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First intermediate test
Topic: general relativity.

This is an extended version of the problem proposed with lecture 10.
After 20 years of travel (according to its own clock), the spaceship described

in the Proposed Problem of lecture 2 arrives at the center of the Galaxy, where
it meets a well-known black hole, called by astronomers SgrA∗, whose mass is
M = 4 × 106 M� (M� = 1.99 × 1030 kg is the solar mass). With a suitable
rocket system, it stops at a coordinate position r0 = 1000Rs, in a coordinate
system at rest with the black hole for which the metric takes the Schwartzschild
form. The spaceship then lets a probe free-fall toward the black hole. The probe
sends signals at a given frequency, the spaceship will lose the signal when the
frequency will be decreased by a factor of 10. All distances will be expressed
either in m or in AU = 1.50× 1011 m, times will be expressed in s.

(1) How can the spaceship know its “coordinate distance” r from the black
hole? try to think of an experiment to determine r.

(2) Fix the values of the orbital parameters Ẽ and L̃ in this case, then work out
the first-order equations of motion for the probe, starting from ~p·~p = −m2,
where ~p is the probe’s momenum. Assuming that the probe has vanishing
3-velocity at r = r0, find Ẽ in terms of r0 and black hole mass M , and
write the resulting equation.

(3) Write the geodesic equation for the probe. As a first step, work out the
non-vanishing Christoffel symbols from the Schwartschild metric, then,
using the probe’s proper time τ as an affine parameter, write the 0- and 1-
component of the geodesic equation. Demonstrate that the 0-component
equation is equivalent to the equation that is obtained by taking the deriva-
tive in τ of p0. Demonstrate that the 1-component is equivalent to the
derivative of the equation for dr/dτ found above.
Hint: remember that xµ → (t, r, ϑ, ϕ), Uµ = dxµ/dτ and that p0 = mU0 =
−mẼ.

(4) Both the equation for dr/dτ found on point (2) and the 1-component of
the geodesic equation should result remarkably simple and similar to the
Newtonian motion of a body under the gravity of a point mass. Following
the lecture notes, compute the proper time needed by the probe to get
to r=0. (Not strictly required: you can show that it results equal to the
so-called dynamical time, t =

√
3π/32Gρ̄, where ρ̄ = M/(4πr30/3).)

Hint: following the notes and expressing Ẽ in terms of M and r0, you
should meet an integral of the function

√
x/(1− x), that is easily solved

by assuming x = sin2 t.
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(5) By knowing the 4-velocity of the probe, compute the gravitational redshift
of the probe as a function of radius, including the Doppler contribution.
You can assume here that the spaceship is at r → ∞, making a small
error. Then recompute the radius at which the spaceship loses the signal
from the probe, when the observed frequency becomes a factor of 10 lower
than that at emission. (Not strictly required: using numerical integration,
try to compute the time at which this happens, in the spaceship frame.)

Hint: carefully consider the momentum of the photon ~f , knowing that
~f · ~f = 0 and that f0 is conserved. Recall that the photon travels outwards,
the probe inwards. Then follow the derivation of gravitational redshift,
using the correct ~Upr.

Solution

It is useful to recall that the Schwartzschild radius of a 4×106 M� black hole
is equal to (we explicit the speed of light for this calculation) Rs = 2GM/c2 =
1.18 × 1010 m = 0.079 astronomical units (AU), so r0 = 1000Rs correspond to
79 AU.

(1) To determine r it is necessary to perform some physical measurement
that depends on r in an invertible way. A simple possibility, that does
not require knowledge of black hole mass (that however is known), is
to go around the black hole and measure the length of the path. For
ϑ = π/2 and dr = dϑ = 0, the space part of the metric is d`2 = r2dϕ2,
so ` = 2πr. Measuring 2π` is possible if (1) the spaceship knows when it
is not moving with respect to the black hole (when it moves, the images
of strongly lensed stars move), (2) the spaceship knows when it gets back
to the starting point (you can triangulate on distant stars on the other
side of the black hole, to avoid lensing). This gives r in physical units, to
transform it to Rs requires knowledge of the black hole mass.

Having said this, there are many other physical ways to determine r, any
sensible idea will be valid.

(2) In the following I define for simplicity

C(r) ≡ 1− 2GM

r

Let’s call ~p the probe’s momentum. The probe falls along a radial geodesic,
so pϕ = 0 and L̃ = 0. From ~p · ~p = −m2 we get the equation:(

dr

dτ

)2

= Ẽ2 − C(r)

At r = r0 we have dr/dτ = 0, so

Ẽ2 = 1− 2GM

r0
= 1− 1

1000
= 0.999

and then (
dr

dτ

)2

=
2GM

r
− 2GM

r0

very similar to the corresponding Newtonian equation (where τ → t of
course).
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(3) The Christoffel symbols have been computed for a spherically symmetric
metric, substituting to the φ and Λ functions their expressions valid for
the Schwartzschil metric one obtains the following non-zero terms (plus
symmetric terms in the two lower indices):

Γ0
01 =

GM

r2
1

C
, Γ1

00 =
GM

r2
C, Γ1

11 = −GM
r2

1

C

Γ1
22 = −rC, Γ1

33 = −r sin2 ϑC, Γ2
33 = − sinϑ cosϑ

Γ2
21 =

1

r
, Γ3

31 =
1

r
, Γ3

32 =
cosϑ

sinϑ

Clearly the symbols Γ2
33 and Γ3

32 vanish for ϑ = π/2, while Γ1
33 = −rC.

The 0-component of the geodesic equation results:

d2t

dτ2
= −2Γ0

01

dt

dτ

dr

dτ
= −2GM

r2
1

C

dt

dτ

dr

dτ

We have that p0 = mdt/dτ = mẼ/C; taking the τ -derivative of this
equation one can obtain the same equation given above.

The 1-component of the geodesic equation results

d2r

dτ2
= −Γ1

00

(
dt

dτ

)2

− Γ1
11

(
dr

dτ

)2

= −GM
r2

C

(
dt

dτ

)2

+
GM

r2
1

C

(
dr

dτ

)2

Using the expression for dt/dτ = Ẽ/C and (dr/dτ)2 = Ẽ2 − C obtained
above one can simplify the equation as follows:

d2r

dτ2
= −GM

r2

again very similar to the Newtonian equation.

(4) The derivation is:

∆τ = −
∫ 0

r0

dτ

dr
dr =

∫ r0

0

dr√
2GM
r − 2GM

r0

Call x = r/r0:

∆τ =

√
r30

2GM

∫ 1

0

√
x

1− x
dx

Now call x = sin2 t, the integral becomes∫ 1

0

√
x

1− x
dx = 2

∫ π/2

0

sin2 t dt =
π

2

Calling now ρ̄ = 3M/4πr30 = 1.15× 10−6 g cm−3, we obtain:

∆τ =

√
3π

32Gρ̄
= 1.95× 106 s = 22 days

It is interesting to note that the proper time needed by the probe to fall
from Rs to the singularity can be computed by setting r0 = Rs. It results
ρ = 1157 g cm−3, δτ = 7.15× 10−4 s.
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(5) The four-velocity of the probe at radius r is:

Uµprobe =

(
dt

dτ
,
dr

dτ
, 0, 0

)
=

(
Ẽ

C
,
√
Ẽ2 − C, 0, 0

)
Calling ~f the photon momentum, and using ~f · ~f = 0, it is easy to demon-
strate that fr = f0; of course f0 is conserved along the photon geodesic.
At inifinity, ~U∞ = (1, 0, 0, 0), so E∞ = −~U∞ · ~f = −f0. Then the photon
energy at emission is:

Eem = −~Upr · ~f = E∞
1

C

(
Ẽ +

√
Ẽ2 − C

)
Assuming that the spaceship is at inifinity, the gravitational redshift can
then be computed as:

1 + z =
Eem

E∞
=

1

C

(
Ẽ +

√
Ẽ2 − C

)
Contact is lost when 1 + zlost = 10, from which it is easy to get (refusing
the unphysical solution C = 0):

C(rlost) =
2(1 + zlost)Ẽ − 1

(1 + zlost)2
= 0.1898

This is true for

rlost =
Rs

1− C(rlost)
' 1.234Rs

The full solution is obtained by considering Eobs = −~f ·~Uss = E∞/
√
C(r0),

then the factor to (1 + zlost) in the equation above must be multiplied by
C(r0)−1/2 = 1.0005 . The difference in the result is small.

The coordinate time difference ∆t between the probe release and the time
it emits the last observable photon at rlost is computed as:

∆t = −Ẽ
∫ rlost

r0

[(
1− 2GM

r

)√
2GM

r
− 2GM

r0

]−1
dr =

= Rs

∫ 1000

1.234

[(
1− 1

x

)√
1

x
− 1

x0

]−1
dx

where x = r/Rs. A numerical integration yields a value of ∼ 49800 for
the integral. However, for rlost = 1.234Rs the integrand is only 0.2%
larger than the integrand for the proper time ∆τ , so the time at which
the last detectable photon is sent is again ' 22 days. Indeed, as the
divergence of the integral is logarithmic, for this rlost value the integral is
still dominated by the time needed by the probe to accelerate from zero
to significant speed.

If we want to compute the time at which the spaceship loses contact with
the probe, we must add to ∆t the time δt required by the photon to get
back to the spaceship. This is computed from the metric:

δt =

∫ r0

rlost

dr√
1− 2GM/r

= 2GM

∫ r0/2GM

rlost/2GM

√
x

x− 1
dx ' 1002× 2GM

This is just a little larger than the (1000− 1.234)× 2GM value one would
get for a flat space. The numerical value results δt = 394 s, negligible with
respect to ∆t.
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