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One year ago the Event Horizon Telescope (EHT) collaboration published
the first image of the event horizon of a black hole (BH), M87* at the center
of the galaxy M87, located at D = 16.8 Mpc (1 pc = 3.09 × 1016 m, 1 Mpc is
one million pc), that is known from previous measurements to be as massive as
M = 6.5×109 solar masses M� (1 M� = 1.99×1030 kg). The angular resolution
of the image is 25 µas (micro-arcseconds). We can think of this image as to a
disc of gas that is rotating around the BH almost face-on.

(1) Assuming Euclidean geometry, what is the angular extent of the gravita-
tional radius RG = GM/c2 as seen from the Earth? would it be possible
to image it with the nominal EHT angular resolution? To have an idea of
how big it is, compare RG with the size of the Solar System, then compute
the radius of a sphere on the surface of the moon that subtends the same
angle as seen from the Earth. These two facts give a feeling of how big
this BH is and how far this “nearby” galaxy is.

The angular diameter of the imaged ring is indeed 42 µas. To understand
how curvature distorts photon paths we can compute the so-called photon cap-
ture radius of a BH, following these steps.

(2) Let’s first write down an effective potential for a photon in the Newtonian
case. Assuming that b is the photon impact parameter for a point mass
M at the center of a cartesian coordinate system in which the photon
trajectory lies at z = 0 and is aligned with the x-axis, call x = ct its
x-coordinate, r its distance from the mass M, and demonstrate that its
equation of motion can be written as:(

dr

dt

)2

= c2 − Veff(r) (1)

Find the expression for the effective potential Veff and interpret it.
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(3) Now (using again c = 1) write the conserved quantities as p0 = −Ẽ and
pϕ = L̃, and considering the photon trajectory at very large distances

identify Ẽ = hν∞ as the photon energy at infinity and L̃ = bẼ as the
photon angular momentum, b being its impact parameter. (Hint: let the
photon travel at negative y values, so that its motion is counter-clockwise
in the x − y plane. Write the cartesian and spherical components of the
photon momentum for a flat Minkowski spacetime and for a trajectory at
z = 0 or ϑ = π/2).

(4) Assuming a Schwartzschild metric, and calling λ an affine parameter for
the null geodesic of a photon, compute d2r/dλ2 for the photon using the
geodesic equation and the condition d~x/dλ·d~x/dλ = 0. Find the condition
for which the radial acceleration of the photon is positive or negative. How
does this result compare with that obtained in class using the effective
potential?

(5) From ~p · ~p = 0 work out the equation of motion for the photon around the
black hole. The photon can escape the black hole if the orbit’s pericenter is
such to avoid regions with d2r/dλ2 < 0. The pericenter can be computed
as the point in which dr/dλ changes sign, thus passing through 0. Using
the espression for (dr/dλ)2 obtain a relation between the orbit pericenter
rmin and the impact parameter b. Now impose the escape condition worked
out in point (4) to obtain a critical impact parameter, called photon
capture radius. Argue that geodesics can be traveled in both spatial
directions in this static metric (outside the event horizon), so that the
photon capture radius defines the effective apparent size of the BH event
horizon, the BH “shadow”.

(6) How does its angular extension for M87* compares with the observed ring?

This is only an order-of-magnitude estimate based on the assumption of
a spherically-symmetric, i.e. non-rotating, BH; full ray-tracing of radiation
emitted by gas orbiting around a rotating black hole is needed to get a proper
prediction.
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Solution

1. The gravitational radius of M87* is RG = GM/c2 = 9.59 × 1012 m =
63.9 AU (astronomical units). It would contain the whole Solar System,
including Kuyper belt. With Euclidian geometry, it would subtents an
arc of 3.81 µas at the distance of M87, like a sphere of radius of 0.7 cm
on the Moon. This is below the angular resolution limit of EHT.

2. The distance r of the photon, traveling along a straight path x = ct,
y = −b and z = 0, is r =

√
b2 + c2t2. Differentiating it with respect to

time, and expressing the result in terms of r, we obtain:(
dr

dt

)2

= c2 − c2b2

r2

So the motion is subject to an effective potential Veff = −c2b2/r2 that has
the form of a centrifugal barrier, with cb playing the role of an angular
momentum.

3. Using p0 = hν∞ and gαβp
αpβ = 0, we obtain that the components of

the photon momentum in a flat Minkowski spacetime are (hν∞, hν∞, 0, 0)
for cartesian coordinates and (hν∞, hν∞ cosϕ, 0, hν∞ sinϕ/r) in spherical
coordinates with ϑ = π/2. In this second case the momentum one-form has
components p0 = −hν∞ and pϕ = r sinϕhν∞ = bhν∞. This motivates

the identification of Ẽ = hν∞ and L̃ = bhν∞ = bẼ. Note: the positive
sign of pϕ is due to the choice of having y = −b, so that the photon

“orbits” counter-clockwise. Alternatively, L̃ = −bẼ, with no effect on the
effective potential where this quantity enters squared.

4. Calling for simplicity C(r) = 1 − 2GM/r, the non-vanishing Christoffel
symbols for the Schwartzschild metric are:

Γ0
01 =

GM

r2

1

C(r)
, Γ1

00 =
GM

r2
C(r), Γ1

11 = −GM
r2

1

C(r)

Γ1
22 = −rC(r), Γ1

33 = −r sin2 ϑC(r), Γ2
33 = − sinϑ cosϑ

Γ2
21 =

1

r
, Γ3

31 =
1

r
, Γ3

32 =
cosϑ

sinϑ

In the case ϑ = π/2, the symbols Γ2
33 and Γ3

32 vanish while Γ1
33 = −rC(r).

The r-component of the geodesic equation gives:

d2r

dλ2
=
GM

r

[
−C(r)

(
dt

dλ

)2

+
1

C(r)

(
dr

dλ

)2
]

+ rC(r)

(
dϕ

dλ

)2

For a null geodesics the tangent vector d~x/dλ is null, so requiring d~x/dλ ·
d~x/dλ = 0 gives:

−C(r)

(
dt

dλ

)2

+
1

C(r)

(
dr

dλ

)2

+ r2

(
dϕ

dλ

)2

= 0

This allows to simplify the geodesic equation as follows:

d2r

dλ2
= (r − 3GM)

(
dϕ

dλ

)2
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This shows that for r < 3GM the acceleration is always directed inward,
and the photon can only fall into the BH unless it has a positive (and
sufficiently large) radial component of the velocity. The radius r = 3GM ,
independent of the photon angular momentum or impact parameter, cor-
responds to the peak in the effective potential, so this result is entirely
consistent with what found during the class.

Note: because the photon momentum is also tangent to the geodetic,
one can formulate the geodetic equation in terms of ~p in place of d~x/dλ,
that corresponds to a specific choice of affine parameter. In this case the
equation results:

dpr

dλ
=
d2r

dλ2
= (r − 3GM)

L̃2

r4

5. The equation of motion of the photon has been discussed in class:(
dr

dλ

)2

= Ẽ2 −
(

1− 2GM

r

)
L̃2

r2

Using L̃ = bẼ, the radial component has a minimum when dr/dλ = 0,
that happens at a radius rmin such that b2(rmin − 2GM) = r3

min. Setting
rmin = 3GM allows to obtain the smallest impact parameter for which
the photon can escape back to infinity:

bmin =
√

27GM = 5.20RG

Indeed, a photon traveling from infinity with a smaller impact parameter
would get inside 3GM with a negative radial velocity, and would then fall
toward the singularity.

The subtle part here is to argue that the spatial path of the geodesic can
be traveled in both directions. The following discussion is based on the
discussion we have had in class. A geodesic is a curve, and as such can
in principle be traveled in both directions; but particles can only travel it
forward in time. Reverting the sign of the affine parameter λ means to
revert the direction of the tangent vector, but all affine parameters give
the same geodesic and then the same dynamics. So reverting the sign of
λ does not help. Let’s say a photon travels along a geodesic that connects
events A = {tA, xiA} and B = {tB , xiB}, with tB > tA (here the pedices are
not coordinate indices). A photon that travels in reverse direction would
connect the events A′ = {tA′ , xiA} and B′ = {tB′ , xiB}, with tA′ > tB′ ;
A and A′ have the same space coordinates, as well as B and B′ do. The
question is if the geodesics that connects A−B and A′−B′ have the same
space path. We can obtain the two geodesics inverting the sign of time
coordinate t. All the Christoffel symbols do not depend on time, and the
only non-vanishing symbol that includes dt/dλ and appears on one of the
space geodesic equations is Γ1

00, so dt/dλ enters squared in this equation.
Then the equations of space geodesics will be the same and describe the
same path. This is not true for the time geodesic equation, where the Γ0

01

symbol will lead to a term like dr/dλ dt/dλ, so the source of the equation
changes sign.

So photons collected by a very distant telescopes will avoid those geodesics
that would lead a photon traveling from us toward M87 to fall inside the
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event horizon, and the event horizon itself would be seen as a shadow of
apparent size

√
27GM .

6. The photon capture radius of M87* is
√

27 = 5.20 times the gravitational
radius, so the expected apparent diameter of the ring is 2

√
27GM/D (c =

1), amounting to 39.6 µas, not very different from the measured value of
42 µas.
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