
MNRAS 433, 2389–2402 (2013) doi:10.1093/mnras/stt907
Advance Access publication 2013 June 19

An accurate tool for the fast generation of dark matter halo catalogues

P. Monaco,1,2‹ E. Sefusatti,3,4 S. Borgani,1,2,5 M. Crocce,6 P. Fosalba,6 R. K. Sheth4,7

and T. Theuns8,9

1Dipartimento di Fisica - Sezione di Astronomia, Università di Trieste, via Tiepolo 11, I-34131 Trieste, Italy
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ABSTRACT
We present a new parallel implementation of the PINpointing Orbit Crossing-Collapsed
HIerarchical Objects (PINOCCHIO) algorithm, a quick tool, based on Lagrangian Perturbation
Theory, for the hierarchical build-up of dark matter (DM) haloes in cosmological volumes.
To assess its ability to predict halo correlations on large scales, we compare its results with
those of an N-body simulation of a 3 h−1 Gpc box sampled with 20483 particles taken from
the MICE suite, matching the same seeds for the initial conditions. Thanks to the Fastest Fourier
Transforms in the West (FFTW) libraries and to the relatively simple design, the code shows
very good scaling properties. The CPU time required by PINOCCHIO is a tiny fraction (∼1/2000)
of that required by the MICE simulation. Varying some of PINOCCHIO numerical parameters al-
lows one to produce a universal mass function that lies in the range allowed by published fits,
although it underestimates the MICE mass function of Friends-of-Friends (FoF) haloes in the
high-mass tail. We compare the matter–halo and the halo–halo power spectra with those of
the MICE simulation and find that these two-point statistics are well recovered on large scales.
In particular, when catalogues are matched in number density, agreement within 10 per cent
is achieved for the halo power spectrum. At scales k > 0.1 h Mpc−1, the inaccuracy of the
Zel’dovich approximation in locating halo positions causes an underestimate of the power
spectrum that can be modelled as a Gaussian factor with a damping scale of d = 3 h−1 Mpc at
z = 0, decreasing at higher redshift. Finally, a remarkable match is obtained for the reduced
halo bispectrum, showing a good description of non-linear halo bias. Our results demonstrate
the potential of PINOCCHIO as an accurate and flexible tool for generating large ensembles of
mock galaxy surveys, with interesting applications for the analysis of large galaxy redshift
surveys.
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1 IN T RO D U C T I O N

Recent measurements of the cosmic microwave background radia-
tion (e.g. Bennett et al. 2012; Story et al. 2012; Ade et al. 2013a; Das
et al. 2013) have yielded accurate measurements of the geometry
of the Universe and the statistics of the linear, large-scale perturba-
tions visible at redshift ∼1100, the epoch of recombination. Thanks
to these experiments, uncertainties on the main cosmological

�
E-mail: monaco@oats.inaf.it

parameters have been beaten down to the per cent level (Hinshaw
et al. 2012; Sievers et al. 2013; Ade et al. 2013b). The advantage
of studying the Universe before perturbations started to evolve be-
yond their linear regime is, however, counterbalanced by the limit
of observing it at a single cosmic time. Performing measurements
at lower redshifts is then desirable because the late-time growth of
perturbations in a flat Universe is slowed down by the dominance of
the elusive dark energy, so measurements of the growth of perturba-
tions in the redshift range from z = 0 to z ∼1–2 would lead to tight
constraints on the equation of state of dark energy and possibly pro-
vide evidence of physics beyond a simple cosmological constant.

C© 2013 The Authors
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At the same time, accurate measurements of density (through the
galaxy power spectrum and higher moments), potential (through
galaxy weak lensing) and high-density peaks (through the mass
function of galaxy clusters) can characterize the growth of pertur-
bations to a level of detail sufficient to distinguish the predictions of
General Relativity from those of some non-standard gravity mod-
els (e.g. Amendola et al. 2012, and references therein), constrain
other quantities like neutrino masses (Lahav et al. 2010; Carbone
et al. 2012; Costanzi Alunno Cerbolini et al. 2013) and the degree
of non-Gaussianity in the primordial perturbations (Desjacques &
Seljak 2010; Liguori et al. 2010).

For this reason many ongoing and future observational cam-
paigns, such as DES,1 Euclid,2 PanSTARRS,3 LSST4 or SKA,5 are
surveying or will survey large parts of the sky to a depth that will
reach z ∼ 1 or beyond. Taking the future Euclid mission (Laureijs
et al. 2011) as an example, with ∼15 000 deg2 of the sky surveyed
in the 0.5 < z < 2 redshift range, uncertainties in the estimates of
physical parameters from observable quantities will be significantly
affected by systematics connected to sample variance and to the bias
with which galaxies trace mass. This bias is ultimately determined
by the complex physics of baryons and will generally depend on
redshift and on the specific sample selection. An accurate assess-
ment of these theoretical systematics requires the use of numerical
simulations to generate the non-linear distribution of dark matter
(hereafter DM) and models to populate the resulting DM haloes
with mock galaxies. Even assuming that large-scale structures can
be accurately described by the gravitational evolution of pure col-
lisionless DM and that the generation of galaxies in DM haloes is
under control, the requirements for mock catalogues (typically of
Gpc3 volumes and mass resolution below 1010 h−1 M� for on-going
and future experiments) are quite demanding. Such large simula-
tions need more than 1010 particles, on-the-fly group finders and
nearly 100 outputs to generate merger trees and past-light-cones.
In this case the hardware requirements in terms of memory and
disc storage raise more problems than the computing time needed
to carry out a single simulation. The problem becomes untreatable
when a very large number of realizations (of the order of 1000 or
more) are needed to estimate the covariance matrix of the galaxy
power spectrum (e.g. Manera et al. 2013). This is even more so for
higher-order statistics (Sefusatti et al. 2006).

This has prompted a number of recent works which use ap-
proximations to the mildly non-linear evolution of perturbations
(e.g. Kitaura & Heß 2012; Manera et al. 2013; Tassev, Zaldar-
riaga & Eisenstein 2013). Several of these are based on Lagrangian
Perturbation Theory (hereafter LPT; Moutarde et al. 1991; Buchert
& Ehlers 1993; Catelan 1995), a perturbative solution of a set of
equations for the displacements of mass elements from their initial
position. With LPT it is possible to accurately recover the large-
scale density field of matter, but a fair reconstruction of DM haloes
requires a different approach.

A decade ago, Monaco, Theuns & Taffoni (2002, hereafter
Paper I) presented a code, called PINpointing Orbit Crossing-
Collapsed HIerarchical Objects (PINOCCHIO), which was able to gen-
erate, with very limited computing resources, a catalogue of DM
haloes with known mass, position and velocity from a realization of

1 http://www.darkenergysurvey.org/
2 http://www.euclid-ec.org/
3 http://pan-starrs.ifa.hawaii.edu/public/science-goals/galaxies-cosmology.
html
4 http://www.lsst.org/lsst/science
5 http://www.skatelescope.org/

a Gaussian density contrast field on a cubic grid, i.e. the same initial
conditions that are used by most simulations. In that paper and in
Taffoni, Monaco & Theuns (2002) the code was thoroughly tested
against two simulations that were state-of-the-art at that time. It was
shown not only to reproduce (to within ∼5–20 per cent) statistics
such as the mass function and two-point correlation function of
DM haloes, but also to generate DM haloes that agreed with the
simulated ones at the object-by-object level. The code was tested
by other groups, who confirmed its accuracy in reproducing merger
histories (Li et al. 2007; Zhao et al. 2009) and velocities of DM
haloes (Heisenberg, Schäfer & Bartelmann 2011). It was also used
by several groups to study, e.g., DM halo density profiles (Lu et al.
2006) and concentrations (Zhao et al. 2003), the Sunyaev–Zeldovich
effect in clusters (Peel, Battye & Kay 2009), the properties of
X-ray-selected clusters (Pierre et al. 2011), galaxy clustering
(Zheng, Coil & Zehavi 2007), the formation of the first stars (Schnei-
der et al. 2006) and of supermassive black holes (Jahnke & Macciò
2011).

In this paper we present a new version of the PINOCCHIO code,
designed to perform large runs (in our tests we use up to 21603

particles) on hundreds of computing cores of a parallel computer.
With respect to Paper I, this version implements the same algorithm
but is fully parallel. We test the accuracy of PINOCCHIO on a much
larger range of masses and scales by comparing its results with a
large simulation kindly made available by the MICE collaboration
(Fosalba et al. 2008; Crocce et al. 2010). We address clustering
in Fourier space, and demonstrate that the accuracy with which
power spectrum and bispectrum of DM haloes is reconstructed can
be easily pushed below the ∼10 per cent level. We also show CPU
time requirements and scaling properties to demonstrate that this
code can easily scale up to hundreds of cores, and identify the
improvements that are needed to run it on thousands of cores. As
an example, a 21603 realization requires 38 min of wall-clock time
on 324 2.4 GHz cores of a linux machine, for a cost of 206 CPU
hours, so that running 10 000 such realizations would require just
2 × 106 CPU-hours. This code provides fine time sampling of
merger histories, necessary to reconstruct halo positions along the
past-light cone (Manera et al. 2013; Merson et al. 2013) and to
run semi-analytic models of galaxy formation (Benson et al. 2012).
This makes it invaluable for addressing a range of problems such as
sample variance, the estimation of covariance matrices or sampling
of parameter space, where many very large realizations are needed.

The paper is organized as follows. Section 2 presents the al-
gorithm, its latest parallel implementation and its performance.
Section 3 presents the simulations used for a comparison. In Sec-
tion 4 we quantify the accuracy with which power spectrum and
bispectrum of DM haloes are recovered. Finally, Section 5 dis-
cusses the results and the main conclusions. The code is available
under GNU/GPL license on http://adlibitum.oats.inaf.it/monaco
/Homepage/Pinocchio/index.html.

2 PI N O C C H I O

The code is fully described in Paper I, so here we only give a brief
account of how it works.

2.1 The algorithm

The algorithm behind the PINOCCHIO code has roots in the extended
Press & Schechter approach (Bond et al. 1991) and in its extension
to non-spherical collapse by Monaco (1995) and Monaco (1997),
but it does not use the Fokker–Planck approach based on sharp
k-space filtering. The calculation starts from the generation of a
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linear density field on a regular grid, as done when generating the
initial conditions of an N-body simulation, and is divided in two
parts: (i) the computation of collapse times of individual particles,
performed by smoothing the density field on several scales and
using an ellipsoidal model based on LPT to compute individual
times of collapse; (ii) the fragmentation of the collapsed medium
into distinct objects, performed with an algorithm that mimics the
hierarchical build-up of DM haloes.

2.1.1 Collapse times

We start from a realization of a Gaussian field on a cubic grid6 of
N3 vertices, assumed to have a physical size L. This Gaussian field
is assumed to represent a linear density contrast field, defined as the
density contrast at a very early time ti, linearly extrapolated to the
present:

δl(q) = δ(q, ti)

D(ti)
, (1)

where q is the Lagrangian coordinate of the mass element, i.e. its
initial position at t = 0, and the growing mode D(t) is normalized
to unity at z = 0. The power spectrum of δl is given by the cos-
mological model and 〈δ2

l 〉 = σ 2
8 when the field is top-hat smoothed

on a scale of 8 Mpc h−1. Following the EPS approach, the density
field is smoothed on a set of smoothing radii R. This is done with a
Gaussian filter so the resulting trajectories are not random walks but
are highly correlated in σ 2. Smoothing radii are chosen so that the
corresponding mass variances are logarithmically spaced in inter-
vals of 0.15 dex; typically from 10 to 20 smoothing radii are needed
to sample the trajectories.

As described in Monaco (1995), at early times the evolution of
a mass element can be described as the evolution of an ellipsoid,
whose principal axes are given by the deformation tensor, i.e. the
Hessian of the (peculiar) gravitational potential. This is true at least
until the ellipsoid collapses on its shortest axis. The dependence of
ellipsoid evolution on the background cosmology can be approxi-
mately factorized out by using the linear growing mode as a time
coordinate. In this case a very good approximation of this evolution
can be obtained by using third-order LPT (Monaco 1997). The argu-
ment can be reversed, so that ellipsoidal collapse can be considered
as a truncation of LPT where all non-locality is given by the defor-
mation tensor. This allows one to treat the collapse of the first axis
as an event of ‘orbit crossing’, after which the LPT approach breaks
down. LPT is slow to converge in the case of a sphere, and this
leads to an overestimate of collapse times for spherical peaks; to fix
it Monaco (1997) found an empirical correction that reproduces the
numerical solution of ellipsoidal collapse for quasi-spherical cases.

For each smoothing radius the code performs a series of Fast
Fourier Transforms (FFTs) to compute the deformation tensor.
Then, for each grid point, and using the ellipsoidal truncation of
third-order LPT and its correction for quasi-spherical cases, the
code computes the time tcoll(q) at which the mass element at q is
expected to collapse. Using the growing mode as a time coordinate,
the relevant quantity is the inverse of the collapse time of each mass
element q:

F (q) = 1/D(tcoll(q)) . (2)

In the EPS language, for each grid point q we construct a trajectory
in the plane defined by mass variance of the smoothed field σ 2(R)
and inverse collapse time F (q; R). If we used spherical collapse we

6 The code can run on non-cubic grids as well.

would have F = δ/δc, so the absorbing barrier at δc, the linear
density contrast at which collapse is expected to take place, is
replaced by a barrier placed at the inverse of the time (the growing
mode) at which DM haloes are requested. When a mass element
is predicted to collapse at the smoothing radius R, it is interpreted
as belonging to a halo of mass at least M = 4πR3/3 ρ̄ (ρ̄ being
the average matter density). (The absorbing barrier construction
prevents the same mass element from being assigned to haloes with
mass smaller than M.) In the same spirit, for each grid point q
the code records the highest value of F along the trajectory, called
Fmax, the associated smoothing scale Rmax, and the velocity vmax at
that position when smoothed on scale Rmax. Fmax is interpreted as
the time at which, given the mass resolution of the realization, the
grid point is expected to collapse, and vmax is computed from the
first derivative of the peculiar potential each time the Fmax value is
updated.

2.1.2 Fragmentation

The first part of the algorithm provides, for each grid point, an
inverse collapse time Fmax and a velocity vmax, plus the smoothing
radius Rmax at which these have been computed. With these it is
possible to predict, at any time, which regions of Lagrangian space
have gone into orbit crossing collapse. The fragmentation of the
collapsed medium into distinct DM haloes is done with a code
that mimics the hierarchical clustering of DM haloes (see also the
description in Heisenberg et al. 2011).

It is convenient to describe grid points as ‘particles’ in the fol-
lowing. One thing worth stressing is that orbit crossing collapse
does not imply that the particle belongs to a DM halo, because the
filamentary network lying outside the haloes may have undergone
such a collapse and yet be far from a fully relaxed state; the code
makes a distinction between collapsed particles in haloes and those
in the filamentary network. Particles are first sorted in descending
Fmax, and considered in this (effectively chronological) order. For
each collapsing particle the six neighbouring particles are consid-
ered, and the different haloes to which the neighbouring particles
belong are counted. The following cases are possible.

(i) All six neighbours have not yet collapsed. The particle is then
a peak of the Fmax field and is treated as a new DM halo with one
particle.

(ii) The particle touches only one halo. To decide whether the
particle is to be accreted on it, both the particle and the halo are dis-
placed using the Zel’dovich approximation (ZA; first-order LPT).
If d is their distance after displacement, accretion takes place if the
particle gets ‘near enough’ to the group:

d < fa × R + fra + fs(Rσ (R))1.7, (3)

where R = √
Nh × 3/4π is the halo Lagrangian radius in grid units

(Nh being the number of particles belonging to it), fa, fra and fs are
free parameters and the factor (Rσ (R))1.7 [with σ (R) computed at the
collapse time], discussed in appendix A of Paper I, is a correction for
the increasing inaccuracy of Zel’dovich displacements as the density
fields become more non-linear. If the particle does not accrete on to
any halo, it is tagged as a ‘filament’ particle. After each accretion
event all neighbouring particles that have been previously tagged as
filaments are accreted on to the halo as well.

(iii) The particle touches more than one halo. First the code
checks whether the particle should be accreted on to one halo (the
one with minimal value of d/R). Then it checks each pair of haloes
to determine whether they should be merged together. This happens

 at IN
A

F T
rieste (O

sservatorio A
stronom

ico di T
rieste) on M

ay 11, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


2392 P. Monaco et al.

Table 1. Adopted values of the best-fitting parameters. The right-
hand column gives the effect that a change in that parameter has on
the mass function.

Parameter Eq. Value Effect on mass function

fa 3 0.285 Normalization and slope
fra 3 0.180 Normalization
fs 3 0.060 Dependence on mass resolution and z

fm 4 0.350 Slope
frm 4 0.700 Abundance of poorly sampled haloes

if they get ‘near enough’ after Zel’dovich displacements have been
applied:

d < fm × max(R1, R2) + fma . (4)

In case the particle was not supposed to accrete on to any halo,
accretion is checked again after the merger(s).

(iv) The particle touches only filament particles. Then it is tagged
as filament as well.

This fragmentation code allows a very accurate time sampling of
the merger trees, because haloes are updated each time a collapsing
particle touches them. The full catalogue of DM haloes is output
each time it is requested, with masses, centres of mass in the La-
grangian space, displacements obtained with the ZA and peculiar
velocities. Merger histories are output only at the final time, giv-
ing a complete time sampling by reporting the masses of merging
haloes at each merger. The values of the free parameters are chosen
by fitting to the desired halo mass function. Table 1 lists the values
used in this paper, and the effect that each parameter has on the
mass function.

2.2 The code

The original scalar code (Version 1) was written in FORTRAN 77
and designed to work on a simple PC. It allowed us to perform
runs of 2563 particles on a 450 MHz PentiumIII machine with
512 Mbyte of RAM in nearly 6 h, a remarkable achievement that
allowed us to obtain reasonable statistics of merger histories with no
access to a supercomputer. Because memory is the limiting factor
in this case, the code has an out-of-core design: it keeps in memory
only one component of the derivatives of the potential at a time,
while the other components are saved on the disc. The most time-
and memory-consuming part is the computation of collapse times;
fragmentation takes less than 10 per cent of time.

In 2005, P. Monaco and T. Theuns wrote a parallel (MPI7) ver-
sion of PINOCCHIO (Version 2), that was publicized among interested
researchers and used in several of the papers mentioned in the In-
troduction. It is written in FORTRAN 90 and uses the Fastest Fourier
Transforms in the West (FFTW) package (Frigo & Johnson 2012)
to compute FFTs. While parallelizing the computation of Fmax is
straightforward (FFTW takes care of most communications), the
fragmentation code was parallelized rather inefficiently, with one
task performing the fragmentation and other tasks acting as storage;
fragmentation is so quick that even this parallelization gives rea-
sonable running times. Memory requirements were still minimized
with an out-of-core strategy. This code is suitable to run on tens
of cores, and requires fast access to the disc; when the number of
cores increases, reading and writing on the disc become the limiting
factor.

7 Message Passing Interface.

The version we use in this paper (Version 3) has been designed
to run on hundreds if not thousands of cores of a massively par-
allel super-computer. The two separate codes have been merged
and no out-of-core strategy is adopted, so the amount of needed
memory rises by a factor of 3 with respect to the previous version.
The computation of collapse times is performed as in version 2.
Fragmentation is performed by dividing the box into sub-volumes
and distributing one sub-volume to each MPI task. The tasks do
not communicate during this process, and each sub-volume needs
to extend the calculation to a boundary layer, where reconstruc-
tion is affected by boundaries. From our tests and for a standard
cosmology, the reconstruction of the largest objects is convergent
when the boundary layer is larger than about 30 Mpc. This strat-
egy minimizes the number of communications among tasks, and
the boundary layer requires an overhead that is typically of the
order of some tens per cent for large cosmological boxes. For
small boxes at very high resolution this overhead would become
dominant, in which case the serial code of Version 1 (on a large
shared-memory machine) or the parallel code of Version 2 would be
preferable.

Because FFTW distributes memory to tasks in planes, while the
fragmentation code works with sub-boxes, a communication round
is needed between the two codes to redistribute Fmax and velocities.
In the version we use here we have implemented a naive distribution
scheme where tasks always communicate in pairs.

To generate the initial linear density field in the Fourier space,
we have merged PINOCCHIO with a part of the code taken from N-
GENIC by V. Springel.8 Besides a few technical improvements with
respect to the original PINOCCHIO code, this has the advantage to be
able to faithfully reproduce a simulation run from initial conditions
generated with N-GENIC, or with the second-order LPT (hereafter
2LPT) version by R. Scoccimarro9 (Crocce, Pueblas & Scoccimarro
2006), just from the knowledge of the assumed cosmology and the
random number seed.

The code has also been extended to consider a wider range of
cosmologies including a generic, redshift-dependent equation of
state of the quintessence, but the computation of collapse times
based on ellipsoidal collapse still relies on the assumption that the
dependence on cosmology is factorized out of dynamical evolution
when the growing mode D(t) is used as a clock, an approximation
that should be tested before using the code for more general cos-
mologies. Displacements of groups from their final position are still
computed with the ZA.

2.3 Performance and scaling

To test its performance and its strong and weak scaling properties,
we ran the code on the PLX machine at the Centro Interuniversitario
del Nord Est per il CAlcolo (CINECA), a linux infiniband cluster
with each node equipped by two six-core 2.4 GHz processors and
48 Gb of RAM.

The left-hand panel of Fig. 1 shows a strong scaling test obtained
by distributing a 7203 particles box of 720 h−1 Mpc of comoving
length on one to 27 nodes, using 12 MPI tasks per node (one task per
core). We do not use multi-threading in this version of the code. The
red continuous curve gives the total time needed to complete the run
while the dashed blue, dot–dashed green and dotted orange curves
show, respectively, the time needed to compute inverse collapse

8 http://www.mpa-garching.mpg.de/gadget/
9 http://cosmo.nyu.edu/roman/2LPT/
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Figure 1. Left- and right-hand panels show a strong and a weak scaling test, respectively. In the strong test a 720 h−1 Mpc box of 7203 particles is distributed
on one to 27 nodes (12 to 324 cores, one task per core), while in the weak test the number of particles is increased proportionally to the number of cores,
starting from the same simulation on a single node. In each panel we show the total CPU time needed to complete the run (red, continuous curve), to compute
the Fmax inverse collapse times (blue, dashed, curve), to redistribute the memory from planes to sub-volumes (green, dot–dashed, curve) and to fragment the
collapsed medium into haloes (orange, dotted curve). The black line gives the ideal N log2N scaling (in the strong scaling test the number of particles N is
constant).

times Fmax, to perform the redistribution of memory from planes to
sub-boxes and to fragment the collapsed medium. The horizontal
black line gives the ideal N log2N scaling expected in this case (it
is constant due to the fixed number of grid points). Thanks to the
FFTW libraries, the computation of collapse times scales very near
the ideal case up to 144 cores, with some increase of CPU time
likely due to the increased overhead of communications. When
more cores are used, FFTW starts to distribute planes to tasks in an
uneven way, so that only some of the allocated cores are actually
working (180 over 216 on 18 nodes, 240 over 324 on 27 nodes),
while the others remain idle. This problem can be clearly avoided
with a careful choice of the number of tasks. Fragmentation scales
relatively well, with a modest increase of CPU time related to the
increasing overhead of boundary layers. Redistribution is negligible
for a small number of tasks but does not scale; in this test it becomes
dominant at the same time when collapse times get far from the ideal
scaling.

The right-hand panel of the same figure shows a weak scaling test
obtained by increasing, at fixed mass resolution, the number of par-
ticles proportionally to the number of cores used, up to 21603 on 27
computing nodes (the same number of particles as the Millennium
simulation; Springel et al. 2005). In this test we use rectangular
boxes. The black line denotes the ideal N log2N scaling. Again,
computation of collapse times and fragmentation scale very near
the ideal case, while the redistribution becomes more and more sig-
nificant as the number of tasks increases, though it is not dominant
even for the largest simulation.

The 21603 particles box run on 324 cores of the PLX machine
takes ∼38 min (for a cost of 206 CPU hours), with computation
of collapse times taking 62 per cent of time (37 per cent needed by
FFTs), redistribution 23 per cent and fragmentation 13 per cent. Just
to give an example, a numerical project of 10 000 Millennium-sized
simulations on the same machine would require only ∼2 × 106 CPU
hours and would be over in less than 9 months on only 324 core, or
a month on about 3000 cores. An improvement of the redistribution
code would lower requirements by 20 per cent and would allow the
code to be applied to larger box sizes.

3 SI M U L AT I O N S

To test the accuracy of PINOCCHIO for the clustering of DM haloes we
compare to a simulation taken from the MICE suite of cosmological N-
body simulations (Crocce et al. 2010).10 MICE is a large set of �cold
dark matter (�CDM) simulations performed with the GADGET-2
code described in Springel (2005). The MICE catalogues provide
Friend-of-Friends (FoF) haloes with linking length b = 0.2 in units
of the mean inter-particle distance. The assumed cosmology is that
of a flat, �CDM universe with �m = 0.25, �b = 0.044, ns = 0.95,
σ 8 = 0.8 and h = 0.7 (�b is used to generate the initial conditions but
all particles are collisionless). In the rest of this paper we will use the
term ‘haloes’ for both N-body FoF haloes and for PINOCCHIO ‘groups’
of particles since this choice should not lead to any ambiguity.

We focus specifically on one run, MICE3072-HR (following the
denomination of Crocce et al. 2010), consisting of a box of sides
3072 h−1 Mpc sampled by 20483 particles, each of mass 2.3 ×
1011 h−1 M�. Note that, unlike other simulations in the MICE suite,
the MICE3072-HR run does not use 2LPT initial conditions. We
use here for the mass function a tabulated correction provided by
the MICE collaboration for those runs with ZA initial conditions, but
we do not attempt to correct halo masses when applying mass cuts
to compute correlation statistics. The PINOCCHIO run required 31 min
on 25 computing nodes (300 cores), so the total cost was 155 CPU
hours, a tiny fraction (∼1/2000) of the 370 000 h needed by the
N-body simulation on the Marenostrum supercomputer. For test-
ing purposes, we have also used the smaller MICE768 simulation,
a 768 h−1 Mpc box sampled by 10243 particles with mass 2.9 ×
1010 h−1 M�. This has a higher mass resolution, but its volume is
not large enough to be used for large-scale clustering statistics. For
clarity, we use similar names for the PINOCCHIO run, replacing the
‘MICE’ prefix with ‘P’.

The comparison with MICE simulations allows us to test PINOCCHIO

on much larger volumes than previously done. The halo catalogues

10 Selected halo catalogues and other data are available for download at
http://maia.ice.cat/mice/
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are public and the mass function analysis has been performed by
the MICE collaboration (Crocce et al. 2010). As mentioned above,
the current version of PINOCCHIO makes use of the N-GENIC code
for the initial conditions, so it is simple to set up the same initial
conditions used in the simulations, removing differences due to
sample variance, and allowing a comparison at the object-by-object
level. Extensions of NGENIC to 2LPT initial conditions are available
and are crucial for accurately simulating the halo mass function
(Crocce et al. 2006). Finally, the N-GENIC code has been further
extended to include non-Gaussian initial conditions (Scoccimarro
et al. 2012). Although we will not consider this possibility here, the
extension of PINOCCHIO to this specific departure from the Standard
Cosmological Model is, in principle, straightforward.

Fig. 2 provides a first, qualitative comparison of PINOCCHIO with
an N-body run at z = 0. For this comparison we have used the
smaller MICE768 simulation that has a better mass resolution. In
the large, top panel, corresponding to a 500 × 400 × 20 h−1 Mpc3

volume, blue dots represent individual haloes from P768 plotted on
top of the corresponding haloes from MICE768, shown as red dots.
The size of each dot is proportional to the halo virial radius. It has
been enlarged for clarity, leading to unrealistic overlaps between
haloes in each realization. All haloes with log10M/( h−1 M�) ≥
12.5 are shown. The lower panels show in detail a sub-volume of
90 × 90 h−1 Mpc area and the same thickness of 20 h−1 Mpc, with
the left and right ones corresponding respectively to the individual
N-body and PINOCCHIO outputs and with the central one showing
again the two together by means of open circles to provide a clearer
comparison of sizes and positions.

While large-scale structure is well reproduced, it can be seen that
the most massive haloes in PINOCCHIO tend to be more isolated than
their MICE counterparts, which have more numerous smaller haloes
in their vicinity. We know from Paper I that PINOCCHIO provides a
good match at the object-by-object level, so this mismatch is related
to the limitations of the ZA to properly reproduce the displacement
field and reconstruct large-scale high-density peaks. The relatively
thin slicing causes some matching halo pairs to be in or out the slice,
thus artificially increasing the number of apparently unmatched
haloes. To make full sense of this comparison, one should take
into account that a ‘PINOCCHIO halo’ does not exactly coincide with
an FoF halo, though parameters can be tuned to maximize their
similarity. These issues will be explored in detail elsewhere.

3.1 Mass function and parameters

As explained in Section 2.1.2, the construction of haloes in the
PINOCCHIO code depends on five free parameters whose values were
determined in Paper I by fitting the mass function to the one obtained
from simulations available at that time.11 The mass function was
shown to be accurate at the 5 per cent level when compared to FoF
haloes with linking length b = 0.2 times the inter-particle distance,
though a 10–20 per cent underestimate at large masses and high
redshifts were reported.

For a proper comparison with much bigger simulations the pa-
rameters can be retuned to improve the agreement to a higher level
of accuracy. To fully and properly complete such a task we must
perform a large number of realizations and a detailed study at the
object-by-object level of PINOCCHIO haloes in comparison with FoF
and Spherical Overdensity (SO) haloes, paying specific attention to

11 A standard CDM simulation with 3603 particles in a box 500 h−1 Mpc on
a side, and a smaller �CDM simulation with 2563 particles in a 100 h−1 Mpc
box.

the high-mass tail. This will be presented in a forthcoming paper.
The present paper aims at presenting a first test of version 3 of the
PINOCCHIO code on cosmological volumes characterized by box sizes
and particle numbers that are more than two orders of magnitude
larger than those previously addressed.

At z = 0, numerical convergence among mass functions of simu-
lated DM haloes has been reached at the �5 per cent level for masses
�1014 M�. For larger masses, differences among simulations can
amount to several 10s of per cent. At fixed mass, the disagreement
worsens at higher redshift, where objects correspond to rarer peaks
of the linear density field. This is also an effect of the steepness
of the high-mass tail of the mass function because of which small
differences in mass result in large differences in number density.
Moreover, the mass function is approximately ‘universal’, i.e. mass
functions at all redshifts lie on the same relation when the adi-
mensional quantity (M2/ρ̄)(dn(M)/dM) [dn(M) being the number
density of haloes of mass between M and M + dM] is shown as
a function of ν = δc/σ (M), with σ (M) being the mass variance at
the scale M. However, recent determinations have reported small
but significant violations of universality (Tinker et al. 2008; Crocce
et al. 2010). Fig. 3 compares, in terms of ratios to the Sheth &
Tormen (1999) fitting formula, several analytic fits from the litera-
ture, obtained both for FoF (Jenkins et al. 2001; Warren et al. 2006;
Reed et al. 2007; Crocce et al. 2010; Courtin et al. 2011; Angulo
et al. 2012) and SO (Tinker et al. 2008) haloes.

Using PINOCCHIO with the parameter values given in Paper I, we
confirmed the tendency, already noticed in Paper I and in Peel,
Battye & Kay (2009), of PINOCCHIO to underestimate the number
density of rare objects. To improve this trend we performed some
parameter tuning. We first dropped the dependence, described in
appendix A of Paper I, of fa and fra on resolution. Both fa and
fra influence the normalization of the mass function, but the first
one also steepens it. We checked that increasing fa to 0.285 while
lowering fra to 0.180 provides a number density of rare objects
compatible with simulations though at the lower end of the allowed
range. The other parameters were left as in Paper I; Table 1 re-
ports the parameter values used in this paper. Finer tuning can be
achieved by using several large nested boxes and sampling a wider
parameter space; because the number of constraints is much larger
than the number of parameters, degeneracies in parameter values
can be broken with this approach. In Fig. 3 we report the mass
function measured in the P768 (blue data points) and P3072-HR
(red data points) realizations; the error bars on the data points rep-
resent simply the expected Poisson error. We notice in the first
place good agreement between the results for the two boxes with
different resolution, particularly at large redshift. We find good
agreement over quite a large range of masses with the Warren et al.
(2006) fit (and to a lesser extent to the Angulo et al. 2012, one)
However, we were unable to reproduce the MICE FoF counts of
Crocce et al. (2010) at high redshift. Since the agreement with
the SO mass function of Tinker et al. (2008) is better, the disagree-
ment with MICE may be related to the tendency of FOF to overlink
haloes and to include filaments that surround the rarest haloes.

To assist in the interpretation of the correlation results presented
in the next section, Fig. 4 shows a more direct comparison of both
the MICE fit and the MICE3072-HR mass function with the one
from P3072-HR. In particular, the upper panel of Fig. 4 shows the
PINOCCHIO adimensional mass function (red curve with error bars)
with the results of MICE3072-HR (blue curve) and the analytic
fits of Crocce et al. (2010) (black curve) and Warren et al. (2006)
(black, dashed curve). The lower panels give the residuals for both
PINOCCHIO and MICE results w.r.t. the Warren et al. (2006) fitting
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Figure 2. Comparison between the halo distributions predicted by the PINOCCHIO P768 realization (blue) and the MICE768 N-body simulation (red) on a
500 h−1 Mpc × 400 h−1 Mpc field, 20 h−1 Mpc slice. The upper panel shows the entire field. The lower panels show a 70 h−1 Mpc × 70 h−1 Mpc zoom with
the two separate distributions and overlapping as circles. All haloes with log10M/( h−1 M�) ≥ 12.5 are shown by discs and circles having 1.7 × the virial
radius.

formula. Error bars are shown only for the PINOCCHIO output and
account for Poisson noise.

The lower mass bin used in this plot corresponds to haloes of
a minimum of 200 particles, both for PINOCCHIO and for MICE, i.e.

the same cut-off assumed in Crocce et al. (2010) for the fitting
procedure. FoF masses from the MICE catalogues account for the
mass correction suggested by Warren et al. (2006) in order to avoid
the statistical noise effects due to the estimate of the halo density
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Figure 3. Ratio of the mass function measured in the P768 (blue data
points) and P3072-HR (red data points) realizations to the Sheth & Tormen
(1999) fitting formula. For comparison, the same ratio is shown for several
other analytic fits taken from the literature: Jenkins et al. (2001) (black, dot–
dashed curve), Warren et al. (2006) (black, short dashed), Reed et al. (2007)
(green, medium dashed), Tinker et al. (2008) (magenta, dot-long dashed),
Crocce et al. (2010) (black, continuous), Courtin et al. (2011) (black, dotted)
and Angulo et al. (2012) (orange, long dashed).

field with a finite number of particles. This correction corresponds
to defining a ‘corrected’ number of particles per halo given by
ncorr

p = np (1 − n−0.6
p ). Also, the MICE mass function is corrected as

suggested in Crocce et al. (2010) to reproduce the result of 2LPT
initial conditions. We do not consider such corrections for PINOCCHIO

masses, which are instead given simply by the number of particles
belonging to a given halo.

As already noted, PINOCCHIO reproduces the mass function of
MICE3072-HR within 10 per cent at M ∼ 1014 h−1 M�. At larger
masses, however, it increasingly underestimates the MICE halo num-
ber density, especially when compared with the MICE analytic fit that
takes advantage of the results from the full MICE set, including two
boxes of larger size with respect to MICE3072-HR. Thanks to the
parameter tuning, the P3072-HR mass function reproduces the War-
ren fit to within a few per cent in the range where the MICE3072-HR
mass function closely follows the MICE analytic fit. For z > 0 the
PINOCCHIO mass function goes below the Warren et al. (2006) fit, but
this happens in the same mass range where the MICE mass function

Figure 4. The top panel shows the adimensional mass function predicted by
PINOCCHIO (red, continuous curve with error bars) compared with the Warren
et al. (2006) fit (black, dashed curve) and the MICE fit (black, continuous
curve) and data (blue, continuous curve) for MICE3072-HR at z = 0, 0.5
and 1. The lower panels show, for each redshift, the residuals w.r.t. the
Warren et al. (2006) fitted with, in addition to the MICE results. The shaded
grey region corresponds to deviations within 10 per cent w.r.t. the Warren
et al. (2006) prediction.

for the same MICE3072-HR box starts to underestimate the ana-
lytical fit obtained using larger boxes. So this discrepancy may be
related to the smallness of the box.

4 AC C U R AC Y T E S T S F O R C L U S T E R I N G
STATISTICS

In this section we present a direct comparison of the halo power
spectrum and bispectrum predicted by the current version of
PINOCCHIO with their counterparts measured in the MICE3072-HR
simulations.
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4.1 Power spectrum

Paper I, using the two-point correlation function, showed that on
the relatively small scales (<30 h−1 Mpc) testable with those simu-
lations and using Zel’dovich displacements, the clustering of haloes
is recovered by PINOCCHIO at the 10–20 per cent level. Here we ex-
amine instead measurements of the halo–halo power spectrum and
the halo–mass cross-power spectrum on significantly larger scales,
encompassing the acoustic oscillation range at low cosmic variance.

A first comparison between PINOCCHIO and MICE is performed
in mass thresholds, taking each halo mass at face value, as pre-
dicted by PINOCCHIO, without any rescaling to match the two mass
functions. Therefore, any mass function discrepancy will affect the
normalization of the power spectrum. Fig. 5 shows the ratios be-
tween the matter–halo (top panels) and halo–halo (bottom panels)
power spectra from P3072-HR and the corresponding ones from
the MICE3072-HR. The first quantity, in particular, is obtained
by correlating the halo number density, computed on a grid with
a cloud-in-cell algorithm, with the non-linear mass density field
measured from the simulation output for both PINOCCHIO and MICE.
We consider as an example three distinct populations defined by
log10(M/ h−1 M�) > 13.7, 14 and 14.5. The lowest mass threshold
corresponds to haloes of 200 particles. Finally, for the halo power
spectrum comparison we keep the shot-noise contribution, since
the halo power spectrum including shot-noise is more relevant for
covariance estimation purposes.

Differences in the mass functions will result in differences in the
power spectrum (mostly its normalization) that will be larger for
the halo–halo case. For a fixed mass threshold, in fact, PINOCCHIO

objects are relatively rarer, and therefore more biased, than their
MICE counterparts. The results of Fig. 5 show that for the lowest
mass thresholds (log10(M/Ms) > 13.7) and lower redshift z ≤ 0.5,
where the mass function is well-matched, the discrepancy between
the PINOCCHIO and MICE cross-power is below the 5 per cent level
at scales k < 0.1 h Mpc−1. The agreement worsens in the case of
the halo–halo power spectrum but stays well within the 10 per cent
level. Larger discrepancies in the normalization, of the order of
10–20 per cent, occur for the largest mass threshold and at z = 1.

To confirm our interpretation of the impact of the mass function
discrepancy on the power spectrum, we consider as well power
spectrum measurements performed on halo populations defined di-
rectly in terms of halo number density. The corresponding ratios
with the MICE results are shown in Fig. 6. In this case we consider
populations defined by a total number of most massive haloes N
taking the values log10N = 4, 4.5, 5, 5.5 and 6, corresponding to
masses roughly ranging from log10(M/ h−1 M�) 
 13.9 to 14.9 at
redshift zero. Notice the remarkably low scatter among different
density populations. The overall departure from the MICE results at
large scales is about 4 and 8 per cent for the cross- and halo–halo
power spectra, respectively.

In the mildly non-linear regime an increasing suppression of
PINOCCHIO power spectra is also evident. It is stronger for smaller
haloes, and is likely related to PINOCCHIO’s use of the ZA for particle
displacements and consequent halo positions. To demonstrate this,
Fig. 7 shows the ratio between the matter power spectrum obtained
from the Zel’dovich displacements for all particles and the same
quantity computed using the simulation output. We consider, in this
case, the smaller MICE768 run and the corresponding P3072-HR
one. Similarly to Fig. 5, this ratio shows a damping of the ZA power
spectrum by 15 per cent at k = 0.1 h Mpc−1. Clearly PINOCCHIO haloes
cannot show better clustering properties as long as ZA is used for
the displacements.

Figure 5. Ratios between power spectra computed using the P3072-HR and
MICE3072-HR catalogues. Top panels show the matter–halo cross-power
spectrum, bottom panels the halo–halo power spectrum. We show results
at redshifts z = 0, 0.5 and 1 for different thresholds in mass defined by
log10(M h−1 M�) > 13.7, 14 and 14.5. The shaded grey area corresponds
to discrepancies below 10 per cent.

The inaccuracy of Zel’dovich displacements can be approxi-
mately described as a Gaussian scatter of halo positions about
the true ones. Considering this uncertainty, the power spectrum
of PINOCCHIO haloes, in turn, can be crudely modelled as the ‘true’
one obtained from the simulation times a Gaussian, random scatter
term:

PPIN(k) = PMICE(k) e−k2d2
. (5)
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Figure 6. Same as Fig. 6 but for halo populations defined by a fixed number
N of the most massive haloes with log10N = 4, 4.5, 5, 5.5 and 6. The shaded
grey area corresponds to discrepancies below 10 per cent.

Fig. 8 shows the ratio of the MICE (blue curves) and PINOCCHIO (red
curves) power spectra (with shot-noise subtracted) w.r.t. the linear,
matter power spectrum without acoustic oscillations (Eisenstein &
Hu 1998). The normalization of the PINOCCHIO power spectrum is
rescaled to match the MICE one at large scales in order to highlight
the different scale dependence at small scales. In addition, the figure
shows a corrected PINOCCHIO power spectrum obtained as PPIN ek2d2

,
with d = 3 and 2.7 h−1 Mpc, respectively, at z = 0 and 0.5. The two
panels show two different populations defined by different thresh-
olds in mass, as indicated. After this Gaussian damping correction
is applied, the residual difference is roughly a constant bias, whose
value depends on mass, as already shown in Fig. 5.

Figure 7. Top panel: comparison of the non-linear matter power spectrum
from MICE768 (blue curve) with that measured using ZA displacements
for all particles (red, continuous curve), and in linear theory (dotted curve).
Bottom panel: ratio between the PINOCCHIO ZA power spectrum and the fully
non-linear matter power spectrum in MICE.

Note that the PINOCCHIO halo power spectrum reproduces quite
accurately the sampling noise of the N-body power spectrum over
the whole Baryonic Acoustic Oscillations (BAOs) range. This is
particularly evident from the middle panel of Fig. 8, corresponding
to log10M > 13.7, where the corrected PINOCCHIO values practically
coincide with the MICE measurements, including the constant bias
term. However, additional corrections are required at smaller scales
(k > 0.17 h Mpc−1).

4.2 Bispectrum

To provide a complete statistical description of the halo distribu-
tion it is necessary to consider its non-Gaussian properties. In this
respect, the lowest order correlation statistic that measures this in
Fourier space is the bispectrum. Here we compare measurements
from MICE3072-HR and P3072-HR of the reduced halo bispec-
trum, Qh(k1, k2, k3) (Fry 1984). This quantity is defined as the
ratio between the halo bispectrum, Bh(k1, k2, k3), i.e. the three-point
function of the halo density field in Fourier space, and a suitable
combination of quadratic terms of the halo power spectrum, that is

Qh(k1, k2, k3) = Bh(k1, k2, k3)

Ph(k1) Ph(k2) + 2perm.
. (6)

The denominator removes the overall scale dependence of the halo
bispectrum to highlight its dependence on the shape of the triangular
configuration considered.

We measure the halo bispectrum B(k1, k2, k3) for all triangu-
lar configurations defined by wavenumbers ki in bins of 
k =
0.004 h Mpc−1 up to a maximum value of kmax = 0.13 h Mpc−1,
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Figure 8. Comparison of the PINOCCHIO and MICE halo power spectra over
the acoustic oscillations range. We show the ratio of the MICE3072-HR
(blue curves) and P3072-HR (red curves) power spectra w.r.t. the �b = 0
linear matter power spectrum of Eisenstein & Hu (1998). In addition, the
orange curves show the P3072-HR power spectrum corrected according to
equation (5) with d = 3 and 2.7 h−1 Mpc, respectively, at z = 0 and 0.5.
The normalization of the PINOCCHIO power spectrum is rescaled to match the
MICE one at large scales to highlight the different scale dependence at small
scales. Different panels show different thresholds in mass as indicated. In
all cases, shot noise has been removed. PINOCCHIO reproduces the sampling
noise induced by the random initial conditions correctly over the whole
range shown.

focusing therefore on large scales. On such scales, it is possible to
approximate the halo bispectrum by (Fry & Gaztañaga 1993)

Qh(k1, k2, k3) = 1

b1
Q(k1, k2, k3) + b2

b2
1

, (7)

where Q(k1, k2, k3) denotes the reduced bispectrum of the mat-
ter distribution, defined similarly to equation (6) in terms of mat-
ter correlators while b1 and b2 represent, respectively, the linear
and quadratic bias coefficient, assumed to be constant for a given
halo population (for a recent assessment of the validity of this ap-
proximation, see, for instance, Chan, Scoccimarro & Sheth 2012;
Pollack, Smith & Porciani 2012; Sefusatti, Crocce & Desjacques
2010, 2012).

Figure 9. Comparison of the reduced halo bispectrum. Top two panels
show, for two different mass thresholds, measurements of the reduced halo
bispectrum for equilateral configurations, Q(k, k, k) as function of k. Bottom
two panels show the same quantity, Q(k1, k2, θ ) with two wavenumbers are
fixed to the values k1 = 0.04 h Mpc−1 and k2 = 2k1, as a function of the
angle theta between them. In all panels blue curves show measurements from
MICE3072-HR and red curves measurements from P3072-HR. The dotted,
black curve provides the prediction for the reduced matter bispectrum at
tree-level in perturbation theory.

From the above expression it is therefore evident that the reduced
halo bispectrum is equally sensitive to linear and non-linear bias,
providing a test for the ability of PINOCCHIO to correctly reproduce
halo bias beyond its linear approximation relevant for the large-
scale power spectrum. With this in mind, the upper panel of Fig. 9
shows the equilateral configurations of the reduced halo bispectrum,
Qh(k, k, k), as a function of k for two different mass thresholds
at z = 0. The bottom panel shows instead the quantity Q(k1, k2,
θ ) with two wavenumbers fixed to the values k1 = 0.04 h Mpc−1

and k2 = 2k1, as a function of the angle θ between them. In all
panels blue curves show measurements from MICE3072-HR and
red curves measurements from P3072-HR. The dotted, black curve
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represents the prediction for the reduced matter bispectrum at tree-
level in perturbation theory, while the continuous black curve shows
equation (7), with the values for b1 and b2 determined from applying
the peak-background split argument to the Crocce et al. (2010) mass
function: b1 
 2.2 and 2.6 and b2 
 1 and 2.2 for the two mass
thresholds of log10M = 13.7 and 14 at z = 0. These theoretical
predictions turn out to be rather accurate, despite the crudeness of
the tree-level expression in equation (7).

These measurements show that PINOCCHIO accurately reproduces
the hierarchical relation between halo power spectrum and bispec-
trum and to a certain extent the non-linear properties of halo bias. In
fact, although the bispectrum itself suffers from the same Gaussian
damping effect which we saw for the halo–halo power spectrum, this
approximately cancels out in the ratio defined in equation (6). This
is remarkable also because the first-order, i.e. Zel’dovich, displace-
ments do not guarantee good recovery of the non-linear bispectrum,
failing to reproduce even its tree-level expression in Eulerian PT.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a new parallel (MPI) version of the PINOCCHIO

code, optimized to run on hundreds of cores of a super-computer.
We showed that the PINOCCHIO code can quickly produce simulated
catalogues of DM haloes that closely reproduce the results of very
large simulations like those of the MICE project (Crocce et al. 2010):
halo abundances are almost universal, and within a few per cent of
the fit proposed by Warren et al. (2006). On the other hand PINOCCHIO

underproduces the abundance of the rarest FoF objects found in
some recent simulations, including those of the MICE group. This
may indicate problems with the fragmentation part of the PINOCCHIO

code, but it may also be related to the tendency of the FOF algorithm
to overlink haloes.

In addition to the abundances, we showed that PINOCCHIO can also
reproduce the spatial distribution of the haloes. Despite the fact
that it uses Zel’dovich displacements to compute the final positions
of haloes, PINOCCHIO can reproduce the matter–halo and the halo–
halo power spectra at k < 0.1 h Mpc−1. The linear bias factor is well
recovered as long as the number density of objects is well matched.12

Using mass thresholds so as to match the same number density
of haloes in the PINOCCHIO and MICE catalogues, the matter–halo
and the halo–halo power spectra of the simulation are recovered to
within 4 and 8 per cent, respectively. At smaller scales the PINOCCHIO

power spectrum shows a damping that is due to the inaccuracy of
Zel’dovich displacements in predicting the final positions of haloes.
This can be roughly modelled as a Gaussian noise term with a
damping scale of 3 h−1 Mpc at z = 0. Good agreement is also
obtained for the reduced bispectrum of the haloes, with the effects
of the damping term approximately cancelling out in the ratio.
For both two- and three-point statistics the noise in the quantities
computed from PINOCCHIO catalogues closely follows that computed
from simulations. We did not address in this paper velocity fields.
This is an important step in the analysis that must be performed
before extending the comparison to the redshift space. Monaco et al.
(2005) and Heisenberg et al. (2011) already presented studies of the
behaviour of peculiar velocities of PINOCCHIO haloes. A detailed

12 In a forthcoming paper (Paranjape et al. 2013) we will compare PINOCCHIO

predictions with simulations and theoretical expectations based on excursion
set theory, and will show that PINOCCHIO can reproduce the bias of DM haloes
well beyond the linear bias approximation.

study of velocity power spectrum and redshift-space clustering will
be the subject of a forthcoming paper.

This version of the PINOCCHIO code is particularly suited for ad-
dressing the massive production of catalogues of DM haloes, the
first step in the generation of mock galaxy catalogues using Halo
Occupation Distribution, abundance matching or semi-analytic
models. Its scaling properties demonstrate the feasibility of run-
ning many (∼10 000) massive simulations in a reasonable amount
of time: we estimate 2 × 106 CPU hours to produce 10 000 21603

boxes, though some minor parts of the code scale poorly and must
be improved. The typical result of a PINOCCHIO run is a catalogue
of haloes with known mass, position, velocity and merger history
that requires orders of magnitude less disc space than needed by a
typical simulation, not to mention the complicated and ill-defined
post-processing needed by a standard simulation to produce well-
behaved halo merger histories, which are a natural outcome of
PINOCCHIO. The speed-up comes at the cost of information about
the internal structures of haloes. But with refined models of the
evolution of DM haloes after mergers, such as are commonly used
in semi-analytic models to predict the merging time of galaxies,
it is possible to approximately reconstruct the abundance of halo
substructures from halo merging histories (see e.g. Giocoli et al.
2010).

Clearly, PINOCCHIO is not meant to be a substitute for N-body sim-
ulations. Rather, a natural application of our code is the determina-
tion of the covariance properties of large-scale structure observables
(e.g. the galaxy power spectrum), as well as the study of systematic
effects (e.g. the selection function) and possible correlation between
the two (see e.g. Ross et al. 2012). Indeed, the mocks produced by
Manera et al. (2013) with a version of the PTHALOS code for the
BOSS survey (Eisenstein et al. 2011) were an essential ingredient
for many analyses beyond error estimation, like power spectrum at
large scales, BAOs, redshift distorsions. PINOCCHIO itself has been
used by de la Torre et al. (2013) for computing the covariance ma-
trix of the redshift–space galaxy correlation function in the range
of scales ∼1 to ∼30 Mpc. This is a difficult range to reproduce,
because Zel’dovich displacements are inaccurate at these scales.
Nevertheless, the authors could take advantage of a relatively large
number of PINOCCHIO realizations by applying the shrinkage method
of Pope & Szapudi (2008), using only a few mocks from the Multi-
Dark simulation by Prada et al. (2012) to subtract out the bias in the
determination of the correlation function. While the determination
of uncertainties does not require per cent accuracy, a very large
number of mock catalogues is crucial for the proper estimation of
large covariance matrices.

PINOCCHIO shows several advantages compared to other simplified
tools for the quick production of large-scale structure. Algorithms
based on LPT to reproduce the non-linear matter density field may
be quicker, but they are not as precise in determining where the
DM haloes are, especially at small masses (Manera et al. 2013).
Methods which use Particle-Mesh integrations in a few time-steps
can be very accurate in the generating the non-linear mass field
(Tassev et al. 2013), but the price paid is poor time sampling of halo
merger histories, as well as the post-processing needed to produce
halo catalogues in the first place. The sparse time-sampling also
complicates the generation of halo catalogues along the past light
cone which is much simpler in PINOCCHIO because all displacements
are always done in one single time-step, so any level of time sam-
pling can be easily achieved. In particular, masses are updated every
time a particle is added to the group, and merger histories report
masses for each merging pair of haloes, so with the minimal output
given by PINOCCHIO, halo mass accretion histories are available at
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each halo merger even without outputting the halo catalogues many
times.

The present version of the code works for a range of �CDM cos-
mologies that includes arbitrary redshift-dependent equation of state
of the quintessence, and can be easily extended to non-Gaussian cos-
mologies simply by changing the initial conditions generator. We
are currently developing PINOCCHIO in two further directions. Posi-
tions of haloes can be computed with second and third-order LPT
with associated overheads in memory and CPU time amounting
to ∼30 and ∼100 per cent. We expect that 2LPT would improve
the accuracy with which halo positions (and hence masses) are pre-
dicted, thus improving the halo power spectra and bispectra (i.e.
reducing the corrections currently needed at large wavenumbers).
It also could help in recovering the right number density of very
rare haloes. Full 3LPT would allow one to predict the collapse
times without using the ellipsoidal truncation of LPT proposed by
Monaco (1997) that works under the approximation that using the
growing mode as a time coordinate factorizes the dependence of
cosmology out of the dynamics of a mass element. This would al-
low one to quickly produce simulations in any cosmology where an
LPT expansion can be formulated.

The other direction of development is the on-the-fly production
of the output on the past light cone of an observer randomly placed
in the simulation volume, taking advantage of the periodic boundary
conditions to simulate a very large volume. The fine time sampling
of PINOCCHIO eliminates the need to output the full catalogues many
times as must be done if one wishes to reconstruct the past-light
cone at the post-processing level in the conventional way.

Our final aim is to propose a quick, flexible, scalable and open-
source tool to generate, with minimal resources, large catalogues of
DM haloes that reproduce the statistics of simulations to an accuracy
which justifies the use of this tool for high-precision cosmology.
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