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First intermediate test
Topic: general relativity.
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This exercise is based on Problem N. 10 and the first test of 2018/2019.
To directly measure the mass of a nearby stellar black hole, that lies at

10 pc from us, future astronomers decide to launch a probe that falls into the
black hole. We will assume that the black hole does not rotate and the probe
travels in a perfectly radial orbit that has null velocity at infinity. The probe
sends a signal at a constant frequency of 30 GHz. A receiver on Earth, that
for simplicity will be assumed to be an observer at infinity that is at rest with
the black hole, receives the signal and records its frequency with a cadence of
1 ms. The last 20 ms of data (frequencies in GHz) before the signal is lost are
the following:

1 25.56± 0.71 6 23.47± 0.97 11 22.03± 0.84 16 20.61± 0.85
2 24.15± 0.92 7 23.73± 1.00 12 22.28± 0.92 17 19.47± 1.06
3 26.20± 1.02 8 22.88± 0.83 13 24.23± 1.00 18 17.13± 0.79
4 23.65± 0.64 9 25.62± 0.96 14 21.50± 1.10 19 14.33± 1.14
5 25.02± 0.83 10 23.78± 1.10 15 20.62± 1.08 20 4.53± 0.90

The aim is to infer the mass M• of this black hole, including an errorbar.
To achieve this goal you can follow this procedure.

(1) From p⃗ · p⃗ = −m2, where m is the mass of the probe, compute dr/dτ for
the probe.

(2) Following the first test of 2018/2019, compute the observed frequency
received on Earth, including gravitational and Doppler redshifts.

(3) Use the probe four-velocity to compute dt/dτ .

(4) Don’t forget that the photon emitted by the probe must travel back to
the Earth, you will need to know the distance traveled by the probe ℓ(τ)

You will obtain a set of equations that can be numerically integrated in
τ , the affine parameter of the probe’s geodesic. It is very convenient to use
adimensional quantities, dividing lengths by Rg = GM•/c

2, the gravitational
radius of the black hole, and times by Rg/c, the light crossing-time of the grav-
itational radius. Integrate the solution starting from a relatively large distance,
say 200Rg, until you reach r = 2Rg. Adding dimensions to your adimensional
quantities, you will be able to scale your model with M•.

When comparing the model with the data, you have freedom to set the zero
of the time scale. One possible choice is to set t = 0 when the gravitational

1



redshift reaches 1 + z = 10, so that the observed frequency is 1/10th of the
initial frequency; you can use the last observation, that is consistent with it, as
your zero point. This way, a simple χ2 fit can give you the solution. It is clear
that other equivalent solutions may work as well.

Alternatively (this would be appreciated though it is not strictly required),
you can add a constant to the time scale (a “nuisance parameter”), and fit the
data with a model with two parameters. The measurement will be given by
the marginalization of the 2D probability over the nuisance parameter, i.e. by
projecting the confidence ellipsis on the M• axis.

Give a quick discussion of the results, but remember that the solution
must not be longer than 4 pages plus figures. In this discussion quickly
reply to these answers:

(1) what is the coordinate distance r of the probe when it sends it last signal?

(2) what is its velocity at the same time?

(3) seen from the Earth, the probe should take an infinite time to fall into the
black hole, what does it take to see this effect?

(4) how can we test from Earth the hypothesis that the orbit is radial?
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Solution

Let’s first find a model for the black hole mass.

(1) The computation of dr/dτ can be found in the lecture notes and in the
textbook. We need to find the Ẽ and L̃ parameters, that define the orbit
energy and angular momentum. A radial orbit has vanishing pφ, so L̃ = 0.
The equation of motion of the orbit can be written simply as:(

dr

dτ

)2

= Ẽ2 −
(
1− 2GM•

r

)
We require the velocity dr/dτ to vanish at inifinity, and this is true if
Ẽ = 1, leaving:

dr

dτ
= −

√
2GM•

r

Here we choose the negative solution of the square root because the probe
is infalling into the black hole.

(2) Let’s call fα the four-momentum one-form of a photon that travels toward
the Earth in a radial orbit. Its fϑ and fφ components will vanish, and its
radial and time components will be connected by fαfβg

αβ = 0, leading
to:

fr =
1

1− 2GM•/r
f0

The energy of the photon in the frame of the probe, hνem, is:

hνem = −Uαfα

where Uα is the probe four-velocity. This can be worked out following the
lecture notes:

Uα =

(
1

1− 2GM•/r
,
√
2GM•/r, 0, 0

)
This allows us to relate hνem to f0. For a distant observer with four-
velocity (1, 0, 0, 0), f0 = −hνobs, leading to:

1 + z =
hνem
hνobs

=
1 +

√
2GM•/r

1− 2GM•/r

(3) To relate the proper time of the probe to the coordinate time t, that is
the time for the distant observer, we need:

dt

dτ
= U0 =

1

1− 2GM•/r

(4) The photon emitted by the probe must also travel back to the distant
observer; the timing of the measurements will be the coordinate time
of emission plus the travel time of the photon. It is not necessary to
integrate this for 10 pc, one can compute the distance to a point that is
several gravitational radii away from the black hole, so that its clock ticks
(almost) at the same rate as the distant observer. For a photon the travel
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time is equal to the travelled distance, divided by the speed of light if this
is not unity. The distance can be computed as follows:

dℓ =
√
grr

dr

dτ
dτ =

√
2GM•/r

1− 2GM•/r
dτ

where we choose to integrate in proper time.

Calling x = τ/GM•, y = r/GM•, T = t/GM• and L = ℓ/GM•, we can
create a model for our data by integrating this set of differential equations:

dy

dx
= −

√
2

y
(1)

dT

dx
=

y

y − 2
(2)

dL

dx
=

√
2

y − 2
(3)

To these equations we add:

νobs = νem
y − 2

y +
√
2y

(4)

These equations can be integrated numerically, starting from y ≫ 1 (we use
y = 200) and progressing in proper time until it happens that y ≤ 2.

This model can be computed once and then adapted to any M•. When
translating x, y, T and L to physical quantities, we plug back the speed of light
c, so that time variables are multiplied by Rg/c = GM•/c

3 and length variables
by Rg = GM•/c

2.

We start by setting t = 0 as the time at which 1+z = 10, so the frequency is
3 GHz; the last measured point is consistent with 3 within 2σ (1.7σ difference),
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so we take it as a proxy for setting t = 0. Of course this is only a specific
choice, setting t = 0 when 1 + z = 30/4.53 ≃ 6.62 would have been an equally
good choice. The figure above shows how a model with 11.2 M⊙ fits the data
(this is the true value used to generate the data). To show the effect of adding
the photon travel time, the green lines shows what happens if one uses the
coordinate time at photon emission instead of the arrival time; the continuous
line has the same time definition as the red line, for the dotted line we defined
t = 0 as the (emission) time at which 1 + z = 10.

In these figures the flattening of the curve at late times and very low fre-
quencies corresponds to the probe approaching the event horizon at infinite
coordinate time; one can stretch this curve toward larger and larger times by
integrating the equations at higher and higher precision. Clearly, this phase is
not probed by our data.

The figure above shows how the prediction changes with the black hole mass
M•. This gives a first idea on the errorbar one can obtain. This 1-parameter
model can be fit on the data by simply minimizing the χ2. The figure below
shows the reduced χ2 as a function of M•, the point with errorbar below shows
the resulting value:

M• = 10.9± 0.8

fully consistent with the true value of M• = 11.2 M⊙ (denoted by a cross in the
figure).
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We then add a “nuisance parameter” by allowing a time shift δt between
the model predictions and the observational data. This way the model has two
parameters. The figure below shows the resulting confidence intervals, defined
as the levels of reduced χ2 at χ2

min + 1 and χ2
min + 2. Projecting the inner

confidence interval on the two axes, one obtains measures for M• and δt:

M• = 11.35± 0.83

δt = 0.00012± 0.00006

6



The parameter δt is consistent with zero within 2 σ; the measurement of
M• is again fully consistent with the true one (denoted by the dotted line in
the figure), though a slight degeneration between the two parameters makes its
value a bit larger. The measurement has also a slightly larger errorbar; this
is a typical consequence of fitting data with a model with more parameters.
Conversely, the minimum reduced χ2 passees from 1.15 to 1.04, showing the
convenience of adding this nuisance parameter.

The final four questions can be aswered as follows.

(1) By reverting eq. 4, and propagating the measurement errors of the fre-
quency (but using the true mass, one should propagate also the error in
the measurement of M•), we can easily see that when the probe is last de-
tected it has 1+z = 6.61±1.37 and a coordinate radius of y = 2.77±0.20
gravitational radii. This is well within both the last stable orbit and the
photon radius.

(2) As a speed, we report dr/dτ = −c
√

2/y of the probe at the observation
time; it results v = 254600± 9000 km/s, or v/c = 0.849± 0.030.

(3) The probe takes an infinite time to approach the event horizon, but as
shown in the figures above this slow-down would only be observed if we
were able to detect radiation at frequencies below 1 GHz (z > 30).

(4) If the orbit is radial, we should see the probe’s light always coming from the
same point on the sky. Assuming that M• = 11.2 M⊙, the gravitational
radius is Rg = 16.5 km, subtending an angle of only 5.34× 10−14 radians,
that is ∼ 1.1 × 10−8 arcsec. Gravitational lensing helps in increasing
the black hole shadow of the Schwartzschild radius 2Rg by a factor ∼√
27, leading to a factor 10.4 increase of the angle. Clearly this angular

resolution requres extreme interferometry to be achieved: the wavelength
corresponding to 30 GHz is λ = 1 cm, so we need a baseline such that
λ/D ∼ 5 × 10−13, leading to D ∼ 2 × 1012 cm, that is 0.13 AU, 13%
of the Sun-Earth distance. One could argue that a technology able to
send a probe to a nearby black hole can build such a large orbiting radio
telescope.
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