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This exercise is based on the first tests of 2020 and 2021, some results have
already been obtained in the previous tests so their answer is known and working
the solution out is considered as a preliminary work.

A human-made probe of mass m is in a circular orbit at radius R around a
Schwartzschild black hole of mass M ; as an example, this could be SgrA∗, whose
mass is M = 4 × 106 M� (M� = 1.99 × 1030 kg is the solar mass). Assume
that R = 8GM , but be prepared to vary it. The probe sends a monochromatic,
continuous electromagnetic signal, of frequency νem. This signal is received by
a distant observer at dobs = 100 pc, at rest in the reference frame where the
metric has the Schwartschild form; it is distant enough to ensure that the metric
is Minkowski at its location, but near enough to be able to see the movement
of the probe on the sky. Its angular coordinates are θ = π/2 and ϕ = 0, so it
lies in the same plane of the orbit.

The aim is to compute how the wavelength of the signal from the probe
changes with its apparent position on the sky, and possibly with time.

(1) Call ~U the four-velocity of the probe, and ω = Uϕ its angular frequency.
Work out ω as a function of R. Check that the geodesic equation for the
probe only tells us that the components of ~U are constant.

(2) Call now Ẽ and L̃ the invariants of a photon that is emitted by the probe
and received by the observer. Demonstrate that these two invariants can
be interpreted respectively as Ẽ = hνobs and L̃ = bẼ, where b is the
impact parameter of the photon. Write down all the components of the
photon momentum fα and of its one-form fα.

(3) Now the original part. We need to relate the impact parameter b with the
position φ of the probe when the photon is emitted, given that photon
geodesics are bent by gravitational lensing. One possibility, that applies
(approximately) to the part of the trajectory where −π/2 < φ < π/2, is
to compute the variation of the variation ∆ϕ of the ϕ coordinate of the
photon along its null geodesic, from the emission to infinity, and equate
it to −φ of the probe at emission. This way the photon gets to ϕ = 0 at
infinity. This can be done by noticing that

∆ϕ =

∫
dϕ

dλ
dλ

where λ is an affine parameter of the null geodesic, and that fr = dr/dλ
and fϕ = dϕ/dλ. Changing the integration variable to r it is possible to
find an integral that must be solved numerically. Check for what values
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of the impact parameter the integral is defined, and try to interpret this
result. Find a way to visualize the result (impact parameter b against the
angle at emission), comparing it with what would happen in a Newtonian
orbit. It can be convenient to show results for other choices of R.

(4) Now compute the redshift of the probe radiation for the distant observer,
as a function of the observed position of the probe. Assume that the
observer is at a distance of 100 pc and express the impact parameter as an
observed angle, in arcseconds. The redshift will contain both gravitational
and Doppler contribution. Compare this relation with what you would
obtain with a Newtonian orbit, and interpret the differences.

(5) In what way would this experiment confirm the validity of GR?

The calculation suggested above covers only the part of the orbit that goes
toward the observer, do you have suggestions on how to extend it? for instance
one might try to compute for what angles ϕ the probe is invisible because its
photons fall into the black hole.

It is also possible to compute the redshift of the probe, and its position on
the sky, as a function of redshift. To do this it is necessary to calculate the time
taken by photons traveling along different geodesics to get to the observer. If
the work above has required less time than expected, try to perform this further
step.

As a general suggestion, it may be useful in the formulas to express lengths
in units of the gravitational radius GM .
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Solution

In what follows distances are expressed in units of the black hole’s grav-
itational radius GM , so a = r/GM refers to the coordinate r, A = R/GM
to the coordinate of the probe’s orbit and β = b/GM to the photon’s impact
parameter b.

(1) The four-velocity of a probe in circular orbit around a black hole has been
worked out in the First Test of 2021, so we refer to its solution for a more
extended discussion. If Ẽ(p) and L̃(p) are the probe’s conserved quantities,
then:

L̃(p) = (GM)
a√
a− 3

Ẽ(p) =
(a− 2)√
a(a− 3)

The probe four-velocity results:

~U →
(√

a

a− 3
, 0, 0,

1

GM

1

a
√
a− 3

)
We can express L̃(p) in terms of the probe’s angular frequency ω = Uϕ:

L̃(p) = R2ω

The Christoffel symbols for the Schwartzschild metric have been worked
out in the 2019 test, where it was requested to obtain the geodesic equation
for a radial orbit. For a circular orbit we have that dr/dτ = 0, dϑ/dτ = 0,
and the 0 and ϕ components of the geodesic equations trivially vanish.
The r component results:

d2r

dτ2
= −Γ1

00

(
dt

dτ

)2

− Γ1
33

(
dϕ

dτ

)2

=

= − 1

GM

(
1− 2

a

)
1

a(a− 3)
+

1

GM

(
1− 2

a

)
1

a(a− 3)
= 0

This means that the coordinates of ~U are constant, as it should be in an
uniform circular motion in spherical coordinates.

(2) The trajectory of a photon around a black hole has been studied in the
First Test of 2020, where it was argued that Ẽ = hνobs, where hνobs is the
photon wavelength observed at infinity, and L̃ = b hνobs, where b is the
photon impact parameter. Then, asking that fαf

α = 0, one obtains:

fα → hνobs ×

(
a

a− 2
,

√
1− β2

a2

(
1− 2

a

)
, 0,

b

r2

)

fα → hνobs ×

(
−1,

a

a− 2

√
1− β2

a2

(
1− 2

a

)
, 0, b

)

(3) The probe emits photons of frequency νem when it is at the coordinate
φ. If ϕ is the coordinate of the photon, it will be received by the distant
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observer at ϕ = 0 if its coordinate changes by an amount ∆ϕ = −φ. The
integral to obtain ∆ϕ can be rewritten as:

∆ϕ =

∫ ∞
R

dϕ

dλ

dλ

dr
dr =

∫ ∞
A

β da

a2
√

1− β2

a2

(
1− 2

a

)
The limitation of this formulation is that the radius of the geodesic must
always increase, so the photon must always travel outwards. The integrand
is not defined when the argument of its square root is negative, so one can
obtain a condition for the existence of the integral:

b < bmin = R

√
a

a− 2

This corresponds to the impact parameter of a photon that starts tan-
gential to the orbit’s trajectory; it is impossible to have larger impact
parameters (from the solution of this integral). Then bmin defines the an-
gular extension of this part of the orbit as seen by a distant observed (see
also the 2020 test).

The integral must be solved numerically, I have done it using the quadra-
ture algorithm of the scipy.integrate library, using A and np.inf as
integration intervals. Then I solved the integral for a series of b values
from −bmin to +bmin, because negative values of b correspond to negative
values of the photon angular momentum.

The result can be compared with the corresponding Newtonian result,
where the integral to solve reduces to:

∆ϕ =

∫ ∞
A

β da

a2
√

1− β2

a2

that can should be solvable analytically (I have integrated it numerically).
The figure below shows the resulting relation between angle ∆ϕ and im-
pact parameter; angles are given in degrees and the gray lines show the
±90 deg limits of the Newtonian case. We show the cases of A = 6 (last
stable orbit), A = 8 and A = 10.
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One can draw two conclusions from this result: (1) the apparent extension
of the orbit, as seen by the distant observer, is larger in GR than in
Newtonian theory, (2) thanks to gravitational lensing one can see a larger
part of the orbit (using this integral). Both effects are stronger if the
probe is nearer to the black hole.

(4) Because ∆ϕ = −φ, a negative angular momentum and a negative impact
factor corresponds to a positive apparent position θ (the apparent angle of
the probe with respect to the black hole position, positive in the direction
of positive φ). To compute θ we must project a length b = βGM to the
distance between black hole and observer, dobs = 100 pc. I will express the
angle in milliarcsec, the proportionality constant between β and θ results:

θ = −GM
c2

1

100 pc
β = −0.394β milliarcsec

where the − sign accounts is motivated above.

The redshift of the emitted radiation can be computed with the same
principle used to compute the gravitational redshift of a probe standing
at a radius r. The energy of the photon in the reference frame of the probe
is:

hνem = −~U · ~f = hνobs

√
a

a− 3

(
1 +

θ/0.394

a3/2

)
This can be used to compute the redshift of the probe:

z =
hνem
hνobs

− 1 =

√
a

a− 3

(
1 +

θ/0.394

a3/2

)
− 1

It is easy to generalize this result to the Newtonian and non-relativistic
case, where the Doppler redshift is computed as z = v/c = sinφ

√
GM/Rc2 =

−(θ/0.394)A−3/2. The figure below shows the comparison of the resulting
relation between redshift and position on the sky.
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The most notable difference is that, due to gravitational redshift, the
redshift does not vanish when the probe is passing in front of the black
hole. However, the Newtonian prediction lacks transverse Doppler effect
that is significant given that the rotation speed, v2 = GM/R = 1/A is not
much less than one. Another interesting property is that we need milli-
arcsecond angular resolution to see the probe at the relatively moderate
distance of 100 pc (compared with the distance of 8 kpc of the Sun from
SgrA*).

(5) There are of course many ways to answer the last question, but I think
that the main “smoking gun” of GR is the presence of a redshift at θ = 0
that is in excess of the transverse Doppler effect. Indeed, if zTD = γ − 1
(where TD stands for Transverse Doppler) then it’s easy to show that for
1 + zTD =

√
A/(A− 1), to be compared with 1 + z =

√
A/(A− 3) valid

for β = 0. This amounts to a redshift of z = 0.265 in place of zTD = 0.069
for A = 8.

The analysis can be extended further in several directions. As an example,
one can plot the spatial part of the null geodesics to show the degree of light
bending by the black hole curvature, by plotting

ϕ(r) =

∫ r

R

dϕ

dλ
dλ−

∫ ∞
R

dϕ

dλ
dλ

in polar coordinates. This is shown here for R = 6, 8 and 10GM , where several
light rays are reported.
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