter in the fit reduces the ) m, mean value by 50%
wiping out the 20 preference for massive neutrino, but increasing the x? best fit
value by ~ 11. For the sterile neutrino case, when considering the uncertainty
in the mass bias, the fit is improved by Ax? ~ 5 at the expenses of a lower
mean neutrino mass but still with a preference for an extra massive neutrino,
me = 0354+ 0.27eV — ANy = 0.81f0:g’g. The significance of the detection in-
creases further including simultaneously shear and cluster data. For a ACDM
model with three degenerate massive neutrinos we obtained ) m, = O.29J_r8éif eV
from the combination WMAP9+BAO+Shear+Cluster(Bys), while replacing WMAP9
with Planck measurements we got ) m, = O.22f8:%g eV, or ) m, = 0.35J_r8:%2 eV
marginalizing over the lensing signal. For the sterile neutrino case, from the

combination Planck+BAO+Shear+Cluster(Bjy;), we found mgff = 0.44J_r8:§2eV and

ANggs = O.78f8:gg, that is a larger than 3¢ rejection of the vanilla ACDM model. As-
suming a fully thermalised sterile neutrino these constraints reject at even higher
significance a 1.0 eV sterile neutrino as motived by reactor and Gallium anomalies,
while a neutrino mass of 0.7 €V as suggested by accelerator anomaly is within the
20 errors. Conversely, the Ly-« measurements tend to increase the g mean value
with respect to the CMB data analyses, which in turn entails a preference for van-
ishing neutrino masses to be consistent with the other parameters constraints. For
the active neutrino scenario we got ) m, < 0.19 eV and ) m, < 0.14 eV combining
BAO, Ly-a and WMAP9 or Planck dataset, respectively. Similarly, for the sterile
neutrino model we obtained m&ff < 0.22eV and ANy < 1.11. The full data combi-
nation provides neutrino mass constraints which reflects the compromise between
the og values preferred by shear and cluster data and those inferred from Ly-« mea-
surements. For the ACDM+)_m, model we obtained only an upper limit on the
total neutrino mass independently from the CMB dataset employed, while in the
sterile neutrino scenario we still found a 20 preference for an extra massive species,
mef = 0.267073eV — ANggr = 0.82 £ 0.55.

In summary, these results highlight that current CMB and LSS probes point to-
wards a significant detection of the sterile neutrino mass and dark radiation unless
the constraints on og provided by clusters and shear data turn out to be biased
toward lower values. As for clusters, this could be due to a possible underestimate
of the cluster mass bias. As for cosmic shear, an underestimate of og could be in-
duced by a misinterpretation of the intrinsic alignment signal. On the other hand
new BOSS results from the 1D Ly-a flux power spectrum or Planck CMB data —
e.g. due to a different foreground removal technique (Spergel et al., 2013) — could
strengthen or weaken the evidence for non-vanishing neutrino masses.
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More in general, this analysis highlights the potential that current cosmologi-
cal data already have to set rather stringent constraints on neutrino masses, which
could even challenge the results from laboratory experiments, but these are ham-
pered by systematics which need to be better controlled and understood. This
becomes even more important in view of future surveys (eROSITA, SPT3G, DES,
DESI, Euclid), that thanks to the large amount of data to be provided will bring
down the statistical errors by large factors. As for cluster cosmology, the ever
increasing number of high quality weak lensing data is expected to provide in
the near term well characterized and unbiased constraints on the absolute clus-
ter mass calibration. From the theoretical side, refined cosmological simulations
which properly accounts for neutrino and baryonic physics will be crucial to im-
prove the calibration of the HMF and modelling of the shear and Ly-« forest flux
power spectrum.
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Conclusions

In the last decade the wealth and accuracy of cosmological data from measure-
ments of the CMB, LSS and related probes allowed to determine with high preci-
sion the six parameters of the concordance ACDM model. Yet, more than 90% of
the content of the Universe is in the form of unknown dark matter and dark energy
components, while tensions between constraints inferred from high and low red-
shift Universe probes require either a reassessment of their systematics, extensions
of the standard ACDM paradigm, or a combination thereof. The joint analysis
of different cosmological probes provides a means to address these issues, thanks
to different scales and redshifts probed, and the different sources of systematics
affecting them.

In this Thesis we derived cosmological constraints for the combination of CMB
data with different probes of the LSS, focusing on massive neutrino constraints
from galaxy cluster surveys.

This analysis has been motivated by the following considerations: neutrino os-
cillation experiments provided clear evidence for neutrino masses, but terrestrial
experiments can only set loose constraints on their absolute mass scale. On the
other hand, cosmology provides several tools to test the neutrino properties; among
these, galaxy clusters, probing the growth of structures at low redshift, are partic-
ularly well suited to constrain their total mass, thanks to the effects that neutrinos
induce on the structure formation.

Indeed, current neutrino constraints from cluster data are already competitive
with those inferred from other low redshift probes, while next future cluster sur-
veys, increasing by more than one order of magnitude the number of cluster de-
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tected, are expected the improve considerably their constraining power. Moreover,
the discrepancy between the growth of structures inferred from cluster number
counts — as well as from cosmic shear and RSDs measurements — and that extrap-
olated from Planck CMB data within the ACDM model, can be accounted for by
massive neutrinos, though, possible systematics in the cluster mass estimates or in
the theoretical predictions of the cluster abundance, hamper the interpretation of
these results.

As stated in the Introduction, we dealt with three issues throughout this Thesis:
i) the capability of the forthcoming ESA’s Euclid cluster surveys in constraining
the neutrino properties; ii) the calibration of the HMF in cosmology with massive
neutrinos and its effects on cosmological constraints from cluster data, and iii) the
reliability of neutrino mass constraints from the combination of CMB data with
low-redshift Universe probes and their role in the tension between CMB and LSS
results.

The first point has been discussed in Chapter 3. We first created cluster number
counts and power spectrum mock data for the Euclid photometric cluster survey;
then, by means of the MCMC technique we derived cosmological constraints for a
ACDM +)_m, model from the combination of these two observables, along with
Planck-like CMB data. It turns out that, thanks to the large number of clusters that
Euclid is expected to detect, it will be possible to constrain the total neutrino mass
to }_m, < 0.35€eV (95%CL) using Euclid cluster data alone, and to ) m, < 0.031eV
(95%CL) including also Planck CMB measurements. The factor 10 improvement
yielded by the data combination, resulting from the nearly orthogonal degeneracy
directions between cluster and CMB constraints, highlights the complementarity of
these two probes. Remarkably, this level of accuracy would allow a 2¢ detection of
the neutrino mass even in the minimal normal hierarchy scenario (}_m, ~ 0.06 V).
We thus considered several extensions to the ACDM +) m, model to assess pos-
sible degeneracies with the neutrino mass parameter, including: a non-standard
effective number of neutrinos (Neg 7# 3.046), dark energy models (w # —1), and
curved geometries ((); # 0). Thanks to the constraining power given by the combi-
nation of Euclid and Planck datasets none of these model extensions affect consid-
erably the error on )  m,, which remains smaller than the minimal normal hierarchy
mass. Finally, to explore the effects of an uncertain knowledge of the relation be-
tween cluster mass and optical richness, we also treated the ACDM-+m,+N,¢s case
with free nuisance parameters, which parametrize the uncertainties on the clus-
ter mass determination. Adopting the over-conservative assumption of no prior
knowledge on the nuisance parameters the loss of information from cluster number
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counts leads to a large degradation of neutrino constraints. In particular, the upper
bounds for ) m, are relaxed by a factor larger than two, } m, < 0.083eV (95%CL),
hence compromising the possibility of detecting the total neutrino mass with good
significance. These results confirm the potential that a large optical /near-IR cluster
survey, like that to be carried out by Euclid, could have in constraining neutrino
properties, and stress the importance of a robust measurement of masses, e.g. from
weak lensing within the Euclid survey, in order to fully exploit the cosmological
information carried by such survey.

This analysis represent a first step toward the development of an effective
pipeline for the analysis of the real Euclid cluster data. Further refinements are
required, including a more accurate selection function which accounts for the ge-
ometry of the survey and the detection algorithm employed for the cluster detec-
tion, or a proper treatment of the photometric redshift errors and uncertainties in
the completeness and purity levels of the cluster sample. Moreover, in our analysis
we did not include RSDs, which have been proven to increase the cosmological
information which can be extrapolated from the cluster power spectrum analy-
sis (Sartoris et al., 2012). Finally, a better modelling of the structure formation in
non-linear regime would allow to extend the range probed in the cluster power
spectrum analysis to small-scale modes, the latter being particularly relevant to
constrain the neutrino properties.

In Chapter 4 we considered the second issue. Exploiting a set of N-body simu-
lations including CDM and neutrino particles, we showed that the standard form
of the HMF matches the halo abundance recovered from simulations with mas-
sive neutrinos once the variance of the smoothed density field, which enters in
the HMF definition, is computed neglecting the weakly clustering neutrino com-
ponent, as proposed by Ichiki and Takada (2012). In particular, we showed that the
HMF computed with this improved prescription becomes nearly universal — i.e.
model independent — with respect to the total neutrino mass. We thus applied our
findings to a Planck-like SZ survey to asses the impact of the improved HMF cali-
bration on the theoretical prediction of cluster number counts. We found that the
number of clusters predicted to be detected within the survey is lower when using
the standard HMF prescription. The difference between the two HMF calibrations
increases with the total neutrino mass and number of massive species, and reaches
~ 30% for three degenerate massive neutrinos with total mass ) m, ~ 0.4eV. We
then moved to the implication for cluster constraints, considering as a case study
the sample of 188 SZ-Planck clusters used in Planck Collaboration (2013a) for cos-
mological parameter inference. Once we had checked that our approximated like-
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lihood reproduces well the Planck results, we compared the constraints on the
parameter combination 0g(Qmy/0.27)7 — the relation constrained by cluster number
counts data — obtained with the two HMF prescriptions. We found that, in cos-
mology with massive neutrinos, the improved HMF calibration provides a steeper
degeneracy directions between g and (), which results in a lower mean value
for the matter power spectrum normalization. The offset has low statistical signif-
icance for the dataset employed for this analysis but could become significant for
future large cluster samples or when deriving constraints from the joint analysis of
cluster data with other probes. The results of this analysis therefore stress the rel-
evance of having a well-calibrated HMF in order to recover unbiased cosmological
parameters from cluster datasets in massive neutrino cosmologies.

As a further refinement, the calibration of the HMF should be tested against
N-body simulations including multiple extensions of the ACDM paradigm - e.g.
massive neutrino and dark energy or modified gravity models — to assess the uni-
versality of the HMF and the reliability of constraints from cluster data within these
models.

Chapter 5 concerns the third point mentioned. To assess to what extent mas-
sive neutrinos, either active or sterile, provide a means to relieve the tension be-
tween CMB data and low redshift growth of structure measurements, we com-
bined Planck or WMAP 9-year CMB data with several low redshift probes, in-
cluding: BAO measurements from BOSS DR11, galaxy shear measurements from
CFHTLenS, SDSS Ly-a forest constraints and galaxy cluster mass function from
Chandra observations. At odds with recent similar studies, to avoid model depen-
dence of the constraints, we perform a full likelihood analysis for all the datasets
employed. In particular, for the cluster data analysis we employed the HMF cal-
ibration presented in Chapter 4 for cosmologies with massive neutrinos and we
considered the effects on cosmological constraints induced by the uncertainty in
the mass bias and re-calibration of the HMF due to baryonic feedback processes.
We found that none of the low redshift probes alone provide evidence for massive
neutrino in combination with CMB measurements, while a larger than 20 detection
of non zero neutrino mass, either active or sterile, is achieved combining cluster or
shear data with CMB and BAO measurements. Yet, the significance of the detec-
tion exceeds 3¢ if we combine all four datasets. However, even including massive
neutrinos in the model the shear and cluster data exhibit a ~ 1 and ~ 20 ten-
sion with Planck measurements, respectively. The discrepancy with cluster data is
alleviated, but not resolved, taking in to account the correction to the HMF due
to baryonic feedback processes; whereas, considering the uncertainty in the mass
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bias reduces the significance of the tension below 1¢, wiping out the preference for
non-vanishing neutrino masses. The significance of the neutrino mass detection is
larger in the sterile neutrino scenario, for which the inclusion of N, in the fit opens
new parameter degeneracies which relax the Planck contours and bring the cluster
and shear constraints in better agreement with the CMB data. For the combination
of Planck, BAO, shear and cluster datasets the vanilla ACDM model is rejected at
more than 3¢ and a sterile neutrino mass as motivated by accelerator anomaly is
within the 20 errors. Conversely, the Ly-a data favour vanishing neutrino masses
and from the data combination Planck+BAO+Ly-a we got the tight upper limits
Yy m, <0.14eV and mseff < 0.22€eV = ANgg < 1.11 (95%CL) for the active and sterile
neutrino model, respectively. Finally, results from the full data combination re-
flect the tension between the oy constraints obtained from cluster and shear data
and that inferred from Ly-a forest measurements. In the active neutrino scenario
for both CMB datasets employed, the full data combination yields only an upper
limits on ) m,, while assuming an extra sterile neutrino we still got preference
for non-vanishing mass, m¢ = 0. 26JrO 22 eV, and dark contribution to the radiation
content, AN = 0.82 + 0.55. The results of this analysis thus endorse massive
sterile neutrinos as a means to relax the tension between CMB and LSS datasets
and emphasize once again the relevance of having a reliable theoretical prediction
for the halo abundance and a well-calibrated mass-proxy relation to infer unbiased
constraints from cluster data.

However, many aspects need to be further investigated. For instance, the ten-
sion between the growth of structures inferred at z ~ 2 from Ly-« forest data and
that inferred from shear and cluster data at z < 1 suggests the presence of sys-
tematics in one or more of these probes. Furthermore, the ~ 1o offset between
the Oy, Hp and 03 mean values obtained from WMAP 9-year and Planck data still
needs to be understood, as well as the large amplitude of lensing signal inferred
from the Planck temperature spectrum. Hopefully, the next Planck data release,
which includes also polarization data, will shed light on these issues. Finally, other
model extensions — e.g. wCDM+})_m, — which could provide better fits to the data
combination than those examined in Chapter 5, should be investigated.

Possible immediate developments of this Thesis work comprise: the extension
of the analysis to modified gravity models to asses if clusters can help in break-
ing the degeneracy between the total neutrino mass and the f(R) parameter; the
preparation of a pipeline for the Euclid data where the cluster dataset can be com-
bined with cosmic shear and galaxy clustering measurements, the latter being the
primary probes of the mission.
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Summarizing, the results presented in this Thesis highlight the decisive con-
tribution that galaxy clusters in combination with other probes gives, and are ex-
pected to give in the next future, to the definition of the underlying cosmological
model, as well as the criticality which hamper their cosmological usage. In par-
ticular, the accuracy of the mass estimation is one of the main limitation for the
exploitation of galaxy clusters as cosmological tools. In this respect, panchromatic
observations of clusters will provide a way to test the accuracy of the various mass
inference techniques and reduce the systematic errors. At the same time larger
cluster samples covering wider redshift ranges, as the ones expected from ongoing
and next future cluster surveys, will allow to improve considerably the calibra-
tion of the mass-proxy relations. Also for the theoretical side there is ample room
for improvement: the development of ever more accurate numerical methods and
semi-analytical models is expected to improve the predictive power of cosmologi-
cal simulations including baryonic physics effects and physics beyond the standard
ACDM model. In turns this will provide more accurate calibrations for the theoret-
ical functions used for parameter inference — e.g. the HMF and non-linear matter
power spectrum — extending their effectiveness to a broader range of scales and
class of cosmological models. Moreover, improvements in numerical simulation
results will allow a better understanding of some systematics affecting the cluster
mass measurements, such as projection effects and non-thermal pressure support,
as well as the computation of accurate selection functions for specific surveys, as
will be the case of the Euclid mission.

At the same time, similar progresses are expected for several other cosmolog-
ical probes, thanks to both larger sets of data and improvements in theoretical
modelling, while innovative instruments, such as the Square Kilometre Array — the
radio interferometer for the 21cm line detection currently in progress — will open
new observational windows on the Universe. All this bodes for a less “dark” future
for precision cosmology.
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