Cosmology I Lecture 1: Introduction, black holes Pierluigi Monaco

We do not experiment, we observe

and we are lucky, because the Universe is transparent and light can travel along geodesics

When we look deep we see galaxies

We can measure:

- position on the sky
- energy flux in a band => magnitude
- monochromatic flux in a range of $\lambda =>$ spectrum
 - continuum => main emission mechanism
 - absorption / emission lines => composition, ionization state...
 - Doppler shift of lines => radial velocity
- distances...

A galaxy spectrum

redshift: z = $(\lambda_{obs} - \lambda_{em})/\lambda_{em}$

Doppler redshift: v ≃ cz, v≪c

Distances require a "ladder" of methods

A first cosmological application of GR: black holes

Mitchell and Laplace (ca 1784):

 $v_{esc} = \sqrt{(2 \text{ GM / R})} > c$ if R = 2 GM / c²

Earth: <u>R =</u> 8 mm!

Sun: R = 3 km

Imaging of the event horizon of Sgr A*

Event Horizon Telescope collaboration

Active galactic nuclei (AGN): quasars

Active galactic nuclei: quasars

Active galactic nuclei: classification

	optical			radio		bolometric luminosity	
	blue continuum	broad lines	narrow lines	radio loud	radio quiet	low (L<10 ⁴⁴ erg/s)	high (L>10 ⁴⁴ erg/s)
Seyfert 1							
Seyfert 2							
QSO							
quasar							
radiogalaxy							

A unified model for AGN

Program for the first part

- Einstein equations of General Relativity
- conserved quantities
- Schwartzschild metric from Einstein equations
- motion of a massive particle around a black hole
- motion of a photon around a black hole
- gravitational redshift
- photon radius and EHT observations
- first test on black holes